-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsolution.py
292 lines (265 loc) · 8.39 KB
/
solution.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
"""
_solution_
This module defines the lambda abstraction
FIZZBUZZ which is a list of church encoded numerals each
representing a unicode codepoint which if interpreted and
printed to a device would present the solution to the
classic FIZZBUZZ problem.
In addition, HEAD, TAIL, and IS_EMPTY abstractions are defined
that will allow extraction of the codepoints from FIZZBUZZ by
an appropriate printing procedure.
"""
# numberic zero and basic addition
ZERO = lambda f: lambda x: (x)
SUCC = lambda n: lambda f: lambda x: (f)((n)(f)(x))
ADD = lambda a: lambda b: lambda f: lambda x: (a)(f)((b)(f)(x))
MULT = lambda a: lambda b: lambda f: (a)((b)(f))
# convenience numerals
ONE = (SUCC)(ZERO)
TWO = (SUCC)(ONE)
THREE = (SUCC)(TWO)
FOUR = (SUCC)(THREE)
FIVE = (SUCC)(FOUR)
TEN = (ADD)(FIVE)(FIVE)
TWENTY = (ADD)(TEN)(TEN)
THIRTY = (ADD)(TWENTY)(TEN)
FORTY = (ADD)(THIRTY)(TEN)
FIFTY = (ADD)(FORTY)(TEN)
HUNDRED = (ADD)(FIFTY)(FIFTY)
# predecessor function and subtraction
PRED = (
lambda n: lambda f: lambda x:
(n) # apply n-times
(lambda g: lambda h: (h)((g)(f))) # incrementor of contained function
(lambda u: x) # to special const initial container
(lambda u: u) # and extract church numeral
)
MINUS = lambda m: lambda n: (n)(PRED)(m) # m - n, i.e. MINUS(10)(5) = 5
# booleans
TRUE = lambda a: lambda b: (a)
FALSE = lambda a: lambda b: (b)
# is zero and less than or equal to predicate
IS_ZERO = lambda n: (n)(lambda x: (FALSE))(TRUE)
LEQ = lambda m: lambda n: (IS_ZERO)((MINUS)(m)(n)) # m <= n
# pairs
PAIR = lambda x: lambda y: lambda z: (z)(x)(y)
FIRST = lambda p: (p)(TRUE)
SECOND = lambda p: (p)(FALSE)
# Alternate precesssor - the "Wisdom Tooth" trick.
# I'm including this because I really like the reasoning
# even though it's unused code.
#
# Create a step function that takes a pair [a, b] --> [b, b + 1]
# Then apply it to [0,0] n-times, and pick off the first element,
# which is n-1 !!!
WT_STEP = lambda p: (PAIR) ((SECOND)(p)) ((SUCC)((SECOND)(p)))
WT_PRED = lambda n: (FIRST)((n)(WT_STEP)((PAIR)(ZERO)(ZERO)))
# list encoding using two pairs to allow empty lists
# [ <empty list boolean>, [ head, tail ] ]
EMPTY = (PAIR)(TRUE)(TRUE)
IS_EMPTY = (FIRST)
CONS = lambda h: lambda t: (PAIR)(FALSE)((PAIR)(h)(t))
HEAD = lambda z: (FIRST)((SECOND)(z))
TAIL = lambda z: (SECOND)((SECOND)(z))
# Z-combinator
Z = (
lambda f:
(lambda x: (f)(lambda v: ((x)(x))(v)))
(lambda x: (f)(lambda v: ((x)(x))(v)))
)
# Modular arithmetic and division
#
# For some reason I can't get the Z combinator to work properly
# with a Curried function of multiple variables, so I will
# use pairs as arguments for the combinated function, and then
# wrap it in a Curried function
# Mod - Start with a stepper function accepts a pair p of numerals
PMOD_STEP = (
lambda f: lambda p:
(LEQ)
((FIRST)(p))
((PRED)((SECOND)(p)))
((FIRST)(p))
(lambda z: (f)(
(PAIR) ((MINUS)((FIRST)(p))((SECOND)(p))) ((SECOND)(p))
)(z))
)
PMOD = (Z)(PMOD_STEP)
MOD = lambda m: lambda n: (PMOD)((PAIR)(m)(n)) # (MOD)(m)(n) --> m % n
# Div - use a pair of pairs
# (note the dividend is the initial remainder)
# [ quotient (q), [divisor (d), remainder (r)] ]
PDIV_STEP = (
lambda f: lambda p:
(LEQ)
((SECOND)((SECOND)(p))) # if r <= d - 1
((PRED)((FIRST)((SECOND)(p))))
((FIRST)(p)) # then q
(lambda z: (f)(
(PAIR) # else recurse with a new pair
((SUCC)((FIRST)(p))) # [ q+1, [d, r-d] ]
((PAIR)
((FIRST)((SECOND)(p)))
((MINUS)
((SECOND)((SECOND)(p)))
((FIRST)((SECOND)(p)))
)
)
)(z))
)
PDIV = (Z)(PDIV_STEP)
DIV = lambda m: lambda n: (PDIV)((PAIR)(ZERO)((PAIR)(n)(m))) # m/n
# Unicode characters (church numerals representing codepoints)
CH_NEWLINE = (TEN)
CH_SPACE = (ADD)(THIRTY)(TWO)
CH_ZERO = (ADD) (FORTY) ((ADD)(FIVE)(THREE))
CH_B = (ADD) ((ADD)(TEN)(FIFTY)) ((ADD)(ONE)(FIVE))
CH_F = (ADD)(CH_B)(FOUR)
CH_I = (ADD)(CH_F)(THREE)
CH_U = (ADD) (FORTY) ((ADD)(FORTY)(FIVE))
CH_Z = (ADD)(FORTY)(FIFTY)
# Convert church numberals to "string" or list of unicode codepoints
# representing each numeral. Note this doesn't work for zero:
# INT_TO_STR(132) --> ["1", "3", "2"]
# Step function accepts a pair [number, string] and
# returns [ number / 10, "number % 10" + string ]
P_INT_TO_STR_STEP = ( lambda f: lambda p:
(IS_ZERO)
((FIRST)(p))
((SECOND)(p))
(lambda z: (f)(
(PAIR)
((DIV) ((FIRST)(p)) (TEN))
((CONS)
((ADD) ((MOD)((FIRST)(p))(TEN)) (CH_ZERO))
((SECOND)(p))
)
)(z))
)
P_INT_TO_STR = (Z)(P_INT_TO_STR_STEP)
INT_TO_STR = lambda n: (P_INT_TO_STR)((PAIR)(n)(EMPTY))
# Reverse a list
#
# Stepper function will accept a pair of lists [ forward, reverse ]
# and return a new pair [ (TAIL)(forward), (CONS) ((HEAD)(forward)) (reverse) ]
# or just reverse if forward is empty
P_REVERSE_STEP = (lambda f: lambda p:
((IS_EMPTY)
((FIRST)(p))
((SECOND)(p))
(lambda z: (f)(
((PAIR)
((TAIL) ((FIRST)(p)))
((CONS)
((HEAD) ((FIRST)(p)))
((SECOND)(p))
)
)
)(z))
)
)
P_REVERSE = (Z)(P_REVERSE_STEP)
REVERSE = lambda l: (P_REVERSE)((PAIR)(l)(EMPTY))
# APPEND - Concatenate two lists
#
# Start with a P_REV_APPEND which appends the reverse of the first list
# to the second. The stepper function takes a pair [ list1, list2 ] and
# returns [ (TAIL)(list1), (CONS) ((HEAD)(list1)) (list2) ] if list1
# is nonempty, or list2 otherwise.
P_REV_APPEND_STEP = lambda f: lambda p: (
((IS_EMPTY)
((FIRST)(p))
((SECOND)(p))
(lambda z: (f)(
((PAIR)
((TAIL)((FIRST)(p)))
((CONS)
((HEAD)((FIRST)(p)))
((SECOND)(p))
)
)
)(z))
)
)
P_REV_APPEND = (Z)(P_REV_APPEND_STEP)
APPEND = lambda a: lambda b: (P_REV_APPEND) ((PAIR) ((REVERSE)(a)) (b))
# At this point I've constructed a sufficient programming language
# using Church encodings to start working on the specifics of fizzbuzz
#
# -------------------------------------------------------------------
#
# Fizzbuzz time!
# string literals for 'fizz' and 'buzz'
FIZZ = (
(CONS)
(CH_F)
((CONS)
(CH_I)
((CONS)
(CH_Z)
((CONS)
(CH_Z)
(EMPTY)
)
)
)
)
BUZZ = (
(CONS)
(CH_B)
((CONS)
(CH_U)
((CONS)
(CH_Z)
((CONS)
(CH_Z)
(EMPTY)
)
)
)
)
# TRY_FIZZ(BUZZ) - takes a number and returns a list [F,I,Z,Z] ([B,U,Z,Z])
# if divisible by 3(5), or an empty list otherwise.
TRY_FIZZ = lambda n: ((IS_ZERO) ((MOD)(n)(THREE)) (FIZZ) (EMPTY))
TRY_BUZZ = lambda n: ((IS_ZERO) ((MOD)(n)(FIVE)) (BUZZ) (EMPTY))
# FIZZBUZZ_NUM - return a proper fizzbuzz string for a given number,
# i.e. FUZZBUZZ_NUM(TEN) --> [1, 0, ' ', B, U, Z, Z, '\n']
FIZZBUZZ_NUM = lambda n: (
((APPEND)
((INT_TO_STR)(n))
((APPEND)
((CONS)(CH_SPACE)(EMPTY))
((APPEND)
((TRY_FIZZ)(n))
((APPEND)
((TRY_BUZZ)(n))
((CONS)(CH_NEWLINE)(EMPTY))
)
)
)
)
)
# FIZZBUZZ_UPTO - return a fizzbuzz list for numbers 1 through n
#
# Step function takes a pair [num, list] and returns a pair
# [ PRED(num), APPEND(FIZZBUZZ_NUM(num))(list) ] unless num is zero,
# in which case list is returned
P_FIZZBUZZ_UPTO_STEP = lambda f: lambda p: (
((IS_ZERO)
((FIRST)(p))
((SECOND)(p))
(lambda z: (f)(
((PAIR)
((PRED) ((FIRST)(p)))
((APPEND)
((FIZZBUZZ_NUM) ((FIRST)(p)))
((SECOND)(p))
)
)
)(z))
)
)
P_FIZZBUZZ_UPTO = (Z)(P_FIZZBUZZ_UPTO_STEP)
FIZZBUZZ_UPTO = lambda n: (P_FIZZBUZZ_UPTO) ((PAIR)(n)(EMPTY))
# TADA!
FIZZBUZZ = (FIZZBUZZ_UPTO)(HUNDRED)