-
Notifications
You must be signed in to change notification settings - Fork 165
/
average_precision_calculator.py
274 lines (223 loc) · 9.54 KB
/
average_precision_calculator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
# Copyright 2016 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS-IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Calculate or keep track of the interpolated average precision.
It provides an interface for calculating interpolated average precision for an
entire list or the top-n ranked items. For the definition of the
(non-)interpolated average precision:
http://trec.nist.gov/pubs/trec15/appendices/CE.MEASURES06.pdf
Example usages:
1) Use it as a static function call to directly calculate average precision for
a short ranked list in the memory.
```
import random
p = np.array([random.random() for _ in xrange(10)])
a = np.array([random.choice([0, 1]) for _ in xrange(10)])
ap = average_precision_calculator.AveragePrecisionCalculator.ap(p, a)
```
2) Use it as an object for long ranked list that cannot be stored in memory or
the case where partial predictions can be observed at a time (Tensorflow
predictions). In this case, we first call the function accumulate many times
to process parts of the ranked list. After processing all the parts, we call
peek_interpolated_ap_at_n.
```
p1 = np.array([random.random() for _ in xrange(5)])
a1 = np.array([random.choice([0, 1]) for _ in xrange(5)])
p2 = np.array([random.random() for _ in xrange(5)])
a2 = np.array([random.choice([0, 1]) for _ in xrange(5)])
# interpolated average precision at 10 using 1000 break points
calculator = average_precision_calculator.AveragePrecisionCalculator(10)
calculator.accumulate(p1, a1)
calculator.accumulate(p2, a2)
ap3 = calculator.peek_ap_at_n()
```
"""
import heapq
import random
import numbers
import numpy
class AveragePrecisionCalculator(object):
"""Calculate the average precision and average precision at n."""
def __init__(self, top_n=None):
"""Construct an AveragePrecisionCalculator to calculate average precision.
This class is used to calculate the average precision for a single label.
Args:
top_n: A positive Integer specifying the average precision at n, or
None to use all provided data points.
Raises:
ValueError: An error occurred when the top_n is not a positive integer.
"""
if not ((isinstance(top_n, int) and top_n >= 0) or top_n is None):
raise ValueError("top_n must be a positive integer or None.")
self._top_n = top_n # average precision at n
self._total_positives = 0 # total number of positives have seen
self._heap = [] # max heap of (prediction, actual)
@property
def heap_size(self):
"""Gets the heap size maintained in the class."""
return len(self._heap)
@property
def num_accumulated_positives(self):
"""Gets the number of positive samples that have been accumulated."""
return self._total_positives
def accumulate(self, predictions, actuals, num_positives=None):
"""Accumulate the predictions and their ground truth labels.
After the function call, we may call peek_ap_at_n to actually calculate
the average precision.
Note predictions and actuals must have the same shape.
Args:
predictions: a list storing the prediction scores.
actuals: a list storing the ground truth labels. Any value
larger than 0 will be treated as positives, otherwise as negatives.
num_positives = If the 'predictions' and 'actuals' inputs aren't complete,
then it's possible some true positives were missed in them. In that case,
you can provide 'num_positives' in order to accurately track recall.
Raises:
ValueError: An error occurred when the format of the input is not the
numpy 1-D array or the shape of predictions and actuals does not match.
"""
if len(predictions) != len(actuals):
raise ValueError("the shape of predictions and actuals does not match.")
if not num_positives is None:
if not isinstance(num_positives, numbers.Number) or num_positives < 0:
raise ValueError("'num_positives' was provided but it wan't a nonzero number.")
if not num_positives is None:
self._total_positives += num_positives
else:
self._total_positives += numpy.size(numpy.where(actuals > 0))
topk = self._top_n
heap = self._heap
for i in range(numpy.size(predictions)):
if topk is None or len(heap) < topk:
heapq.heappush(heap, (predictions[i], actuals[i]))
else:
if predictions[i] > heap[0][0]: # heap[0] is the smallest
heapq.heappop(heap)
heapq.heappush(heap, (predictions[i], actuals[i]))
def clear(self):
"""Clear the accumulated predictions."""
self._heap = []
self._total_positives = 0
def peek_ap_at_n(self):
"""Peek the non-interpolated average precision at n.
Returns:
The non-interpolated average precision at n (default 0).
If n is larger than the length of the ranked list,
the average precision will be returned.
"""
if self.heap_size <= 0:
return 0
predlists = numpy.array(list(zip(*self._heap)))
ap = self.ap_at_n(predlists[0],
predlists[1],
n=self._top_n,
total_num_positives=self._total_positives)
return ap
@staticmethod
def ap(predictions, actuals):
"""Calculate the non-interpolated average precision.
Args:
predictions: a numpy 1-D array storing the sparse prediction scores.
actuals: a numpy 1-D array storing the ground truth labels. Any value
larger than 0 will be treated as positives, otherwise as negatives.
Returns:
The non-interpolated average precision at n.
If n is larger than the length of the ranked list,
the average precision will be returned.
Raises:
ValueError: An error occurred when the format of the input is not the
numpy 1-D array or the shape of predictions and actuals does not match.
"""
return AveragePrecisionCalculator.ap_at_n(predictions,
actuals,
n=None)
@staticmethod
def ap_at_n(predictions, actuals, n=20, total_num_positives=None):
"""Calculate the non-interpolated average precision.
Args:
predictions: a numpy 1-D array storing the sparse prediction scores.
actuals: a numpy 1-D array storing the ground truth labels. Any value
larger than 0 will be treated as positives, otherwise as negatives.
n: the top n items to be considered in ap@n.
total_num_positives : (optionally) you can specify the number of total
positive
in the list. If specified, it will be used in calculation.
Returns:
The non-interpolated average precision at n.
If n is larger than the length of the ranked list,
the average precision will be returned.
Raises:
ValueError: An error occurred when
1) the format of the input is not the numpy 1-D array;
2) the shape of predictions and actuals does not match;
3) the input n is not a positive integer.
"""
if len(predictions) != len(actuals):
raise ValueError("the shape of predictions and actuals does not match.")
if n is not None:
if not isinstance(n, int) or n <= 0:
raise ValueError("n must be 'None' or a positive integer."
" It was '%s'." % n)
ap = 0.0
predictions = numpy.array(predictions)
actuals = numpy.array(actuals)
# add a shuffler to avoid overestimating the ap
predictions, actuals = AveragePrecisionCalculator._shuffle(predictions,
actuals)
sortidx = sorted(
range(len(predictions)),
key=lambda k: predictions[k],
reverse=True)
if total_num_positives is None:
numpos = numpy.size(numpy.where(actuals > 0))
else:
numpos = total_num_positives
if numpos == 0:
return 0
if n is not None:
numpos = min(numpos, n)
delta_recall = 1.0 / numpos
poscount = 0.0
# calculate the ap
r = len(sortidx)
if n is not None:
r = min(r, n)
for i in range(r):
if actuals[sortidx[i]] > 0:
poscount += 1
ap += poscount / (i + 1) * delta_recall
return ap
@staticmethod
def _shuffle(predictions, actuals):
random.seed(0)
suffidx = random.sample(range(len(predictions)), len(predictions))
predictions = predictions[suffidx]
actuals = actuals[suffidx]
return predictions, actuals
@staticmethod
def _zero_one_normalize(predictions, epsilon=1e-7):
"""Normalize the predictions to the range between 0.0 and 1.0.
For some predictions like SVM predictions, we need to normalize them before
calculate the interpolated average precision. The normalization will not
change the rank in the original list and thus won't change the average
precision.
Args:
predictions: a numpy 1-D array storing the sparse prediction scores.
epsilon: a small constant to avoid denominator being zero.
Returns:
The normalized prediction.
"""
denominator = numpy.max(predictions) - numpy.min(predictions)
ret = (predictions - numpy.min(predictions)) / numpy.max(denominator,
epsilon)
return ret