-
Notifications
You must be signed in to change notification settings - Fork 0
/
vc_infer_pipeline.py
579 lines (517 loc) · 21.1 KB
/
vc_infer_pipeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
import numpy as np, parselmouth, torch, pdb, sys, os
from time import time as ttime
import torch.nn.functional as F
import torchcrepe # Fork feature. Use the crepe f0 algorithm. New dependency (pip install torchcrepe)
from torch import Tensor
import scipy.signal as signal
import pyworld, os, traceback, faiss, librosa, torchcrepe
from scipy import signal
from functools import lru_cache
from functools import partial
import re
from tqdm import tqdm
now_dir = os.getcwd()
sys.path.append(now_dir)
from LazyImport import lazyload
torchcrepe = lazyload("torchcrepe") # Fork Feature. Crepe algo for training and preprocess
torch = lazyload("torch")
rmvpe = lazyload("rmvpe")
bh, ah = signal.butter(N=5, Wn=48, btype="high", fs=16000)
input_audio_path2wav = {}
@lru_cache
def cache_harvest_f0(input_audio_path, fs, f0max, f0min, frame_period):
audio = input_audio_path2wav[input_audio_path]
f0, t = pyworld.harvest(
audio,
fs=fs,
f0_ceil=f0max,
f0_floor=f0min,
frame_period=frame_period,
)
f0 = pyworld.stonemask(audio, f0, t, fs)
return f0
def change_rms(data1, sr1, data2, sr2, rate): # 1是输入音频,2是输出音频,rate是2的占比
# print(data1.max(),data2.max())
rms1 = librosa.feature.rms(
y=data1, frame_length=sr1 // 2 * 2, hop_length=sr1 // 2
) # 每半秒一个点
rms2 = librosa.feature.rms(y=data2, frame_length=sr2 // 2 * 2, hop_length=sr2 // 2)
rms1 = torch.from_numpy(rms1)
rms1 = F.interpolate(
rms1.unsqueeze(0), size=data2.shape[0], mode="linear"
).squeeze()
rms2 = torch.from_numpy(rms2)
rms2 = F.interpolate(
rms2.unsqueeze(0), size=data2.shape[0], mode="linear"
).squeeze()
rms2 = torch.max(rms2, torch.zeros_like(rms2) + 1e-6)
data2 *= (
torch.pow(rms1, torch.tensor(1 - rate))
* torch.pow(rms2, torch.tensor(rate - 1))
).numpy()
return data2
class VC(object):
def __init__(self, tgt_sr, config):
self.x_pad, self.x_query, self.x_center, self.x_max, self.is_half = (
config.x_pad,
config.x_query,
config.x_center,
config.x_max,
config.is_half,
)
self.sr = 16000 # hubert输入采样率
self.window = 160 # 每帧点数
self.t_pad = self.sr * self.x_pad # 每条前后pad时间
self.t_pad_tgt = tgt_sr * self.x_pad
self.t_pad2 = self.t_pad * 2
self.t_query = self.sr * self.x_query # 查询切点前后查询时间
self.t_center = self.sr * self.x_center # 查询切点位置
self.t_max = self.sr * self.x_max # 免查询时长阈值
self.device = config.device
self.model_rmvpe = rmvpe.RMVPE("rmvpe.pt", is_half=False, device="cuda:0")
self.f0_method_dict = {
"pm": self.get_pm,
"harvest": self.get_harvest,
"dio": self.get_dio,
"rmvpe": self.get_rmvpe,
"rmvpe+": self.get_pitch_dependant_rmvpe,
"crepe": self.get_f0_official_crepe_computation,
"crepe-tiny": partial(self.get_f0_official_crepe_computation, model='model'),
"mangio-crepe": self.get_f0_crepe_computation,
"mangio-crepe-tiny": partial(self.get_f0_crepe_computation, model='model'),
}
# Fork Feature: Get the best torch device to use for f0 algorithms that require a torch device. Will return the type (torch.device)
def get_optimal_torch_device(self, index: int = 0) -> torch.device:
if torch.cuda.is_available():
return torch.device(
f"cuda:{index % torch.cuda.device_count()}"
) # Very fast
elif torch.backends.mps.is_available():
return torch.device("mps")
return torch.device("cpu")
# Fork Feature: Compute f0 with the crepe method
def get_f0_crepe_computation(
self,
x,
f0_min,
f0_max,
p_len,
*args, # 512 before. Hop length changes the speed that the voice jumps to a different dramatic pitch. Lower hop lengths means more pitch accuracy but longer inference time.
**kwargs, # Either use crepe-tiny "tiny" or crepe "full". Default is full
):
x = x.astype(
np.float32
) # fixes the F.conv2D exception. We needed to convert double to float.
x /= np.quantile(np.abs(x), 0.999)
torch_device = self.get_optimal_torch_device()
audio = torch.from_numpy(x).to(torch_device, copy=True)
audio = torch.unsqueeze(audio, dim=0)
if audio.ndim == 2 and audio.shape[0] > 1:
audio = torch.mean(audio, dim=0, keepdim=True).detach()
audio = audio.detach()
hop_length = kwargs.get('crepe_hop_length', 160)
model = kwargs.get('model', 'full')
print("Initiating prediction with a crepe_hop_length of: " + str(hop_length))
pitch: Tensor = torchcrepe.predict(
audio,
self.sr,
hop_length,
f0_min,
f0_max,
model,
batch_size=hop_length * 2,
device=torch_device,
pad=True,
)
p_len = p_len or x.shape[0] // hop_length
# Resize the pitch for final f0
source = np.array(pitch.squeeze(0).cpu().float().numpy())
source[source < 0.001] = np.nan
target = np.interp(
np.arange(0, len(source) * p_len, len(source)) / p_len,
np.arange(0, len(source)),
source,
)
f0 = np.nan_to_num(target)
return f0 # Resized f0
def get_f0_official_crepe_computation(
self,
x,
f0_min,
f0_max,
*args,
**kwargs
):
# Pick a batch size that doesn't cause memory errors on your gpu
batch_size = 512
# Compute pitch using first gpu
audio = torch.tensor(np.copy(x))[None].float()
model = kwargs.get('model', 'full')
f0, pd = torchcrepe.predict(
audio,
self.sr,
self.window,
f0_min,
f0_max,
model,
batch_size=batch_size,
device=self.device,
return_periodicity=True,
)
pd = torchcrepe.filter.median(pd, 3)
f0 = torchcrepe.filter.mean(f0, 3)
f0[pd < 0.1] = 0
f0 = f0[0].cpu().numpy()
return f0
# Fork Feature: Compute pYIN f0 method
def get_f0_pyin_computation(self, x, f0_min, f0_max):
y, sr = librosa.load("saudio/Sidney.wav", self.sr, mono=True)
f0, _, _ = librosa.pyin(y, sr=self.sr, fmin=f0_min, fmax=f0_max)
f0 = f0[1:] # Get rid of extra first frame
return f0
def get_pm(self, x, p_len, *args, **kwargs):
f0 = parselmouth.Sound(x, self.sr).to_pitch_ac(
time_step=160 / 16000,
voicing_threshold=0.6,
pitch_floor=kwargs.get('f0_min'),
pitch_ceiling=kwargs.get('f0_max'),
).selected_array["frequency"]
return np.pad(
f0,
[[max(0, (p_len - len(f0) + 1) // 2), max(0, p_len - len(f0) - (p_len - len(f0) + 1) // 2)]],
mode="constant"
)
def get_harvest(self, x, *args, **kwargs):
f0_spectral = pyworld.harvest(
x.astype(np.double),
fs=self.sr,
f0_ceil=kwargs.get('f0_max'),
f0_floor=kwargs.get('f0_min'),
frame_period=1000 * kwargs.get('hop_length', 160) / self.sr,
)
return pyworld.stonemask(x.astype(np.double), *f0_spectral, self.sr)
def get_dio(self, x, *args, **kwargs):
f0_spectral = pyworld.dio(
x.astype(np.double),
fs=self.sr,
f0_ceil=kwargs.get('f0_max'),
f0_floor=kwargs.get('f0_min'),
frame_period=1000 * kwargs.get('hop_length', 160) / self.sr,
)
return pyworld.stonemask(x.astype(np.double), *f0_spectral, self.sr)
def get_rmvpe(self, x, *args, **kwargs):
return self.model_rmvpe.infer_from_audio(x, thred=0.03)
def get_pitch_dependant_rmvpe(self, x, f0_min=1, f0_max=40000, *args, **kwargs):
return self.model_rmvpe.infer_from_audio_with_pitch(x, thred=0.03, f0_min=f0_min, f0_max=f0_max)
# Fork Feature: Acquire median hybrid f0 estimation calculation
def get_f0_hybrid_computation(
self,
methods_str,
input_audio_path,
x,
f0_min,
f0_max,
p_len,
filter_radius,
crepe_hop_length,
time_step
):
# Get various f0 methods from input to use in the computation stack
params = {'x': x, 'p_len': p_len, 'f0_min': f0_min,
'f0_max': f0_max, 'time_step': time_step, 'filter_radius': filter_radius,
'crepe_hop_length': crepe_hop_length, 'model': "full"
}
methods_str = re.search('hybrid\[(.+)\]', methods_str)
if methods_str: # Ensure a match was found
methods = [method.strip() for method in methods_str.group(1).split('+')]
f0_computation_stack = []
print(f"Calculating f0 pitch estimations for methods: {str(methods)}")
x = x.astype(np.float32)
x /= np.quantile(np.abs(x), 0.999)
# Get f0 calculations for all methods specified
for method in methods:
if method not in self.f0_method_dict:
print(f"Method {method} not found.")
continue
f0 = self.f0_method_dict[method](**params)
if method == 'harvest' and filter_radius > 2:
f0 = signal.medfilt(f0, 3)
f0 = f0[1:] # Get rid of first frame.
f0_computation_stack.append(f0)
for fc in f0_computation_stack:
print(len(fc))
print(f"Calculating hybrid median f0 from the stack of: {str(methods)}")
f0_median_hybrid = np.nanmedian(f0_computation_stack, axis=0)
return f0_median_hybrid
def get_f0(
self,
input_audio_path,
x,
p_len,
f0_up_key,
f0_method,
filter_radius,
crepe_hop_length,
inp_f0=None,
f0_min=50,
f0_max=1100,
):
global input_audio_path2wav
time_step = self.window / self.sr * 1000
f0_mel_min = 1127 * np.log(1 + f0_min / 700)
f0_mel_max = 1127 * np.log(1 + f0_max / 700)
params = {'x': x, 'p_len': p_len, 'f0_up_key': f0_up_key, 'f0_min': f0_min,
'f0_max': f0_max, 'time_step': time_step, 'filter_radius': filter_radius,
'crepe_hop_length': crepe_hop_length, 'model': "full"
}
f0 = self.f0_method_dict[f0_method](**params)
if "hybrid" in f0_method:
# Perform hybrid median pitch estimation
input_audio_path2wav[input_audio_path] = x.astype(np.double)
f0 = self.get_f0_hybrid_computation(
f0_method,+
input_audio_path,
x,
f0_min,
f0_max,
p_len,
filter_radius,
crepe_hop_length,
time_step,
)
f0 *= pow(2, f0_up_key / 12)
# with open("test.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()]))
tf0 = self.sr // self.window # 每秒f0点数
if inp_f0 is not None:
delta_t = np.round(
(inp_f0[:, 0].max() - inp_f0[:, 0].min()) * tf0 + 1
).astype("int16")
replace_f0 = np.interp(
list(range(delta_t)), inp_f0[:, 0] * 100, inp_f0[:, 1]
)
shape = f0[self.x_pad * tf0 : self.x_pad * tf0 + len(replace_f0)].shape[0]
f0[self.x_pad * tf0 : self.x_pad * tf0 + len(replace_f0)] = replace_f0[
:shape
]
f0bak = f0.copy()
f0_mel = 1127 * np.log(1 + f0 / 700)
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / (
f0_mel_max - f0_mel_min
) + 1
f0_mel[f0_mel <= 1] = 1
f0_mel[f0_mel > 255] = 255
f0_coarse = np.rint(f0_mel).astype(np.int)
return f0_coarse, f0bak # 1-0
def vc(
self,
model,
net_g,
sid,
audio0,
pitch,
pitchf,
times,
index,
big_npy,
index_rate,
version,
protect,
): # ,file_index,file_big_npy
feats = torch.from_numpy(audio0)
if self.is_half:
feats = feats.half()
else:
feats = feats.float()
if feats.dim() == 2: # double channels
feats = feats.mean(-1)
assert feats.dim() == 1, feats.dim()
feats = feats.view(1, -1)
padding_mask = torch.BoolTensor(feats.shape).to(self.device).fill_(False)
inputs = {
"source": feats.to(self.device),
"padding_mask": padding_mask,
"output_layer": 9 if version == "v1" else 12,
}
t0 = ttime()
with torch.no_grad():
logits = model.extract_features(**inputs)
feats = model.final_proj(logits[0]) if version == "v1" else logits[0]
if protect < 0.5 and pitch != None and pitchf != None:
feats0 = feats.clone()
if (
isinstance(index, type(None)) == False
and isinstance(big_npy, type(None)) == False
and index_rate != 0
):
npy = feats[0].cpu().numpy()
if self.is_half:
npy = npy.astype("float32")
# _, I = index.search(npy, 1)
# npy = big_npy[I.squeeze()]
score, ix = index.search(npy, k=8)
weight = np.square(1 / score)
weight /= weight.sum(axis=1, keepdims=True)
npy = np.sum(big_npy[ix] * np.expand_dims(weight, axis=2), axis=1)
if self.is_half:
npy = npy.astype("float16")
feats = (
torch.from_numpy(npy).unsqueeze(0).to(self.device) * index_rate
+ (1 - index_rate) * feats
)
feats = F.interpolate(feats.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1)
if protect < 0.5 and pitch != None and pitchf != None:
feats0 = F.interpolate(feats0.permute(0, 2, 1), scale_factor=2).permute(
0, 2, 1
)
t1 = ttime()
p_len = audio0.shape[0] // self.window
if feats.shape[1] < p_len:
p_len = feats.shape[1]
if pitch != None and pitchf != None:
pitch = pitch[:, :p_len]
pitchf = pitchf[:, :p_len]
if protect < 0.5 and pitch != None and pitchf != None:
pitchff = pitchf.clone()
pitchff[pitchf > 0] = 1
pitchff[pitchf < 1] = protect
pitchff = pitchff.unsqueeze(-1)
feats = feats * pitchff + feats0 * (1 - pitchff)
feats = feats.to(feats0.dtype)
p_len = torch.tensor([p_len], device=self.device).long()
with torch.no_grad():
if pitch != None and pitchf != None:
audio1 = (
(net_g.infer(feats, p_len, pitch, pitchf, sid)[0][0, 0])
.data.cpu()
.float()
.numpy()
)
else:
audio1 = (
(net_g.infer(feats, p_len, sid)[0][0, 0]).data.cpu().float().numpy()
)
del feats, p_len, padding_mask
if torch.cuda.is_available():
torch.cuda.empty_cache()
t2 = ttime()
times[0] += t1 - t0
times[2] += t2 - t1
return audio1
def process_t(self, t, s, window, audio_pad, pitch, pitchf, times, index, big_npy, index_rate, version, protect, t_pad_tgt, if_f0, sid, model, net_g):
t = t // window * window
if if_f0 == 1:
return self.vc(
model,
net_g,
sid,
audio_pad[s : t + t_pad_tgt + window],
pitch[:, s // window : (t + t_pad_tgt) // window],
pitchf[:, s // window : (t + t_pad_tgt) // window],
times,
index,
big_npy,
index_rate,
version,
protect,
)[t_pad_tgt : -t_pad_tgt]
else:
return self.vc(
model,
net_g,
sid,
audio_pad[s : t + t_pad_tgt + window],
None,
None,
times,
index,
big_npy,
index_rate,
version,
protect,
)[t_pad_tgt : -t_pad_tgt]
def pipeline(self, model, net_g, sid, audio, input_audio_path, times, f0_up_key, f0_method,
file_index, index_rate, if_f0, filter_radius, tgt_sr, resample_sr, rms_mix_rate,
version, protect, crepe_hop_length, f0_file=None, f0_min=50, f0_max=1100):
try:
if file_index == "":
print("File index was empty.")
index = None
big_npy = None
else:
if os.path.exists(file_index):
sys.stdout.write(f"Attempting to load {file_index}....\n")
sys.stdout.flush()
else:
sys.stdout.write(f"Attempting to load {file_index}.... (despite it not existing)\n")
sys.stdout.flush()
index = faiss.read_index(file_index)
big_npy = index.reconstruct_n(0, index.ntotal)
except Exception:
print("Could not open Faiss index file for reading.")
index = None
big_npy = None
audio = signal.filtfilt(bh, ah, audio)
audio_pad = np.pad(audio, (self.window // 2, self.window // 2), mode="reflect")
opt_ts = []
if audio_pad.shape[0] > self.t_max:
audio_sum = np.zeros_like(audio)
for i in range(self.window):
audio_sum += audio_pad[i : i - self.window]
for t in range(self.t_center, audio.shape[0], self.t_center):
abs_audio_sum = np.abs(audio_sum[t - self.t_query : t + self.t_query])
min_abs_audio_sum = abs_audio_sum.min()
opt_ts.append(t - self.t_query + np.where(abs_audio_sum == min_abs_audio_sum)[0][0])
s = 0
audio_opt = []
t = None
t1 = ttime()
audio_pad = np.pad(audio, (self.t_pad, self.t_pad), mode="reflect")
p_len = audio_pad.shape[0] // self.window
inp_f0 = None
if f0_file is not None:
try:
with open(f0_file.name, "r") as f:
inp_f0 = np.array([list(map(float, line.split(","))) for line in f.read().strip("\n").split("\n")], dtype="float32")
except:
traceback.print_exc()
sid = torch.tensor(sid, device=self.device).unsqueeze(0).long()
pitch, pitchf = None, None
if if_f0:
pitch, pitchf = self.get_f0(
input_audio_path, audio_pad, p_len, f0_up_key, f0_method,
filter_radius, crepe_hop_length, inp_f0, f0_min, f0_max)
pitch = pitch[:p_len].astype(np.int64 if self.device != 'mps' else np.float32)
pitchf = pitchf[:p_len].astype(np.float32)
pitch = torch.from_numpy(pitch).to(self.device).unsqueeze(0)
pitchf = torch.from_numpy(pitchf).to(self.device).unsqueeze(0)
t2 = ttime()
times[1] += t2 - t1
with tqdm(total=len(opt_ts), desc="Processing", unit="window") as pbar:
for i, t in enumerate(opt_ts):
t = t // self.window * self.window
start = s
end = t + self.t_pad2 + self.window
audio_slice = audio_pad[start:end]
pitch_slice = pitch[:, start // self.window:end // self.window] if if_f0 else None
pitchf_slice = pitchf[:, start // self.window:end // self.window] if if_f0 else None
audio_opt.append(self.vc(model, net_g, sid, audio_slice, pitch_slice, pitchf_slice, times, index, big_npy, index_rate, version, protect)[self.t_pad_tgt : -self.t_pad_tgt])
s = t
pbar.update(1)
pbar.refresh()
audio_slice = audio_pad[t:]
pitch_slice = pitch[:, t // self.window:] if if_f0 and t is not None else pitch
pitchf_slice = pitchf[:, t // self.window:] if if_f0 and t is not None else pitchf
audio_opt.append(self.vc(model, net_g, sid, audio_slice, pitch_slice, pitchf_slice, times, index, big_npy, index_rate, version, protect)[self.t_pad_tgt : -self.t_pad_tgt])
audio_opt = np.concatenate(audio_opt)
if rms_mix_rate != 1:
audio_opt = change_rms(audio, 16000, audio_opt, tgt_sr, rms_mix_rate)
if resample_sr >= 16000 and tgt_sr != resample_sr:
audio_opt = librosa.resample(audio_opt, orig_sr=tgt_sr, target_sr=resample_sr)
max_int16 = 32768
audio_max = max(np.abs(audio_opt).max() / 0.99, 1)
audio_opt = (audio_opt * max_int16 / audio_max).astype(np.int16)
if torch.cuda.is_available():
torch.cuda.empty_cache()
print("Returning completed audio...")
print("-------------------")
return audio_opt