-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_keras.py
202 lines (174 loc) · 6.4 KB
/
main_keras.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import os
import numpy as np
os.environ['KERAS_BACKEND'] = 'tensorflow'
from keras.applications.inception_v3 import InceptionV3
from keras.applications.xception import Xception
from keras.applications.inception_resnet_v2 import InceptionResNetV2
from keras.preprocessing import image
from keras.models import Model
from keras.layers import Dense, GlobalAveragePooling2D, Dropout
from keras.optimizers import Adam
from keras import backend as K
from keras.preprocessing.image import ImageDataGenerator
import keras
from dataset import Dataset
from cnn_base import CNN_basemodels
from keras.callbacks import EarlyStopping, ModelCheckpoint
# %%$################## GLOBAL VAR ########################
TRAIN_PATH = '/media/data/MOA144/Assignment 4/train'
VAL_PATH = '/media/data/MOA144/Assignment 4/val'
TEST_PATH = '/media/data/MOA144/Assignment 4/test'
TEST_LABELS = '/media/data/MOA144/Assignment 4/MO444_dogs_test.txt'
IMG_HEIGHT = 299
IMG_WIDTH = 299
IMG_CHANNELS = 3
OUTPUT_SHAPE = 83
FINETUNE = True
NN_NAME = ['InceptionResNetV2_FT91pt8',
'InceptionResNetV2_StrongerAug_FT93pt3',
'Xception_FT92pt8',
'InceptionV3_StrongerAug_FT91pt2']
USE_TEST = True
# %%################## HYPERPARAMETERS ######################
LEARN_RATE_0 = 0.001
LEARN_RATE_FINETUNE = 0.00001
N_EPOCH = 20
MB_SIZE = 10
AUGMENTATION = dict(
rotation_range=360,
width_shift_range=0.4,
height_shift_range=0.4,
shear_range=0.4,
zoom_range=0.3,
channel_shift_range=0,
horizontal_flip=True,
vertical_flip=True,
)
# %%################## DATASETS ############################
if not USE_TEST:
train = Dataset(TRAIN_PATH,
shuffle=True,
batch_size=MB_SIZE,
tgt_size=(IMG_HEIGHT, IMG_WIDTH),
color=True,
augmentation=AUGMENTATION)
val = Dataset(VAL_PATH,
shuffle=True,
batch_size=MB_SIZE,
tgt_size=(IMG_HEIGHT, IMG_WIDTH),
color=True,
augmentation=None,
# len_mod=0.2
)
else:
train = Dataset([TRAIN_PATH, VAL_PATH],
shuffle=True,
batch_size=MB_SIZE,
tgt_size=(IMG_HEIGHT, IMG_WIDTH),
color=True,
augmentation=AUGMENTATION)
val = Dataset(TEST_PATH,
shuffle=True,
batch_size=MB_SIZE,
tgt_size=(IMG_HEIGHT, IMG_WIDTH),
color=True,
augmentation=None,
load_labels_from_file=TEST_LABELS)
x_trn = train.x
y_trn = train.y
x_vld = val.x
y_vld = val.y
# %%################# KERAS MODEL ##########################
nets = []
if not FINETUNE:
nets.append(CNN_basemodels(InceptionV3, OUTPUT_SHAPE,
lr=LEARN_RATE_0, training_regime='top',
name=NN_NAME,
top=[Dropout(0.5)]
))
else:
if type(NN_NAME) is list:
for name in NN_NAME:
nets.append(CNN_basemodels.load_model(name))
else:
nets.append(CNN_basemodels.load_model(NN_NAME))
for net in nets:
net.set_lr(LEARN_RATE_FINETUNE)
net.set_trainable_layers('all')
# %% ############# TRAINING ##########################
cb = EarlyStopping(monitor='val_loss', min_delta=0,
patience=2, verbose=0, mode='auto')
mc = ModelCheckpoint(NN_NAME, monitor='val_loss', save_best_only=True)
train_args = dict(
generator=train,
steps_per_epoch=len(y_trn) // MB_SIZE,
epochs=N_EPOCH,
callbacks=[cb, mc],
validation_data=val,
validation_steps=len(y_vld) // MB_SIZE,
workers=4, use_multiprocessing=True)
for net in nets:
print('Starting training: ', net.name)
net.fit_generator(**train_args)
if not FINETUNE:
for net in nets:
net.set_lr(LEARN_RATE_FINETUNE)
net.set_trainable_layers('all')
print('Starting training: ', net.name)
net.fit_generator(**train_args)
# %%################## ENSAMBLE AND TTA ###################
TTA_LIST = [None,
dict(horizontal_flip=True),
# dict(vertical_flip=True),
dict(rotation=90),
dict(rotation=180),
dict(rotation=270),
]
pred_trn, y_trn = train.TTA(
nets, batch_size=MB_SIZE, augmentations=TTA_LIST, len_reducer=0.3)
pred_vld, y_vld = val.TTA(nets, batch_size=MB_SIZE, augmentations=TTA_LIST)
# Soft voting
pred = np.sum(pred_vld, axis=(2, 3))
pred = np.argmax(pred, axis=-1)
print('Val acc: ', np.mean(np.equal(np.argmax(y_vld, axis=-1), pred).astype(np.uint8)))
pred_trn = np.reshape(pred_trn, [pred_trn.shape[0], -1])
y_trn = np.argmax(y_trn, axis=-1)
pred_vld = np.reshape(pred_vld, [pred_vld.shape[0], -1])
y_vld = np.argmax(y_vld, axis=-1)
# ########################### LR #############################
from sklearn.linear_model import LogisticRegression
LR = LogisticRegression(max_iter=10)
LR.fit(pred_trn, y_trn)
LR.score(pred_vld, y_vld)
#%% ####################### LightGBM ##########################
import lightgbm as lgb
d_train = lgb.Dataset(pred_trn, label=y_trn)
lgb_eval = lgb.Dataset(pred_vld, y_vld, reference=d_train)
params = {}
params['learning_rate'] = 0.1
params['boosting_type'] = 'gbdt'
params['objective'] = 'multiclass'
params['metric'] = 'multi_logloss'
params['num_class'] = OUTPUT_SHAPE
params['sub_feature'] = 0.5
params['num_leaves'] = 300
#params['min_data'] = 50
params['max_depth'] = 100
#params['device'] = 'gpu'
clf = lgb.train(params, d_train, 100, valid_sets=lgb_eval)
y_pred = clf.predict(pred_vld, num_iteration=clf.best_iteration)
from sklearn.metrics import accuracy_score
accuracy = accuracy_score(np.argmax(y_pred, axis=-1), y_vld)
print(accuracy)
#%% ################## SVM ###################################
from sklearn import svm
clf = svm.SVC(C=1.0, cache_size=500, class_weight=None, coef0=0.0,
decision_function_shape='ovo', degree=3, gamma='auto', kernel='linear',
max_iter=-1, probability=False, random_state=None, shrinking=True,
tol=0.001, verbose=False)
clf.fit(pred_trn, y_trn)
print(clf.score(pred_vld, y_vld))
# %%############## F1 Score #################################
from sklearn.metrics import f1_score, confusion_matrix
print(f1_score(y_vld, pred, average='weighted'))
conf_matrix = confusion_matrix(y_vld, pred)