From 88501bec348859d4a2155c2a63685d8b007a6d71 Mon Sep 17 00:00:00 2001 From: anubhavamd <92926185+anubhavamd@users.noreply.github.com> Date: Mon, 11 Jul 2022 15:51:31 +0530 Subject: [PATCH] Update README.md --- README.md | 52 ++++++++++++++++++++++++++++++---------------------- 1 file changed, 30 insertions(+), 22 deletions(-) diff --git a/README.md b/README.md index 15fe40b..48ce7d7 100644 --- a/README.md +++ b/README.md @@ -125,11 +125,11 @@ The performance of AMD hardware and associated software also offers excellent be # Chapter 2 Prerequisites -## 2.1 Hardware prerequisites +## 2.1 Hardware Prerequisites Confirm that the installation hardware supports the ROCmâ„¢ stack. -_[https://github.com/RadeonOpenCompute/ROCm#Hardware-and-Software-Support](https://github.com/RadeonOpenCompute/ROCm#Hardware-and-Software-Support)_ +[https://github.com/RadeonOpenCompute/ROCm#Hardware-and-Software-Support](https://github.com/RadeonOpenCompute/ROCm#Hardware-and-Software-Support) ## 2.2 ROCm Installation Guide @@ -139,15 +139,9 @@ ROCm user-space API is guaranteed to be compatible with certain older and newer **Note** The color in the tables may look slightly different. -**Table** **1** **ROCm Userspace Compatibility with KFD**** ** +**Table 1: ROCm Userspace Compatibility with KFD** - - - -
-
- -Legends: +**Legends:** **Light Green** : Supported version @@ -155,7 +149,11 @@ Legends: **Light Grey** : Unsupported version - ![](RackMultipart20220711-1-vf5plv_html_b717630de3538c9e.png) + + + +
+
Kernel space compatibility meets the following condition: @@ -165,29 +163,33 @@ Kernel space compatibility meets the following condition: The ROCm release supports the most recent and two prior releases of PyTorch and TensorFlow. -**Table** **2** **ROCm Framework Compatibility with PyTorch**** ** - -![Shape5](RackMultipart20220711-1-vf5plv_html_38917c15be10e3b9.gif) +**Table 2: ROCm Framework Compatibility with PyTorch** -Legends: +**Legends:** **Light Blue** : Versions with backward compatibility **Light Grey** : Unsupported version - ![](RackMultipart20220711-1-vf5plv_html_f9c8297b8071931f.png) - -**Table** **3** **ROCm Framework Compatibility with TensorFlow**** ** + + + +
+
-![Shape6](RackMultipart20220711-1-vf5plv_html_2fa612a21123942d.gif) +**Table 3: ROCm Framework Compatibility with TensorFlow** -Legends: +**Legends:** **Light Blue** : Versions with backward compatibility **Light Grey** : Unsupported version - ![](RackMultipart20220711-1-vf5plv_html_e9ba59a33a594f74.png) + + + +
+
### 2.2.3 Installation @@ -197,13 +199,19 @@ Refer to the latest ROCm installation guide. You may verify the ROCm installation using the 'rocminfo' command. +``` $ /opt/rocm-\<version\>/bin/rocminfo +``` # Chapter 3 Frameworks Installation Guide ## 3.1 PyTorch -![](RackMultipart20220711-1-vf5plv_html_e6585b82fac22c1b.png) + + + +
+
PyTorch is an open-source Machine Learning Python library, primarily differentiated by Tensor computing with GPU acceleration and a type-based automatic differentiation. Other advanced features include support for distributed training, native ONNX support, C++ frontend, ability to deploy at scale using TorchServe, and production-ready deployment mechanism through TorchScript.