-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgreta_ode.R
117 lines (86 loc) · 2.58 KB
/
greta_ode.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
op <- greta::.internals$nodes$constructors$op
tf_growth_function <- function(mu, S, tmax){
# uptake rate
k = 1
# maintenance coef
c_ = 0.5
# mode of competition
theta = c(1.3, 1)
# supply rate
R = c(60, 100)
# maintenance costs, messy
M1 <- tf$reshape(c_ * tf$reduce_mean(mu), shape(1, 1))
M2 <- c_ * mu
M <- tf$concat(c(tf$tile(M1, shape(S, 1)), M2), 1L)
# M <- cbind(c_ * mean(mu), c_ * mu)
# growth function
grow <- function(B, t){
# map elementwise
B_sym = tf$map_fn(function(B) tf$pow(B, theta), B)
B_sum = tf$reduce_sum(B_sym, axis = 0L)
# limiting resources
r = R * (B_sym/B_sum) * tf$pow(B, -1) - M
p = r / (1 + r)
p_min = tf$reduce_min(p, axis = 1L, keep_dims = T)
# positive growth only
zeros = tf$zeros(shape(S, 1))
B_delta = B * mu * p_min
dB = tf$where(tf$less(B_delta, 0), zeros, B_delta)
}
# initial values
init = tf$constant(rep(0.5, S), shape = c(S, 1))
# timesteps
t = seq(0, tmax, 1)
# solve
cleanly(ode <- tf$contrib$integrate$odeint(
func = grow,
y0 = init,
t = t,
rtol = 1e-8,
atol = 1e-5,
method = 'dopri5',
options = list(max_num_steps = 1000L),
full_output = F,
name = 'growth_ode')[tmax,,])
}
growth_ode <- function(mu, tmax = 100){
# number species
S = length(mu)
# number of timesteps
tmax = as.integer(tmax)
dimfun <- function(elem_list) {
# input dimensions
state_dim <- dim(elem_list[[1]])
if (length(state_dim) != 2 | state_dim[2] != 1)
stop ('mu must be a column vector greta array',
call. = FALSE)
# output dimensions
c(1, S)
}
op('growth_ode',
mu = mu,
operation_args = list(S = S,
tmax = tmax),
tf_operation = tf_growth_function,
dimfun = dimfun)
}
# patch to check for max_num_steps error
cleanly <- function (expr) {
res <- tryCatch(expr, error = function (e) e)
# if it errored
if (inherits(res, 'error')) {
numerical_messages <- c("is not invertible",
"Cholesky decomposition was not successful",
"max_num_steps exceeded")
numerical_errors <- vapply(numerical_messages,
grepl,
res$message,
FUN.VALUE = 0) == 1
# if it was just a numerical error, quietly return a bad value
if (any(numerical_errors))
res <- NA
else
stop ("greta hit a tensorflow error:\n\n", res, call. = FALSE)
}
res
}