forked from QUANGLEA/song-genre-predictor
-
Notifications
You must be signed in to change notification settings - Fork 0
/
generate_spectrograms.py
51 lines (42 loc) · 1.78 KB
/
generate_spectrograms.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import os
import math
import json
import numpy as np
import matplotlib.pyplot as plt
import librosa
DATASET_PATH = 'wav_with_labels'
SAMPLE_RATE = 22050
if not os.path.exists('spectrogram'):
os.mkdir("spectrogram")
SPECTROGRAM_PATH = "spectrogram/"
def save_spectrogram(dataset_path):
for i, (dirpath, dirnames, filenames) in enumerate(os.walk(dataset_path)):
genre = ""
# Make sure we are at genre level
if dirpath is not dataset_path:
# Save the semantic label(classical,blues,etc)
# If dirpath = wav_with_labels/blues, then this gives us=[“wav_with_labels”,”blues”]
dirpath_components = dirpath.split("/")
genre = dirpath_components[-1]
# Create subdirectories to save spectrograms
if not genre:
continue
if not os.path.exists(SPECTROGRAM_PATH + genre):
os.mkdir(SPECTROGRAM_PATH + genre)
# Process files for a genre - we will save only one spectrogram for now
for fname in filenames:
# Load audio file
file_path = os.path.join(dirpath, fname)
y, sr = librosa.load(file_path, sr=SAMPLE_RATE)
S = librosa.feature.melspectrogram(y=y, sr=sr, n_mels=128,
fmax=8000)
fig, ax = plt.subplots()
S_dB = librosa.power_to_db(S, ref=np.max)
img = librosa.display.specshow(S_dB, x_axis='time',
y_axis='mel', sr=sr,
fmax=8000, ax=ax)
plt.axis('off')
plt.margins(x=0, y=0)
plt.savefig("spectrogram/" + genre + "/" +
fname + ".png", bbox_inches='tight', pad_inches=0)
save_spectrogram(DATASET_PATH)