diff --git a/docs/user/InstructionsForAutoTuner.md b/docs/user/InstructionsForAutoTuner.md index 5eba85b8e3..2a8edd05c5 100644 --- a/docs/user/InstructionsForAutoTuner.md +++ b/docs/user/InstructionsForAutoTuner.md @@ -23,17 +23,13 @@ User-defined coefficient values (`coeff_perform`, `coeff_power`, `coeff_area`) o ## Setting up AutoTuner -We have provided two convenience scripts, `./install.sh` and `./setup.sh` +We have provided two convenience scripts, `./installer.sh` and `./setup.sh` that works in Python3.8 for installation and configuration of AutoTuner, as shown below: -```{note} -Make sure you run the following commands in `./tools/AutoTuner/src/autotuner`. -``` - ```shell # Install prerequisites -./tools/AutoTuner/install.sh +./tools/AutoTuner/installer.sh # Start virtual environment ./tools/AutoTuner/setup.sh @@ -104,7 +100,7 @@ For Global Routing parameters that are set on `fastroute.tcl` you can use: ### General Information -The `distributed.py` script uses Ray's job scheduling and management to +The `autotuner.distributed` module uses Ray's job scheduling and management to fully utilize available hardware resources from a single server configuration, on-premies or over the cloud with multiple CPUs. The two modes of operation: `sweep`, where every possible parameter @@ -114,35 +110,37 @@ hyperparameters using one of the algorithms listed above. The `sweep` mode is useful when we want to isolate or test a single or very few parameters. On the other hand, `tune` is more suitable for finding the best combination of a complex and large number of flow -parameters. Both modes rely on user-specified search space that is -defined by a `.json` file, they use the same syntax and format, -though some features may not be available for sweeping. +parameters. ```{note} The order of the parameters matter. Arguments `--design`, `--platform` and `--config` are always required and should precede . ``` +```{note} +The following commands should be run from `./tools/AutoTuner`. +``` + #### Tune only -* AutoTuner: `python3 distributed.py tune -h` +* AutoTuner: `python3 -m autotuner.distributed tune -h` Example: ```shell -python3 distributed.py --design gcd --platform sky130hd \ - --config ../../../../flow/designs/sky130hd/gcd/autotuner.json \ +python3 -m autotuner.distributed --design gcd --platform sky130hd \ + --config ../../flow/designs/sky130hd/gcd/autotuner.json \ tune --samples 5 ``` #### Sweep only -* Parameter sweeping: `python3 distributed.py sweep -h` +* Parameter sweeping: `python3 -m autotuner.distributed sweep -h` Example: ```shell -python3 distributed.py --design gcd --platform sky130hd \ - --config distributed-sweep-example.json \ +python3 -m autotuner.distributed --design gcd --platform sky130hd \ + --config src/autotuner/distributed-sweep-example.json \ sweep ```