Skip to content

Latest commit

 

History

History
103 lines (80 loc) · 4.29 KB

11.md

File metadata and controls

103 lines (80 loc) · 4.29 KB

PyTorch:定义新的 Autograd 函数

原文:https://pytorch.org/tutorials/beginner/examples_autograd/polynomial_custom_function.html#sphx-glr-beginner-examples-autograd-polynomial-custom-function-py

经过训练的三阶多项式,可以通过最小化平方的欧几里得距离来预测y = sin(x)-pipi。 而不是将多项式写为y = a + bx + cx ^ 2 + dx ^ 3,我们将多项式写为y = a + b P[3](c + dx)其中P[3](x) = 1/2 (5x ^ 3 - 3x)是三次的勒让德多项式

此实现使用 PyTorch 张量上的运算来计算正向传播,并使用 PyTorch Autograd 来计算梯度。

在此实现中,我们实现了自己的自定义 Autograd 函数来执行P'[3](x)。 通过数学,P'[3](x) = 3/2 (5x ^ 2 - 1)

import torch
import math

class LegendrePolynomial3(torch.autograd.Function):
    """
    We can implement our own custom autograd Functions by subclassing
    torch.autograd.Function and implementing the forward and backward passes
    which operate on Tensors.
    """

    @staticmethod
    def forward(ctx, input):
        """
        In the forward pass we receive a Tensor containing the input and return
        a Tensor containing the output. ctx is a context object that can be used
        to stash information for backward computation. You can cache arbitrary
        objects for use in the backward pass using the ctx.save_for_backward method.
        """
        ctx.save_for_backward(input)
        return 0.5 * (5 * input ** 3 - 3 * input)

    @staticmethod
    def backward(ctx, grad_output):
        """
        In the backward pass we receive a Tensor containing the gradient of the loss
        with respect to the output, and we need to compute the gradient of the loss
        with respect to the input.
        """
        input, = ctx.saved_tensors
        return grad_output * 1.5 * (5 * input ** 2 - 1)

dtype = torch.float
device = torch.device("cpu")
# device = torch.device("cuda:0")  # Uncomment this to run on GPU

# Create Tensors to hold input and outputs.
# By default, requires_grad=False, which indicates that we do not need to
# compute gradients with respect to these Tensors during the backward pass.
x = torch.linspace(-math.pi, math.pi, 2000, device=device, dtype=dtype)
y = torch.sin(x)

# Create random Tensors for weights. For this example, we need
# 4 weights: y = a + b * P3(c + d * x), these weights need to be initialized
# not too far from the correct result to ensure convergence.
# Setting requires_grad=True indicates that we want to compute gradients with
# respect to these Tensors during the backward pass.
a = torch.full((), 0.0, device=device, dtype=dtype, requires_grad=True)
b = torch.full((), -1.0, device=device, dtype=dtype, requires_grad=True)
c = torch.full((), 0.0, device=device, dtype=dtype, requires_grad=True)
d = torch.full((), 0.3, device=device, dtype=dtype, requires_grad=True)

learning_rate = 5e-6
for t in range(2000):
    # To apply our Function, we use Function.apply method. We alias this as 'P3'.
    P3 = LegendrePolynomial3.apply

    # Forward pass: compute predicted y using operations; we compute
    # P3 using our custom autograd operation.
    y_pred = a + b * P3(c + d * x)

    # Compute and print loss
    loss = (y_pred - y).pow(2).sum()
    if t % 100 == 99:
        print(t, loss.item())

    # Use autograd to compute the backward pass.
    loss.backward()

    # Update weights using gradient descent
    with torch.no_grad():
        a -= learning_rate * a.grad
        b -= learning_rate * b.grad
        c -= learning_rate * c.grad
        d -= learning_rate * d.grad

        # Manually zero the gradients after updating weights
        a.grad = None
        b.grad = None
        c.grad = None
        d.grad = None

print(f'Result: y = {a.item()} + {b.item()} * P3({c.item()} + {d.item()} x)')

脚本的总运行时间:(0 分钟 0.000 秒)

下载 Python 源码:polynomial_custom_function.py

下载 Jupyter 笔记本:polynomial_custom_function.ipynb

由 Sphinx 画廊生成的画廊