-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprune_structured.py
278 lines (247 loc) · 14 KB
/
prune_structured.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
import numpy as np
import onnx_graphsurgeon as gs
import onnx
import torch
from utils import connectivity
import argparse
def main():
parser = argparse.ArgumentParser(description='Removes quantization preceding residual connections')
parser.add_argument('-i', '--input', type=str, help='input file name')
parser.add_argument('-o', '--output', type=str, help='output file name')
parser.add_argument('-s', '--sparsity-limit', type=float, default=100.0, help='weight sparsity threshold to prune a channel')
args = parser.parse_args()
graph = gs.import_onnx(onnx.load(args.input))
input_to_nodes, output_to_nodes, _, tensor_name_to_tensor = connectivity(graph)
features_to_prune = {}
floating_bias = {tensor_name: 0. for tensor_name in tensor_name_to_tensor.keys()}
# Updates the dictionary features_to_prune by propagating the pruning of tensor downstream
def propagate_pruning_downstream(tensor_name):
for node_id in input_to_nodes[tensor_name]:
node = graph.nodes[node_id]
if node.op in ["BatchNormalization", "Cast", "MaxPool", "GlobalAveragePool", "Relu", "Reshape", "QuantizeLinear", "DequantizeLinear"]:
for out in node.outputs:
features_to_prune[out.name] = features_to_prune[tensor_name]
propagate_pruning_downstream(out.name)
def propagate_bias_downstream(tensor_name):
for node_id in input_to_nodes[tensor_name]:
node = graph.nodes[node_id]
if node.op in ["BatchNormalization", "Cast", "MaxPool", "GlobalAveragePool", "Relu", "Add", "Reshape", "QuantizeLinear", "DequantizeLinear"]:
for out in node.outputs:
if node.op == "Relu":
floating_bias[out.name] += floating_bias[tensor_name] * (floating_bias[tensor_name] > 0.0).astype(floating_bias[tensor_name].dtype)
else:
floating_bias[out.name] += floating_bias[tensor_name]
propagate_bias_downstream(out.name)
floating_bias[tensor_name] = 0.
# Updates the dictionary features_to_prune by propagating the pruning of tensor upstream
def propagate_pruning_upstream(tensor_name, remove=False):
for node_id in output_to_nodes[tensor_name]:
node = graph.nodes[node_id]
if node.op in ["BatchNormalization", "Cast", "MaxPool", "GlobalAveragePool", "Relu", "Add", "Reshape", "QuantizeLinear", "DequantizeLinear"]:
for inp in node.inputs:
if inp.name in features_to_prune:
if remove:
del features_to_prune[inp.name]
else:
features_to_prune[inp.name] = features_to_prune[tensor_name]
propagate_pruning_upstream(inp.name, remove)
# Performs the actual pruning of input features on a conv node
def prune_input_features_conv(node, features):
n_input_features = node.inputs[1].shape[1]
features_to_keep = np.ones((n_input_features,), dtype=bool)
features_to_keep[features] = False
if type(floating_bias[node.inputs[0].name]) is not float:
kh, kw = node.attrs["kernel_shape"]
w = torch.tensor(node.inputs[1].values[:, np.logical_not(features_to_keep), :, :])
inp = np.reshape(floating_bias[node.inputs[0].name], (1, -1, 1, 1))
inp = np.tile(inp, (1, 1, kh, kw))
inp = torch.tensor(inp)
out = torch.nn.functional.conv2d(inp, w).numpy().flatten()
if len(node.inputs) == 3:
node.inputs[2].values += out
else:
bias = gs.Constant(name=node.name + ".bias", values=out)
node.inputs.append(bias)
node.inputs[1].values = node.inputs[1].values[:, features_to_keep, :, :]
# Performs the actual pruning of output features on a conv node
def prune_output_features_conv(node, features):
n_output_features = node.inputs[1].shape[0]
features_to_keep = np.ones((n_output_features,), dtype=bool)
features_to_keep[features] = False
node.inputs[1].values = node.inputs[1].values[features_to_keep]
if len(node.inputs) == 3:
floating_bias[node.outputs[0].name] = node.inputs[2].values[np.logical_not(features_to_keep)]
propagate_bias_downstream(node.outputs[0].name)
node.inputs[2].values = node.inputs[2].values[features_to_keep]
# Performs the actual pruning of input features on a qlinearconv node
def prune_input_features_qlinearconv(node, features):
n_input_features = node.inputs[3].shape[1]
features_to_keep = np.ones((n_input_features,), dtype=bool)
features_to_keep[features] = False
if type(floating_bias[node.inputs[0].name]) is not float:
kh, kw = node.attrs["kernel_shape"]
w_scale = node.inputs[4].values
w_zero_point = node.inputs[5].values
w_quant = node.inputs[3].values[:, np.logical_not(features_to_keep), :, :]
w_float = (w_quant.astype(np.float32) - w_zero_point.astype(np.float32)) * w_scale
w_float = torch.tensor(w_float)
inp = np.reshape(floating_bias[node.inputs[0].name], (1, -1, 1, 1))
inp = np.tile(inp, (1, 1, kh, kw))
inp = torch.tensor(inp)
out_float = torch.nn.functional.conv2d(inp, w_float).numpy().flatten()
x_scale = node.inputs[1].values
bias_scale = w_scale * x_scale
out_quant = np.round(out_float / bias_scale).astype(np.int32)
if len(node.inputs) == 9:
node.inputs[8].values += out_quant
else:
bias = gs.Constant(name=node.name + ".bias", values=out_quant)
node.inputs.append(bias)
node.inputs[3].values = node.inputs[3].values[:, features_to_keep, :, :]
# Performs the actual pruning of output features on a qlinearconv node
def prune_output_features_qlinearconv(node, features):
n_output_features = node.inputs[3].shape[0]
features_to_keep = np.ones((n_output_features,), dtype=bool)
features_to_keep[features] = False
node.inputs[3].values = node.inputs[3].values[features_to_keep]
if len(node.inputs) == 9:
x_scale = node.inputs[1].values
w_scale = node.inputs[4].values
out_scale = x_scale * w_scale
bias_quant = node.inputs[8].values[np.logical_not(features_to_keep)]
bias_float = bias_quant.astype(np.float32) * out_scale
floating_bias[node.outputs[0].name] = bias_float
propagate_bias_downstream(node.outputs[0].name)
node.inputs[8].values = node.inputs[8].values[features_to_keep]
# Performs the actual pruning of input features on a gemm node
def prune_input_features_gemm(node, features):
n_input_features = node.inputs[1].shape[1]
features_to_keep = np.ones((n_input_features,), dtype=bool)
features_to_keep[features] = False
if type(floating_bias[node.inputs[0].name]) is not float:
w = node.inputs[1].values[:, np.logical_not(features_to_keep)]
out = np.matmul(w, floating_bias[node.inputs[0].name]).flatten()
if len(node.inputs) == 3:
node.inputs[2].values += out
else:
bias = gs.Constant(name=node.name + ".bias", values=out)
node.inputs.append(bias)
node.inputs[1].values = node.inputs[1].values[:, features_to_keep]
# Performs the actual pruning of features on a batchnormalization node
def prune_features_bn(node, features):
n_features = node.inputs[1].shape[0]
features_to_keep = np.ones((n_features,), dtype=bool)
features_to_keep[features] = False
eps = node.attrs["epsilon"]
effective_bias = node.inputs[2].values - node.inputs[1].values * node.inputs[3].values / np.sqrt(node.inputs[4].values + eps)
floating_bias[node.outputs[0].name] = effective_bias[np.logical_not(features_to_keep)]
propagate_bias_downstream(node.outputs[0].name)
node.inputs[1].values = node.inputs[1].values[features_to_keep]
node.inputs[2].values = node.inputs[2].values[features_to_keep]
node.inputs[3].values = node.inputs[3].values[features_to_keep]
node.inputs[4].values = node.inputs[4].values[features_to_keep]
# Checks the prunable features across residual connections for consistency.
# Determine consistent features to prune and propagates.
def propagate_from_add(ignore_not_pruned=True):
changed = False
for node in graph.nodes:
if node.op == "Add" and node.outputs[0].name not in features_to_prune:
if node.inputs[0].name in features_to_prune and node.inputs[1].name in features_to_prune:
features_to_prune0 = features_to_prune[node.inputs[0].name]
features_to_prune1 = features_to_prune[node.inputs[1].name]
_features_to_prune = np.intersect1d(features_to_prune0, features_to_prune1)
if _features_to_prune.size > 0:
features_to_prune[node.inputs[0].name] = _features_to_prune
propagate_pruning_upstream(node.inputs[0].name)
features_to_prune[node.inputs[1].name] = _features_to_prune
propagate_pruning_upstream(node.inputs[1].name)
features_to_prune[node.outputs[0].name] = _features_to_prune
propagate_pruning_downstream(node.outputs[0].name)
changed = True
else:
del features_to_prune[node.inputs[0].name]
propagate_pruning_upstream(node.inputs[0].name, remove=True)
del features_to_prune[node.inputs[1].name]
propagate_pruning_upstream(node.inputs[1].name, remove=True)
elif not ignore_not_pruned:
if node.inputs[0].name in features_to_prune:
del features_to_prune[node.inputs[0].name]
propagate_pruning_upstream(node.inputs[0].name, remove=True)
elif node.inputs[1].name in features_to_prune:
del features_to_prune[node.inputs[1].name]
propagate_pruning_upstream(node.inputs[1].name, remove=True)
return changed
# ------------
# Pruning can only "emerge" from convolutional layers.
# Cannot assess pruning from the layer alone since pruning can only happen if
# there are no conflicts of pruned features across residual connections.
# Loop through all nodes.
# If convolutional, register tentative features to be pruned per output tensor.
# Propagate the tentative pruning downstream until it reaches another
# convolutional layer or residual connection.
# ------------
total_features = 0
for node in graph.nodes:
if "Conv" in node.op:
if node.op == "Conv":
w = node.inputs[1].values
elif node.op == "QLinearConv":
w = node.inputs[3].values.astype(int) - node.inputs[5].values.astype(int)
n_features = w.shape[0]
total_features += n_features
zero_features = np.reshape(w, (n_features, -1))
threshold = int(zero_features.shape[-1] * args.sparsity_limit / 100.)
_features_to_prune = np.argwhere(np.count_nonzero(np.abs(zero_features) == 0, axis=-1) >= threshold).flatten()
if _features_to_prune.size > 0:
features_to_prune[node.outputs[0].name] = _features_to_prune
propagate_pruning_downstream(node.outputs[0].name)
# ------------
# Now check if consistency of prunable features across residual connections.
# Repeat as long as the list of prunable features keeps changing.
# Loop through all nodes. If "Add" node, check the prunable features from
# both sides.
# Make prunable features consistent and propagate them.
# ------------
changed = True
while changed:
changed = propagate_from_add()
# ------------
# Final loop through residual connections.
# This fixes residual connections in which only one side had potential pruning.
# ------------
propagate_from_add(ignore_not_pruned=False)
# Now we can be certain that the prunable features are consistent.
# Prune features
total_pruned_features = 0
for tensor_name in features_to_prune:
_features_to_prune = features_to_prune[tensor_name]
tensor = tensor_name_to_tensor[tensor_name]
if tensor.shape is not None:
tensor.shape[-1] = (tensor.shape[-1] - _features_to_prune.size)
for node_id in output_to_nodes[tensor_name]:
node = graph.nodes[node_id]
if node.op == "Conv":
total_pruned_features += _features_to_prune.size
prune_output_features_conv(node, _features_to_prune)
elif node.op == "QLinearConv":
total_pruned_features += _features_to_prune.size
prune_output_features_qlinearconv(node, _features_to_prune)
for tensor_name in features_to_prune:
_features_to_prune = features_to_prune[tensor_name]
for node_id in input_to_nodes[tensor_name]:
node = graph.nodes[node_id]
if node.op == "Conv":
prune_input_features_conv(node, _features_to_prune)
elif node.op == "QLinearConv":
prune_input_features_qlinearconv(node, _features_to_prune)
elif node.op == "BatchNormalization":
prune_features_bn(node, _features_to_prune)
elif node.op == "Gemm":
prune_input_features_gemm(node, _features_to_prune)
# Final cleanup and saving pruned graph
graph.cleanup().toposort()
onnx_graph = gs.export_onnx(graph)
onnx.save(onnx_graph, args.output)
print(f"Pruned features: {total_pruned_features}/{total_features}, {100.*total_pruned_features / total_features:.2f}%")
if __name__ == "__main__":
main()