Skip to content

Commit f6f9560

Browse files
committed
finalize content, remove unnecessary screenshots, apply to all versions
1 parent 6400d81 commit f6f9560

10 files changed

+99
-73
lines changed

site/content/3.12/data-science/graphrag/web-interface.md

Lines changed: 21 additions & 24 deletions
Original file line numberDiff line numberDiff line change
@@ -1,14 +1,14 @@
11
---
2-
title: How to use GraphRAG in the ArangoDB Platform web interface
2+
title: How to use GraphRAG in the Arango Data Platform web interface
33
menuTitle: Web Interface
44
weight: 5
55
description: >-
6-
Learn how to create, configure, and run a full GraphRAG workflow in just a few steps using the Platform web interface
6+
Learn how to create, configure, and run a full GraphRAG workflow in just a few steps
77
---
8-
{{< tag "ArangoDB Platform" >}}
8+
{{< tag "AI Services" >}}
99

1010
{{< tip >}}
11-
The ArangoDB Platform & GenAI Suite is available as a pre-release. To get
11+
The Arango Data Platform & AI Services is available as a pre-release. To get
1212
exclusive early access, [get in touch](https://arangodb.com/contact/) with
1313
the ArangoDB team.
1414
{{< /tip >}}
@@ -25,10 +25,10 @@ The entire process is organized into sequential steps within a **Project**:
2525

2626
## Create a GraphRAG project
2727

28-
To create a new GraphRAG project using the ArangoDB Platform web interface, follow these steps:
28+
To create a new GraphRAG project using the Arango Data Platform web interface, follow these steps:
2929

3030
1. From the left-hand sidebar, select the database where you want to create the project.
31-
2. In the left-hand sidebar, click **GenAI Suite** to open the GraphRAG project management
31+
2. In the left-hand sidebar, click **AI Services** to open the GraphRAG project management
3232
interface, then click **Run GraphRAG**.
3333
3. In the **GraphRAG projects** view, click **Add new project**.
3434
4. The **Create GraphRAG project** modal opens. Enter a **Name** and optionally
@@ -62,7 +62,6 @@ configure and start a new importer service job. Follow the steps below.
6262
3. Enter your **OpenAI API Key**.
6363
4. Click the **Start importer service** button.
6464

65-
![Configure Importer service using OpenAI](../../../images/graphrag-ui-configure-importer-openai.png)
6665
{{< /tab >}}
6766

6867
{{< tab "OpenRouter" >}}
@@ -78,7 +77,6 @@ When using OpenRouter, you need both API keys because the LLM responses are serv
7877
via OpenRouter while OpenAI is used for the embedding model.
7978
{{< /info >}}
8079

81-
![Configure Importer service using OpenRouter](../../../images/graphrag-ui-configure-importer-openrouter.png)
8280
{{< /tab >}}
8381

8482
{{< tab "Triton LLM Host" >}}
@@ -91,12 +89,11 @@ Note that you must first register your model in MLflow. The [Triton LLM Host](se
9189
service automatically downloads and loads models from the MLflow registry.
9290
{{< /info >}}
9391

94-
![Configure Importer service using Triton](../../../images/graphrag-ui-configure-importer-triton.png)
9592
{{< /tab >}}
9693

9794
{{< /tabs >}}
9895

99-
See also the [GraphRAG Importer](services/importer.md) service documentation.
96+
See also the [Importer](services/importer.md) service documentation.
10097

10198
## Add data source
10299

@@ -155,7 +152,6 @@ the generated Knowledge Graph. To configure the retriever service, open the
155152
3. Enter your **OpenAI API Key**.
156153
4. Click the **Start retriever service** button.
157154

158-
![Configure Retriever Service using OpenAI](../../../images/graphrag-ui-configure-retriever-openai.png)
159155
{{< /tab >}}
160156

161157
{{< tab "OpenRouter" >}}
@@ -170,7 +166,6 @@ When using OpenRouter, the LLM responses are served via OpenRouter while OpenAI
170166
is used for the embedding model.
171167
{{< /info >}}
172168

173-
![Configure Retriever Service using OpenRouter](../../../images/graphrag-ui-configure-retriever-openrouter.png)
174169
{{< /tab >}}
175170

176171
{{< tab "Triton LLM Host" >}}
@@ -183,26 +178,28 @@ Note that you must first register your model in MLflow. The [Triton LLM Host](se
183178
service automatically downloads and loads models from the MLflow registry.
184179
{{< /info >}}
185180

186-
![Configure Retriever Service using Triton](../../../images/graphrag-ui-configure-retriever-triton.png)
187181
{{< /tab >}}
188182

189183
{{< /tabs >}}
190184

191-
See also the [GraphRAG Retriever](services/retriever.md) documentation.
185+
See also the [Retriever](services/retriever.md) documentation.
192186

193187
## Chat with your Knowledge Graph
194188

195-
The Retriever service provides two search methods:
196-
- [Local search](services/retriever.md#local-search): Local queries let you
197-
explore specific nodes and their direct connections.
198-
- [Global search](services/retriever.md#global-search): Global queries uncover
199-
broader patters and relationships across the entire Knowledge Graph.
200-
201-
![Chat with your Knowledge Graph](../../../images/graphrag-ui-chat.png)
189+
The chat interface provides two search methods:
190+
- **Instant search**: Instant queries provide fast responses.
191+
- **Deep search**: This option will take longer to return a response.
202192

203193
In addition to querying the Knowledge Graph, the chat service allows you to do the following:
204-
- Switch the search method from **Local Query** to **Global Query** and vice-versa
194+
- Switch the search method from **Instant search** to **Deep research** and vice-versa
205195
directly in the chat
206-
- Change the retriever service
196+
- Change or create a new retriever service
207197
- Clear the chat
208-
- Integrate the Knowledge Graph chat service into your own applications
198+
199+
## Integrate the Knowledge Graph chat service into your application
200+
201+
To integrate any service into your own applications,
202+
go to **Project Settings** and use the copy button next to each service to
203+
copy its integration endpoint. You cam make `POST` requests to the endpoints
204+
with your queries, the services accept `JSON` payloads and return structured
205+
responses for building custom interfaces.
Lines changed: 78 additions & 49 deletions
Original file line numberDiff line numberDiff line change
@@ -1,15 +1,14 @@
11
---
2-
title: How to use GraphRAG in the ArangoDB Platform web interface
2+
title: How to use GraphRAG in the Arango Data Platform web interface
33
menuTitle: Web Interface
44
weight: 5
55
description: >-
6-
Learn how to create, configure, and run a full GraphRAG workflow in four steps
7-
using the Platform web interface
6+
Learn how to create, configure, and run a full GraphRAG workflow in just a few steps
87
---
9-
{{< tag "ArangoDB Platform" >}}
8+
{{< tag "AI Services" >}}
109

1110
{{< tip >}}
12-
The ArangoDB Platform & GenAI Suite is available as a pre-release. To get
11+
The Arango Data Platform & AI Services is available as a pre-release. To get
1312
exclusive early access, [get in touch](https://arangodb.com/contact/) with
1413
the ArangoDB team.
1514
{{< /tip >}}
@@ -19,28 +18,39 @@ the ArangoDB team.
1918
The entire process is organized into sequential steps within a **Project**:
2019

2120
1. Creating the importer service
22-
2. Uploading your file and exploring the generated Knowledge Graph
23-
3. Creating the retriever service
24-
4. Chatting with your Knowledge Graph
21+
2. Adding data sources
22+
3. Exploring the generated Knowledge Graph
23+
4. Creating the retriever service
24+
5. Chatting with your Knowledge Graph
2525

2626
## Create a GraphRAG project
2727

28-
To create a new GraphRAG project using the ArangoDB Platform web interface, follow these steps:
28+
To create a new GraphRAG project using the Arango Data Platform web interface, follow these steps:
2929

3030
1. From the left-hand sidebar, select the database where you want to create the project.
31-
2. In the left-hand sidebar, click **GenAI Suite** to open the GraphRAG project management
31+
2. In the left-hand sidebar, click **AI Services** to open the GraphRAG project management
3232
interface, then click **Run GraphRAG**.
3333
3. In the **GraphRAG projects** view, click **Add new project**.
3434
4. The **Create GraphRAG project** modal opens. Enter a **Name** and optionally
3535
a description for your project.
3636
5. Click the **Create project** button to finalize the creation.
3737

38+
## Project Settings
39+
40+
The **Project Settings** dialog allows you to configure and manage your
41+
Importer and Retriever services.
42+
43+
You can open the **Project Settings** dialog in two ways:
44+
- In the **Data Sources** section, click **Add data source** and then click on
45+
the **Open project settings** button.
46+
- In the **Graph** section, click on the gear icon.
47+
3848
## Configure the Importer service
3949

40-
Configure a service to import, parse, and retrieve all the needed data from a
50+
Configure a service to import, parse, and extract all the needed data from a
4151
file. This service uses the LLM API provider and model of your choice.
4252

43-
After clicking on a project name, you are taken to a screen where you can
53+
After opening the **Project Settings**, you are taken to a dialog where you can
4454
configure and start a new importer service job. Follow the steps below.
4555

4656
{{< tabs "importer-service" >}}
@@ -52,23 +62,21 @@ configure and start a new importer service job. Follow the steps below.
5262
3. Enter your **OpenAI API Key**.
5363
4. Click the **Start importer service** button.
5464

55-
![Configure Importer service using OpenAI](../../../images/graphrag-ui-configure-importer-openai.png)
5665
{{< /tab >}}
5766

5867
{{< tab "OpenRouter" >}}
5968
1. Select **OpenRouter** from the **LLM API Provider** dropdown menu.
6069
2. Select the model you want to use from the **Model** dropdown menu. By default,
61-
the service is using **Mistral AI - Mistral Nemo**.
62-
1. Enter your **OpenAI API Key**.
63-
2. Enter your **OpenRouter API Key**.
64-
3. Click the **Start importer service** button.
70+
the service uses **Mistral AI - Mistral Nemo**.
71+
3. Enter your **OpenAI API Key**.
72+
4. Enter your **OpenRouter API Key**.
73+
5. Click the **Start importer service** button.
6574

6675
{{< info >}}
67-
When using the OpenRouter option, the LLM responses are served via OpenRouter
68-
while OpenAI is used for the embedding model.
76+
When using OpenRouter, you need both API keys because the LLM responses are served
77+
via OpenRouter while OpenAI is used for the embedding model.
6978
{{< /info >}}
7079

71-
![Configure Importer service using OpenRouter](../../../images/graphrag-ui-configure-importer-openrouter.png)
7280
{{< /tab >}}
7381

7482
{{< tab "Triton LLM Host" >}}
@@ -81,38 +89,59 @@ Note that you must first register your model in MLflow. The [Triton LLM Host](se
8189
service automatically downloads and loads models from the MLflow registry.
8290
{{< /info >}}
8391

84-
![Configure Importer service using Triton](../../../images/graphrag-ui-configure-importer-triton.png)
8592
{{< /tab >}}
8693

8794
{{< /tabs >}}
8895

89-
See also the [GraphRAG Importer](services/importer.md) service documentation.
96+
See also the [Importer](services/importer.md) service documentation.
9097

91-
## Upload your file
98+
## Add data source
9299

93-
1. Upload a file by dragging and dropping it in the designated upload area.
94-
The importer service you previously launched parses and creates the
95-
Knowledge Graph automatically.
96-
2. Enter a file name.
97-
3. Click the **Start import** button.
100+
To add your first data source:
101+
102+
1. In the **Data Sources** section, click the **Add data source** button.
103+
2. Upload a file by dragging and dropping it in the designated upload area.
104+
The importer service you previously configured will automatically parse the file
105+
and create the Knowledge Graph.
106+
3. Enter a descriptive name for your file.
107+
4. Click the **Start import** button.
98108

99109
{{< info >}}
100-
You can only import a single file, either in `.md` or `.txt` format.
110+
Currently, you can import one file at a time in either Markdown (`.md`) or
111+
plain text (`.txt`) format. Additional files can be added to update the Knowledge Graph.
101112
{{< /info >}}
102113

103114
![Upload file in GraphRAG web interface](../../../images/graphrag-ui-upload-file.png)
104115

105116
## Explore the Knowledge Graph
106117

107-
You can open and explore the Knowledge Graph that has been generated by clicking
108-
on the **Explore in visualizer** button.
118+
After your file is processed, you can view and explore the generated Knowledge Graph
119+
in the **Graph** section.
120+
121+
![Explore Knowledge Graph in GraphRAG web interface](../../../images/graphrag-ui-explore-knowledge-graph.png)
122+
123+
For a more detailed exploration, click the **Explore** button to open the Knowledge Graph in the dedicated Graph Visualizer.
109124

110125
For more information, see the [Graph Visualizer](../../graphs/graph-visualizer.md) documentation.
111126

127+
## Update the Knowledge Graph
128+
129+
Once you have created your initial Knowledge Graph, you can update it by uploading
130+
additional files using the same process described in the [Add data source](#add-data-source) section.
131+
The importer service will automatically update the existing Knowledge Graph and
132+
underlying collections with the new data.
133+
134+
To update your Knowledge Graph:
135+
136+
1. In the **Data Sources** section, click the **Add data source** button again.
137+
2. Upload a new file by dragging and dropping it in the designated upload area.
138+
3. The importer service will process the new file and update the existing Knowledge Graph along with the underlying collections.
139+
112140
## Configure the Retriever service
113141

114-
Creating the retriever service allows you to extract information from
115-
the generated Knowledge Graph. Follow the steps below to configure the service.
142+
The retriever service enables you to query and extract information from
143+
the generated Knowledge Graph. To configure the retriever service, open the
144+
**Project Settings** and follow the steps below.
116145

117146
{{< tabs "retriever-service" >}}
118147

@@ -123,7 +152,6 @@ the generated Knowledge Graph. Follow the steps below to configure the service.
123152
3. Enter your **OpenAI API Key**.
124153
4. Click the **Start retriever service** button.
125154

126-
![Configure Retriever Service using OpenAI](../../../images/graphrag-ui-configure-retriever-openai.png)
127155
{{< /tab >}}
128156

129157
{{< tab "OpenRouter" >}}
@@ -134,11 +162,10 @@ the generated Knowledge Graph. Follow the steps below to configure the service.
134162
4. Click the **Start retriever service** button.
135163

136164
{{< info >}}
137-
When using the OpenRouter option, the LLM responses are served via OpenRouter
138-
while OpenAI is used for the embedding model.
165+
When using OpenRouter, the LLM responses are served via OpenRouter while OpenAI
166+
is used for the embedding model.
139167
{{< /info >}}
140168

141-
![Configure Retriever Service using OpenRouter](../../../images/graphrag-ui-configure-retriever-openrouter.png)
142169
{{< /tab >}}
143170

144171
{{< tab "Triton LLM Host" >}}
@@ -151,26 +178,28 @@ Note that you must first register your model in MLflow. The [Triton LLM Host](se
151178
service automatically downloads and loads models from the MLflow registry.
152179
{{< /info >}}
153180

154-
![Configure Retriever Service using Triton](../../../images/graphrag-ui-configure-retriever-triton.png)
155181
{{< /tab >}}
156182

157183
{{< /tabs >}}
158184

159-
See also the [GraphRAG Retriever](services/retriever.md) documentation.
185+
See also the [Retriever](services/retriever.md) documentation.
160186

161187
## Chat with your Knowledge Graph
162188

163-
The Retriever service provides two search methods:
164-
- [Local search](services/retriever.md#local-search): Local queries let you
165-
explore specific nodes and their direct connections.
166-
- [Global search](services/retriever.md#global-search): Global queries uncover
167-
broader patters and relationships across the entire Knowledge Graph.
168-
169-
![Chat with your Knowledge Graph](../../../images/graphrag-ui-chat.png)
189+
The chat interface provides two search methods:
190+
- **Instant search**: Instant queries provide fast responses.
191+
- **Deep search**: This option will take longer to return a response.
170192

171193
In addition to querying the Knowledge Graph, the chat service allows you to do the following:
172-
- Switch the search method from **Local Query** to **Global Query** and vice-versa
194+
- Switch the search method from **Instant search** to **Deep research** and vice-versa
173195
directly in the chat
174-
- Change the retriever service
196+
- Change or create a new retriever service
175197
- Clear the chat
176-
- Integrate the Knowledge Graph chat service into your own applications
198+
199+
## Integrate the Knowledge Graph chat service into your application
200+
201+
To integrate any service into your own applications,
202+
go to **Project Settings** and use the copy button next to each service to
203+
copy its integration endpoint. You cam make `POST` requests to the endpoints
204+
with your queries, the services accept `JSON` payloads and return structured
205+
responses for building custom interfaces.
-76.8 KB
Binary file not shown.
-138 KB
Binary file not shown.
Binary file not shown.
-96.8 KB
Binary file not shown.
-148 KB
Binary file not shown.
-60.6 KB
Binary file not shown.
-58.7 KB
Binary file not shown.
-65.8 KB
Binary file not shown.

0 commit comments

Comments
 (0)