-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
81 lines (69 loc) · 2.45 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
import random
import json
import pickle
from log import create_logs
import numpy as np
import nltk
from nltk.stem import WordNetLemmatizer
from keras.models import load_model
lematizer = WordNetLemmatizer()
intents = json.loads(open('data/intents.json').read())
words = pickle.load(open('data/words.pkl', 'rb'))
classes = pickle.load(open('data/classes.pkl', 'rb'))
model = load_model('data/kelvinmodel.h5')
def clean_up_sentence(sentence):
sentence_words = nltk.word_tokenize(sentence)
sentence_words = [lematizer.lemmatize(word) for word in sentence_words]
return sentence_words
def bag_of_words(sentence):
sentence_words = clean_up_sentence(sentence)
bag = [0]*len(words)
for w in sentence_words:
for i, word in enumerate(words):
if word == w:
bag[i]=1
return np.array(bag)
def predict_class(sentence):
bow = bag_of_words(sentence)
res = model.predict(np.array([bow]))[0]
ERROR_THRESHOLD = 0.25
results = [[i, r] for i, r in enumerate(res) if r>ERROR_THRESHOLD]
results.sort(key=lambda x: x[1], reverse = True)
return_list = []
for r in results:
return_list.append({'intent': classes[r[0]], 'probability':str(r[1])})
return return_list
def respond(query, username, intent_json=intents):
try:
intent_list = predict_class(query)
tag = intent_list[0]['intent']
list_of_intents = intent_json['intents']
for i in list_of_intents:
if i['tag'] == tag:
result = random.choice(i['responses'])
if "is_setting" in i.keys():
is_setting = i["is_setting"]
else:
is_setting = False
if "setting_value" in i.keys():
setting_value = i["setting_value"]
else:
setting_value = None
break
json_api = {
"Tag": tag,
"Result": result,
"is_settings": is_setting,
"setting_value": setting_value
}
log=(query, result, "NA", username)
create_logs(log)
return json_api
except Exception as e:
log=(query, "NA", format(e), username)
create_logs(log)
res_main()
def res_main(data, username):
return(respond(data, username))
if __name__ == "__main__":
print(res_main(input("you: "), "admin_adminrootmaster"))