forked from thibo73800/capsnet-traffic-sign-classifier
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test.py
100 lines (78 loc) · 2.69 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
#!/usr/bin/python3
# -*- coding: utf-8 -*-
"""
Test the model
Usage:
test.py <ckpt> <dataset>
Options:
-h --help Show this help.
<dataset> Dataset folder
<ckpt> Path to the checkpoints to restore
"""
from docopt import docopt
import matplotlib.pyplot as plt
from sklearn.metrics import confusion_matrix
import itertools
import tensorflow as tf
import numpy as np
import random
import pickle
import os
from model import ModelTrafficSign
from data_handler import get_data
def plot_confusion_matrix(cm, classes, normalize=True, title='Confusion matrix', cmap=plt.cm.Blues):
"""
This function prints and plots the confusion matrix.
Normalization can be applied by setting `normalize=True`.
"""
if normalize:
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
print("Normalized confusion matrix")
else:
print('Confusion matrix, without normalization')
print(cm)
plt.imshow(cm, interpolation='nearest', cmap=cmap)
plt.title(title)
plt.colorbar()
tick_marks = np.arange(len(classes))
plt.xticks(tick_marks, classes, rotation=45)
plt.yticks(tick_marks, classes)
fmt = '.2f' if normalize else 'd'
thresh = cm.max() / 2.
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
plt.text(j, i, format(cm[i, j], fmt),
horizontalalignment="center",
color="white" if cm[i, j] > thresh else "black")
plt.tight_layout()
plt.ylabel('True label')
plt.xlabel('Predicted label')
def test(dataset, ckpt):
"""
Train the model
**input: **
*dataset: (String) Dataset folder to used
*ckpt: (String) [Optional] Path to the ckpt file to restore
"""
# Load name of id
with open("signnames.csv", "r") as f:
signnames = f.read()
id_to_name = { int(line.split(",")[0]):line.split(",")[1] for line in signnames.split("\n")[1:] if len(line) > 0}
# Get Test dataset
_, _, _, _, X_test, y_test = get_data(dataset)
X_test = X_test / 255
model = ModelTrafficSign("TrafficSign", output_folder=None)
# Load the model
model.load(ckpt)
# Evaluate all the dataset
loss, acc, predicted_class = model.evaluate_dataset(X_test, y_test)
print("Accuracy = ", acc)
print("Loss = ", loss)
# Get the confusion matrix
cnf_matrix = confusion_matrix(y_test, predicted_class)
# Plot the confusion matrix
plt.figure()
plot_confusion_matrix(cnf_matrix, classes=[str(i) for i in range(43)], title='Confusion matrix, without normalization')
plt.show()
if __name__ == '__main__':
arguments = docopt(__doc__)
test(arguments["<dataset>"], arguments["<ckpt>"])