From 88501bec348859d4a2155c2a63685d8b007a6d71 Mon Sep 17 00:00:00 2001
From: anubhavamd <92926185+anubhavamd@users.noreply.github.com>
Date: Mon, 11 Jul 2022 15:51:31 +0530
Subject: [PATCH] Update README.md
---
README.md | 52 ++++++++++++++++++++++++++++++----------------------
1 file changed, 30 insertions(+), 22 deletions(-)
diff --git a/README.md b/README.md
index 15fe40b..48ce7d7 100644
--- a/README.md
+++ b/README.md
@@ -125,11 +125,11 @@ The performance of AMD hardware and associated software also offers excellent be
# Chapter 2 Prerequisites
-## 2.1 Hardware prerequisites
+## 2.1 Hardware Prerequisites
Confirm that the installation hardware supports the ROCmâ„¢ stack.
-_[https://github.com/RadeonOpenCompute/ROCm#Hardware-and-Software-Support](https://github.com/RadeonOpenCompute/ROCm#Hardware-and-Software-Support)_
+[https://github.com/RadeonOpenCompute/ROCm#Hardware-and-Software-Support](https://github.com/RadeonOpenCompute/ROCm#Hardware-and-Software-Support)
## 2.2 ROCm Installation Guide
@@ -139,15 +139,9 @@ ROCm user-space API is guaranteed to be compatible with certain older and newer
**Note** The color in the tables may look slightly different.
-**Table** **1** **ROCm Userspace Compatibility with KFD**** **
+**Table 1: ROCm Userspace Compatibility with KFD**
-
-
-
- |
-
-
-Legends:
+**Legends:**
**Light Green** : Supported version
@@ -155,7 +149,11 @@ Legends:
**Light Grey** : Unsupported version
- ![](RackMultipart20220711-1-vf5plv_html_b717630de3538c9e.png)
+
+
+
+ |
+
Kernel space compatibility meets the following condition:
@@ -165,29 +163,33 @@ Kernel space compatibility meets the following condition:
The ROCm release supports the most recent and two prior releases of PyTorch and TensorFlow.
-**Table** **2** **ROCm Framework Compatibility with PyTorch**** **
-
-![Shape5](RackMultipart20220711-1-vf5plv_html_38917c15be10e3b9.gif)
+**Table 2: ROCm Framework Compatibility with PyTorch**
-Legends:
+**Legends:**
**Light Blue** : Versions with backward compatibility
**Light Grey** : Unsupported version
- ![](RackMultipart20220711-1-vf5plv_html_f9c8297b8071931f.png)
-
-**Table** **3** **ROCm Framework Compatibility with TensorFlow**** **
+
+
+
+ |
+
-![Shape6](RackMultipart20220711-1-vf5plv_html_2fa612a21123942d.gif)
+**Table 3: ROCm Framework Compatibility with TensorFlow**
-Legends:
+**Legends:**
**Light Blue** : Versions with backward compatibility
**Light Grey** : Unsupported version
- ![](RackMultipart20220711-1-vf5plv_html_e9ba59a33a594f74.png)
+
+
+
+ |
+
### 2.2.3 Installation
@@ -197,13 +199,19 @@ Refer to the latest ROCm installation guide.
You may verify the ROCm installation using the 'rocminfo' command.
+```
$ /opt/rocm-\<version\>/bin/rocminfo
+```
# Chapter 3 Frameworks Installation Guide
## 3.1 PyTorch
-![](RackMultipart20220711-1-vf5plv_html_e6585b82fac22c1b.png)
+
+
+
+ |
+
PyTorch is an open-source Machine Learning Python library, primarily differentiated by Tensor computing with GPU acceleration and a type-based automatic differentiation. Other advanced features include support for distributed training, native ONNX support, C++ frontend, ability to deploy at scale using TorchServe, and production-ready deployment mechanism through TorchScript.