-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevo.coffee
713 lines (510 loc) · 17.5 KB
/
evo.coffee
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
##
# evo.js v0.2.4
# Evolutionary Algorithm Tool wrapped with ANN
# Copyright (c) 2016 Alex Rowe <[email protected]>
# Licensed MIT
##
root = if window? then window else this
((factory)->
# Node
if typeof exports == 'object'
module.exports = factory.call root
# AMD
else if typeof define == 'function' and define.amd
define -> factory.call root
# Browser globals (root is window)
else
root.evo = factory.call root
)(->
evo = {}
evo.population = (config)->
config = evo.util.extend evo.config.pool, config
return new Pool(config)
## Factory Function
evo.network = (type, genes, config)->
config = evo.util.extend evo.config.network, config
if type is 'feedforward'
return new FeedForward(genes, config)
else if type is 'cppn'
return new Cppn(genes, config)
## Configuration function to set defaults
evo.configure = (config)->
evo.config = evo.util.extend evo.config, config
## Default Configuration Object
evo.config =
pool:
## Number of Genes in a genetic object
genes: 200
## The frequency of "twists" in two parents genes
cross_rate: 0.05
## The frequency of mutations in a parent gene
mutate_rate: 0.05
## The amount a mutatated gene can deviate from its original value
mutate_amount: 1.0
## The amount of exponential precision each gene is mutate to
precision: 1
## The initial pool size
size: 100
## Ratios each generation will compromise
ratios:
## The "surviving" percentage from the last generation
top: 0.25
## The mutating percentage
mutate: 0.25
## The percentage created from crossing parents
cross: 0.25
## The percentage random survivors
random: 0.10
## The percentage made from melding two parent
average: 0.05
## The percentage of new genomes
fresh: 0.10
## TODO
run_conditions:
## Maximum generatios that will run
generations: 1000
## Iterations that run will run
iterations: undefined
## Minimum score to be reached by members
score: Infinity
## Boolean to check if a minumum is reached
auto_stop: false
## Minumum generations to run for auto_stop
min_generations: 10
## Condition to be checked each time
while: undefined
## Options to specify genes
gene_options: []
on_breed: undefined
on_member: undefined
on_run: undefined
on_finish: undefined
network:
output_fn: 'tanh'
output_nodes: 2
hidden_layers: 2
hidden_nodes: 2
input_nodes: 2
## Utility Functions
evo.util =
random: (min = -1, max = 1)->
(Math.random() * (max - min)) + min
sin: (x, freq=1, phase=0)->
Math.sin x * freq * 6.2832 + phase
gaussian: (x,mu=0,sigma=1)->
Math.exp -(mu-x)**2 * sigma
linear: (x, m=1, b=0)->
(x + b) * m
flatten: (x)->
return 1 if x > 1
return -1 if x < -1
return x
tanh: (x)->
if -3 > x or x > 3
return evo.util.flatten x
else
x1 = Math.exp x
x2 = Math.exp -x
return (x1-x2)/(x1+x2)
step: (x)->
return -1 if (x < 0)
return 1
## Pick a random element of an array
sample: (array)->
array[Math.floor(Math.random() * array.length)]
## Shuffle an array
# Idea taken from underscore
shuffle: (array)->
length = array.length
shuffled = Array length
for index in [0..length-1]
rand = Math.floor(Math.random() * index)
shuffled[index] = shuffled[rand] if rand != index
shuffled[rand] = array[index]
return shuffled
## clone an object
clone: (obj)->
return obj if null == obj or "object" != typeof obj
copy = obj.constructor()
for attr of obj
copy[attr] = obj[attr] if obj.hasOwnProperty(attr)
return copy
## Deep extend of an object
extend: (destination, source)->
destination = evo.util.clone(destination)
return destination unless source?
for property of source
if source[property] and source[property].constructor and source[property].constructor == Object
destination[property] = destination[property] or {}
destination[property] = arguments.callee(destination[property], source[property])
else
destination[property] = source[property]
return destination
## Normalizes the values of an object
normalize: (obj)->
## Compute sum
sum = 0
sum += value for key, value of obj
ratios = {}
for key, value of obj
value = 0 if not value
ratios[key] = value/sum
return ratios
## Finds the mean of a set
mean: (data)->
if !data.length? or data.length == 0
throw "data must be a list of numbers"
sum = 0
N = data.length
sum += d for d in data
return sum/N
## Finds the standard deviation of a data set
stddev: (data)->
mean = evo.util.mean(data)
N = data.length
sum = 0;
sum += (d - mean)*(d - mean) for d in data
return Math.sqrt(sum/N)
## Base Class
class Base
config: {}
on: (name, fn)->
@config['on_' + name] = fn
return this
trigger: (name, args=null) ->
@config['on_'+name].call(this, args) if @config['on_' + name]?
## Pool Class
class Pool extends Base
constructor: (@config)->
## Current generation of the pool
@generation = 0
## Current number of genes that have been tested
@iteration = 0
## List of genes waiting to be tested
@genes = []
## Initialize pool with fresh genes
@genes.push @_freshGenes() for i in [[email protected]]
## Keep track of the current average
@average = 0
## Object of the last pool
@_prevGenes = @genes[..]
## List of gene objects that have been tested
@_scoredGenes = []
## List of previous scores
@_history = []
@_setGeneOptions @config.gene_options
#######################
## Public Methods
#######################
currentSize: ->
return @genes.length
## Construct a Member object
constructMember: (genes=null)->
## Start with a user specified object
member = @trigger 'member', genes
#return null if no
return null if not member?
## Add the evo object
member._evo = {}
## Add the genes object
member._evo.genes = genes
## Initialize score
member._evo.score = 0
## Give it a pool report function
member._evo.report = => @report member
return member
## Retrieve the next genome in the list,
# Breeding a generation if necessary
nextGenes: ->
genes = @genes.pop()
if @genes.length == 0
if @_scoredGenes.length > 0
@_generate()
else
throw "Gene pool is empty"
return genes
nextGeneDict: ->
genes = @nextGenes()
geneDict =
_raw: genes
for gene, i in genes
name = i
name = @_geneOptions[i].name if @_geneOptions[i]?
if @_geneOptions[i]? && @_geneOptions[i].range?
if geneDict[name]?
geneDict[name].push(gene)
else
geneDict[name] = [gene]
else
geneDict[name] = gene
return geneDict
##Retrieve the next constructed member
nextMember: ->
return unless @config.on_member?
@constructMember @nextGenes()
## Reports back genes to the pool
# genes is either a genome or a object
# containing the genes, i.e. a spawned object
report: (genes, score=0)->
@iteration++
## If genes is an object
if genes._evo?
score = genes._evo.score
genes = genes._evo.genes
if genes._raw?
genes = genes._raw
## Push a simple object to the _scoredGenes
@_scoredGenes.push
genes: genes
score: score
_checkRun: (run_config)->
run = true
if run_config.generations?
run = run && @generation < run_config.generations
if run_config.iterations?
run = run && @iteration < run_config.iterations
if run_config.score?
run = run && @average < run_config.score
if run_config.while?
run = run && run_config.while.call(this)
if @_scoredGenes.length == 0 && run_config.auto_stop
run = run && !@_autoStop(run_config)
return run
_autoStop: (run_config)->
return false if @_history.length < run_config.min_generations
stddev = evo.util.stddev @_history[@[email protected]_generations..@_history.length-2]
mean = evo.util.mean @_history[@[email protected]_generations..@_history.length-2]
return Math.abs(@_history[@_history.length-1] - mean) > stddev*stddev
## Run a simulation while a condition returns false
run: (run_config={})->
if typeof run_config is 'number'
run_config =
iterations: run_config
else if typeof run_config is 'function'
run_config =
while: run_config
if run_config.generations?
run_config.generations += @generation
if run_config.iterations?
run_config.iterations += @iteration
run_config = evo.util.extend @config.run_conditions, run_config
while @_checkRun(run_config)
@_runOnce()
@trigger 'finish'
## Return the best of the last generation bred
bestGenes: (number)->
return @_prevGenes[0] if not number?
return @_prevGenes[0..number-1]
## Load genes into the pool
loadGenes: (genes)->
## Load genes into the pool
@genes = genes[..]
## Clear the scored Genes
@_scoredGenes = []
#######################
## Private Methods
#######################
## -------------------------------
## Methods for generating genomes
## -------------------------------
## Create a fresh random set of genes
_freshGenes: -> (evo.util.random() * @config.mutate_amount for i in [[email protected]])
## Clone a genome gene for gene
_cloneGenes: (genes) -> genes[..]
## Clone a genome with the chance for muations
_mutateGenes: (genes) ->
new_genes = []
for g, i in genes
new_genes[i] = @_mutateGene genes[i], @_geneOptions[i]
return new_genes
## Cross two genomes into one
_crossGenes: (genes1, genes2) ->
new_genes = []
flip = false
for g, i in genes1
flip = !flip if Math.random() < @config.cross_rate
new_genes.push (if flip then genes1[i] else genes2[i])
return new_genes
## Average two gene sets together
_averageGenes: (genes1, genes2)->
new_genes = []
for g, i in genes1
new_genes.push (genes1[i] + genes2[i])/2
return new_genes
## Run one organism
_runOnce: ->
## If autospawn is on and there is a spawn function,
# Run the method with a spawn object
member = @nextMember() || @nextGenes()
score = @trigger 'run', member
if member._evo?
@report member
else if typeof score != "undefined"
@report member, score
else
throw "score was not returned in run function"
## Calculates the next generation based on the _scoredGenes,
# And inserts it into the pool object
_generate: ()->
## Normalize them ratios
ratios = evo.util.normalize(@config.ratios)
## Ensure the pool is empty
@genes = []
## Store the average
scores = (a.score for a in @_scoredGenes)
@average = evo.util.mean scores
## Sort the _scoredGenes by score
@_scoredGenes = @_scoredGenes.sort (a,b)-> a.score - b.score
## add the top scoring genes
top_pool = @_scoredGenes.reverse()[[email protected] * @config.size]
@_history.push top_pool[0].score
## Amount remaining to breed
size = @config.size # - top_pool.length
size = 0 if size < 1
## Add top entries from breed pool
for a in top_pool
@genes.push @_cloneGenes(a.genes)
if ratios.mutate > 0
## Add mutated entries
for i in [1..ratios.mutate*size]
@genes.push @_mutateGenes(evo.util.sample(top_pool).genes)
if ratios.cross > 0
## Add Crossed entries
for i in [1..ratios.cross*size]
g1 = evo.util.sample(top_pool).genes
g2 = evo.util.sample(top_pool).genes
@genes.push @_crossGenes(g1, g2)
if ratios.average > 0
## Add Melded entries
for i in [1..ratios.meld*size]
g1 = evo.util.sample(top_pool).genes
g2 = evo.util.sample(top_pool).genes
@genes.push @_averageGenes(g1, g2)
if ratios.random > 0
## Add random survivors
for i in [1..ratios.random*size]
@genes.push @_cloneGenes(evo.util.sample(@_scoredGenes).genes)
## Fill the rest with fresh genetics
@genes.push @_freshGenes() while @genes.length <= size
## Increment the generation count
@generation++
## Save a static copy of the pool for reference
## Round all Genes to two places
@_prevGenes = @genes[..]
## Shuffle the pool to get fresh matches
@genes = evo.util.shuffle @genes
# Trigger the breed callback
@trigger 'breed'
## Clear the breed pool for the next generation
@_scoredGenes = []
_setGeneOptions: (options) =>
@_geneOptions = []
for option, index in options
if option.range?
for j in [option.range[0]..option.range[1]]
@_geneOptions[j] = option
else
@_geneOptions[index] = option
_mutateGene: (gene, options = {}) =>
value = gene
options.mutate_amount ||= @config.mutate_amount
options.mutate_rate ||= @config.mutate_rate
options.precision ||= @config.precision
for i in [0..options.precision]
if options.mutate_rate > evo.util.random()
value += evo.util.random() * options.mutate_amount * Math.exp(-i)
if options.max? && gene > options.max
value = options.max
else if options.min? && gene < options.min
value = options.min
return value
## Network Class
class Network
constructor: (@weights, @config)->
if typeof @config.output_fn == 'function'
@output_fn = @config.output_fn
else if @config.output_fn == 'linear'
@output_fn = evo.util.linear
else if @config.output_fn == 'step'
@output_fn = evo.util.step
else
@output_fn = evo.util.tanh
calc: (input)->
## Compositional Pattern Producing Network
class Cppn extends Network
@node_fn: [
evo.util.gaussian
evo.util.sin
(x,m,b)-> evo.util.tanh evo.util.linear(x,m,b)
]
get_fn: (gene)->
index = Math.round(Math.abs(gene)*Cppn.node_fn.length) % Cppn.node_fn.length
return Cppn.node_fn[index]
## Gene Structure
constructor: (genes, @config)->
@node_fn = []
copy = genes[..]
for i in [[email protected]_layers-1]
@node_fn[i] = []
for j in [[email protected]_nodes-1]
@node_fn[i].push @get_fn(copy.pop())
@weights = copy[..]
super @weights, @config
calc: (input)->
# input.push 0 while input.length < @config.input
layer_size = @config.hidden_nodes
copy = @weights[..]
hidden_weights = []
for k in [[email protected]_layers-1]
hidden_weights[k] = []
for i in [[email protected]_nodes-1]
hidden_weights[k][i] = 0
for x in input
for i in [[email protected]_nodes-1]
hidden_weights[0][i] += x * copy.pop()
for k in [[email protected]_layers-2]
for i in [[email protected]_nodes-1]
## Threshold
# hidden_weights[k][i] += copy.pop()
## Normalize
hidden_weights[k][i] = @node_fn[k][i](hidden_weights[k][i], copy.pop(), copy.pop())
continue unless k+1 < @config.hidden_layers
for j in [[email protected]_nodes-1]
hidden_weights[k+1][j] += hidden_weights[k][i] * copy.pop()
output = []
for j in [[email protected]_nodes-1]
output[j] = 0
for i in [[email protected]_nodes-1]
# fn = @node_fn[@config.hidden_layers-1][i]
output[j] += hidden_weights[@config.hidden_layers-1][i] * copy.pop()
output[j] = @output_fn output[j]
return output
## Classic Feed Forward Network
class FeedForward extends Network
constructor: (@weights, @config) ->
super @weights, @config
calc: (input)->
if input.length != @config.input_nodes
throw Error("Inputs dont match. Expected: #{@config.input_nodes}, Received: #{input.length}")
# input.push 0 while input.length < @config.input
copy = @weights[..].reverse()
hidden_weights = []
hidden_weights[j] = 0 for j in [[email protected]_nodes-1]
output_weights = []
output_weights[j] = 0 for j in [[email protected]_nodes-1]
for i in input
for h, j in hidden_weights
hidden_weights[j] += i * copy.pop()
for h, i in hidden_weights
## Threshold
hidden_weights[i] += copy.pop()
## Normalize
hidden_weights[i] = evo.util.tanh hidden_weights[i]
for o, j in output_weights
output_weights[j] += hidden_weights[i] * copy.pop()
for o, i in output_weights
output_weights[i] = @output_fn output_weights[i]
return output_weights[0] if output_weights.length == 1
return output_weights
return evo
)