You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
=================================== FAILURES ===================================
____________ test_sparse_coo_tensor_scipy_roundtrip[f2-arrow_type8] ____________
dtype_str = 'f2', arrow_type = DataType(halffloat)
@pytest.mark.skipif(not coo_matrix, reason="requires scipy")
@pytest.mark.parametrize('dtype_str,arrow_type', tensor_type_pairs)
def test_sparse_coo_tensor_scipy_roundtrip(dtype_str, arrow_type):
dtype = np.dtype(dtype_str)
data = np.array([1, 2, 3, 4, 5, 6]).astype(dtype)
row = np.array([0, 0, 2, 3, 1, 3])
col = np.array([0, 2, 0, 4, 5, 5])
shape = (4, 6)
dim_names = ('x', 'y')
# non-canonical sparse coo matrix
> scipy_matrix = coo_matrix((data, (row, col)), shape=shape)
pyarrow/tests/test_sparse_tensor.py:408:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
scipy/sparse/_coo.py:62: in __init__
self.data = getdata(obj, copy=copy, dtype=dtype)
scipy/sparse/_sputils.py:150: in getdata
getdtype(data.dtype)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
dtype = dtype('float16'), a = None, default = None
def getdtype(dtype, a=None, default=None):
"""Form a supported numpy dtype based on input arguments.
Returns a valid ``numpy.dtype`` from `dtype` if not None,
or else ``a.dtype`` if possible, or else the given `default`
if not None, or else raise a ``TypeError``.
The resulting ``dtype`` must be in ``supported_dtypes``:
bool_, int8, uint8, int16, uint16, int32, uint32,
int64, uint64, longlong, ulonglong, float32, float64,
longdouble, complex64, complex128, clongdouble
"""
if dtype is None:
try:
newdtype = a.dtype
except AttributeError as e:
if default is not None:
newdtype = np.dtype(default)
else:
raise TypeError("could not interpret data type") from e
else:
newdtype = np.dtype(dtype)
if newdtype not in supported_dtypes:
supported_dtypes_fmt = ", ".join(t.__name__ for t in supported_dtypes)
> raise ValueError(f"scipy.sparse does not support dtype {newdtype.name}. "
f"The only supported types are: {supported_dtypes_fmt}.")
E ValueError: scipy.sparse does not support dtype float16. The only supported types are: bool, int8, uint8, int16, uint16, int32, uint32, int64, uint64, longlong, ulonglong, float32, float64, longdouble, complex64, complex128, clongdouble.
scipy/sparse/_sputils.py:137: ValueError
=============================== warnings summary ===============================
As far as I can tell, SciPy hasn't supported float16 in sparse code for the last several years, so what happened most likely is simply that the checks got stricter in the API. If I'm wrong about that, please raise an issue in scipy.
Sidenote: compare also the migration guide for getting from scipy.sparse.*_matrix to scipy.sparse.*_array, though that probably warrants a separate issue.
Component(s)
Python
The text was updated successfully, but these errors were encountered:
@rok@AlenkaF@jorisvandenbossche I don't think we have any CI job that tests with scipy and this code is coming from a long time ago: cdaf988
We should exercise those tests on CI.
Describe the enhancement requested
The test suite in conda-forge/arrow-cpp-feedstock#1664 has a single test failure
As far as I can tell, SciPy hasn't supported
float16
in sparse code for the last several years, so what happened most likely is simply that the checks got stricter in the API. If I'm wrong about that, please raise an issue in scipy.Sidenote: compare also the migration guide for getting from
scipy.sparse.*_matrix
toscipy.sparse.*_array
, though that probably warrants a separate issue.Component(s)
Python
The text was updated successfully, but these errors were encountered: