-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathlora_loading.py
753 lines (676 loc) · 26.9 KB
/
lora_loading.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
import re
from typing import Optional, OrderedDict, Tuple, TypeAlias, Union
import torch
from loguru import logger
from safetensors.torch import load_file
from tqdm import tqdm
from torch import nn
try:
from cublas_ops import CublasLinear
except Exception as e:
CublasLinear = type(None)
from float8_quantize import F8Linear
from modules.flux_model import Flux
path_regex = re.compile(r"/|\\")
StateDict: TypeAlias = OrderedDict[str, torch.Tensor]
class LoraWeights:
def __init__(
self,
weights: StateDict,
path: str,
name: str = None,
scale: float = 1.0,
) -> None:
self.path = path
self.weights = weights
self.name = name if name else path_regex.split(path)[-1]
self.scale = scale
def swap_scale_shift(weight):
scale, shift = weight.chunk(2, dim=0)
new_weight = torch.cat([shift, scale], dim=0)
return new_weight
def check_if_lora_exists(state_dict, lora_name):
subkey = lora_name.split(".lora_A")[0].split(".lora_B")[0].split(".weight")[0]
for key in state_dict.keys():
if subkey in key:
return subkey
return False
def convert_if_lora_exists(new_state_dict, state_dict, lora_name, flux_layer_name):
if (original_stubkey := check_if_lora_exists(state_dict, lora_name)) != False:
weights_to_pop = [k for k in state_dict.keys() if original_stubkey in k]
for key in weights_to_pop:
key_replacement = key.replace(
original_stubkey, flux_layer_name.replace(".weight", "")
)
new_state_dict[key_replacement] = state_dict.pop(key)
return new_state_dict, state_dict
else:
return new_state_dict, state_dict
def convert_diffusers_to_flux_transformer_checkpoint(
diffusers_state_dict,
num_layers,
num_single_layers,
has_guidance=True,
prefix="",
):
original_state_dict = {}
# time_text_embed.timestep_embedder -> time_in
original_state_dict, diffusers_state_dict = convert_if_lora_exists(
original_state_dict,
diffusers_state_dict,
f"{prefix}time_text_embed.timestep_embedder.linear_1.weight",
"time_in.in_layer.weight",
)
# time_text_embed.text_embedder -> vector_in
original_state_dict, diffusers_state_dict = convert_if_lora_exists(
original_state_dict,
diffusers_state_dict,
f"{prefix}time_text_embed.text_embedder.linear_1.weight",
"vector_in.in_layer.weight",
)
original_state_dict, diffusers_state_dict = convert_if_lora_exists(
original_state_dict,
diffusers_state_dict,
f"{prefix}time_text_embed.text_embedder.linear_2.weight",
"vector_in.out_layer.weight",
)
if has_guidance:
original_state_dict, diffusers_state_dict = convert_if_lora_exists(
original_state_dict,
diffusers_state_dict,
f"{prefix}time_text_embed.guidance_embedder.linear_1.weight",
"guidance_in.in_layer.weight",
)
original_state_dict, diffusers_state_dict = convert_if_lora_exists(
original_state_dict,
diffusers_state_dict,
f"{prefix}time_text_embed.guidance_embedder.linear_2.weight",
"guidance_in.out_layer.weight",
)
# context_embedder -> txt_in
original_state_dict, diffusers_state_dict = convert_if_lora_exists(
original_state_dict,
diffusers_state_dict,
f"{prefix}context_embedder.weight",
"txt_in.weight",
)
# x_embedder -> img_in
original_state_dict, diffusers_state_dict = convert_if_lora_exists(
original_state_dict,
diffusers_state_dict,
f"{prefix}x_embedder.weight",
"img_in.weight",
)
# double transformer blocks
for i in range(num_layers):
block_prefix = f"transformer_blocks.{i}."
# norms
original_state_dict, diffusers_state_dict = convert_if_lora_exists(
original_state_dict,
diffusers_state_dict,
f"{prefix}{block_prefix}norm1.linear.weight",
f"double_blocks.{i}.img_mod.lin.weight",
)
original_state_dict, diffusers_state_dict = convert_if_lora_exists(
original_state_dict,
diffusers_state_dict,
f"{prefix}{block_prefix}norm1_context.linear.weight",
f"double_blocks.{i}.txt_mod.lin.weight",
)
# Q, K, V
temp_dict = {}
expected_shape_qkv_a = None
expected_shape_qkv_b = None
expected_shape_add_qkv_a = None
expected_shape_add_qkv_b = None
dtype = None
device = None
for component in [
"to_q",
"to_k",
"to_v",
"add_q_proj",
"add_k_proj",
"add_v_proj",
]:
sample_component_A_key = (
f"{prefix}{block_prefix}attn.{component}.lora_A.weight"
)
sample_component_B_key = (
f"{prefix}{block_prefix}attn.{component}.lora_B.weight"
)
if (
sample_component_A_key in diffusers_state_dict
and sample_component_B_key in diffusers_state_dict
):
sample_component_A = diffusers_state_dict.pop(sample_component_A_key)
sample_component_B = diffusers_state_dict.pop(sample_component_B_key)
temp_dict[f"{component}"] = [sample_component_A, sample_component_B]
if expected_shape_qkv_a is None and not component.startswith("add_"):
expected_shape_qkv_a = sample_component_A.shape
expected_shape_qkv_b = sample_component_B.shape
dtype = sample_component_A.dtype
device = sample_component_A.device
if expected_shape_add_qkv_a is None and component.startswith("add_"):
expected_shape_add_qkv_a = sample_component_A.shape
expected_shape_add_qkv_b = sample_component_B.shape
dtype = sample_component_A.dtype
device = sample_component_A.device
else:
logger.info(
f"Skipping layer {i} since no LoRA weight is available for {sample_component_A_key}"
)
temp_dict[f"{component}"] = [None, None]
if device is not None:
if expected_shape_qkv_a is not None:
if (sq := temp_dict["to_q"])[0] is not None:
sample_q_A, sample_q_B = sq
else:
sample_q_A, sample_q_B = [
torch.zeros(expected_shape_qkv_a, dtype=dtype, device=device),
torch.zeros(expected_shape_qkv_b, dtype=dtype, device=device),
]
if (sq := temp_dict["to_k"])[0] is not None:
sample_k_A, sample_k_B = sq
else:
sample_k_A, sample_k_B = [
torch.zeros(expected_shape_qkv_a, dtype=dtype, device=device),
torch.zeros(expected_shape_qkv_b, dtype=dtype, device=device),
]
if (sq := temp_dict["to_v"])[0] is not None:
sample_v_A, sample_v_B = sq
else:
sample_v_A, sample_v_B = [
torch.zeros(expected_shape_qkv_a, dtype=dtype, device=device),
torch.zeros(expected_shape_qkv_b, dtype=dtype, device=device),
]
original_state_dict[f"double_blocks.{i}.img_attn.qkv.lora_A.weight"] = (
torch.cat([sample_q_A, sample_k_A, sample_v_A], dim=0)
)
original_state_dict[f"double_blocks.{i}.img_attn.qkv.lora_B.weight"] = (
torch.cat([sample_q_B, sample_k_B, sample_v_B], dim=0)
)
if expected_shape_add_qkv_a is not None:
if (sq := temp_dict["add_q_proj"])[0] is not None:
context_q_A, context_q_B = sq
else:
context_q_A, context_q_B = [
torch.zeros(
expected_shape_add_qkv_a, dtype=dtype, device=device
),
torch.zeros(
expected_shape_add_qkv_b, dtype=dtype, device=device
),
]
if (sq := temp_dict["add_k_proj"])[0] is not None:
context_k_A, context_k_B = sq
else:
context_k_A, context_k_B = [
torch.zeros(
expected_shape_add_qkv_a, dtype=dtype, device=device
),
torch.zeros(
expected_shape_add_qkv_b, dtype=dtype, device=device
),
]
if (sq := temp_dict["add_v_proj"])[0] is not None:
context_v_A, context_v_B = sq
else:
context_v_A, context_v_B = [
torch.zeros(
expected_shape_add_qkv_a, dtype=dtype, device=device
),
torch.zeros(
expected_shape_add_qkv_b, dtype=dtype, device=device
),
]
original_state_dict[f"double_blocks.{i}.txt_attn.qkv.lora_A.weight"] = (
torch.cat([context_q_A, context_k_A, context_v_A], dim=0)
)
original_state_dict[f"double_blocks.{i}.txt_attn.qkv.lora_B.weight"] = (
torch.cat([context_q_B, context_k_B, context_v_B], dim=0)
)
# qk_norm
original_state_dict, diffusers_state_dict = convert_if_lora_exists(
original_state_dict,
diffusers_state_dict,
f"{prefix}{block_prefix}attn.norm_q.weight",
f"double_blocks.{i}.img_attn.norm.query_norm.scale",
)
original_state_dict, diffusers_state_dict = convert_if_lora_exists(
original_state_dict,
diffusers_state_dict,
f"{prefix}{block_prefix}attn.norm_k.weight",
f"double_blocks.{i}.img_attn.norm.key_norm.scale",
)
original_state_dict, diffusers_state_dict = convert_if_lora_exists(
original_state_dict,
diffusers_state_dict,
f"{prefix}{block_prefix}attn.norm_added_q.weight",
f"double_blocks.{i}.txt_attn.norm.query_norm.scale",
)
original_state_dict, diffusers_state_dict = convert_if_lora_exists(
original_state_dict,
diffusers_state_dict,
f"{prefix}{block_prefix}attn.norm_added_k.weight",
f"double_blocks.{i}.txt_attn.norm.key_norm.scale",
)
# ff img_mlp
original_state_dict, diffusers_state_dict = convert_if_lora_exists(
original_state_dict,
diffusers_state_dict,
f"{prefix}{block_prefix}ff.net.0.proj.weight",
f"double_blocks.{i}.img_mlp.0.weight",
)
original_state_dict, diffusers_state_dict = convert_if_lora_exists(
original_state_dict,
diffusers_state_dict,
f"{prefix}{block_prefix}ff.net.2.weight",
f"double_blocks.{i}.img_mlp.2.weight",
)
original_state_dict, diffusers_state_dict = convert_if_lora_exists(
original_state_dict,
diffusers_state_dict,
f"{prefix}{block_prefix}ff_context.net.0.proj.weight",
f"double_blocks.{i}.txt_mlp.0.weight",
)
original_state_dict, diffusers_state_dict = convert_if_lora_exists(
original_state_dict,
diffusers_state_dict,
f"{prefix}{block_prefix}ff_context.net.2.weight",
f"double_blocks.{i}.txt_mlp.2.weight",
)
# output projections
original_state_dict, diffusers_state_dict = convert_if_lora_exists(
original_state_dict,
diffusers_state_dict,
f"{prefix}{block_prefix}attn.to_out.0.weight",
f"double_blocks.{i}.img_attn.proj.weight",
)
original_state_dict, diffusers_state_dict = convert_if_lora_exists(
original_state_dict,
diffusers_state_dict,
f"{prefix}{block_prefix}attn.to_add_out.weight",
f"double_blocks.{i}.txt_attn.proj.weight",
)
# single transformer blocks
for i in range(num_single_layers):
block_prefix = f"single_transformer_blocks.{i}."
# norm.linear -> single_blocks.0.modulation.lin
key_norm = f"{prefix}{block_prefix}norm.linear.weight"
original_state_dict, diffusers_state_dict = convert_if_lora_exists(
original_state_dict,
diffusers_state_dict,
key_norm,
f"single_blocks.{i}.modulation.lin.weight",
)
has_q, has_k, has_v, has_mlp = False, False, False, False
shape_qkv_a = None
shape_qkv_b = None
# Q, K, V, mlp
q_A = diffusers_state_dict.pop(f"{prefix}{block_prefix}attn.to_q.lora_A.weight")
q_B = diffusers_state_dict.pop(f"{prefix}{block_prefix}attn.to_q.lora_B.weight")
if q_A is not None and q_B is not None:
has_q = True
shape_qkv_a = q_A.shape
shape_qkv_b = q_B.shape
k_A = diffusers_state_dict.pop(f"{prefix}{block_prefix}attn.to_k.lora_A.weight")
k_B = diffusers_state_dict.pop(f"{prefix}{block_prefix}attn.to_k.lora_B.weight")
if k_A is not None and k_B is not None:
has_k = True
shape_qkv_a = k_A.shape
shape_qkv_b = k_B.shape
v_A = diffusers_state_dict.pop(f"{prefix}{block_prefix}attn.to_v.lora_A.weight")
v_B = diffusers_state_dict.pop(f"{prefix}{block_prefix}attn.to_v.lora_B.weight")
if v_A is not None and v_B is not None:
has_v = True
shape_qkv_a = v_A.shape
shape_qkv_b = v_B.shape
mlp_A = diffusers_state_dict.pop(
f"{prefix}{block_prefix}proj_mlp.lora_A.weight"
)
mlp_B = diffusers_state_dict.pop(
f"{prefix}{block_prefix}proj_mlp.lora_B.weight"
)
if mlp_A is not None and mlp_B is not None:
has_mlp = True
shape_qkv_a = mlp_A.shape
shape_qkv_b = mlp_B.shape
if any([has_q, has_k, has_v, has_mlp]):
if not has_q:
q_A, q_B = [
torch.zeros(shape_qkv_a, dtype=dtype, device=device),
torch.zeros(shape_qkv_b, dtype=dtype, device=device),
]
if not has_k:
k_A, k_B = [
torch.zeros(shape_qkv_a, dtype=dtype, device=device),
torch.zeros(shape_qkv_b, dtype=dtype, device=device),
]
if not has_v:
v_A, v_B = [
torch.zeros(shape_qkv_a, dtype=dtype, device=device),
torch.zeros(shape_qkv_b, dtype=dtype, device=device),
]
if not has_mlp:
mlp_A, mlp_B = [
torch.zeros(shape_qkv_a, dtype=dtype, device=device),
torch.zeros(shape_qkv_b, dtype=dtype, device=device),
]
original_state_dict[f"single_blocks.{i}.linear1.lora_A.weight"] = torch.cat(
[q_A, k_A, v_A, mlp_A], dim=0
)
original_state_dict[f"single_blocks.{i}.linear1.lora_B.weight"] = torch.cat(
[q_B, k_B, v_B, mlp_B], dim=0
)
# output projections
original_state_dict, diffusers_state_dict = convert_if_lora_exists(
original_state_dict,
diffusers_state_dict,
f"{prefix}{block_prefix}proj_out.weight",
f"single_blocks.{i}.linear2.weight",
)
original_state_dict, diffusers_state_dict = convert_if_lora_exists(
original_state_dict,
diffusers_state_dict,
f"{prefix}proj_out.weight",
"final_layer.linear.weight",
)
original_state_dict, diffusers_state_dict = convert_if_lora_exists(
original_state_dict,
diffusers_state_dict,
f"{prefix}proj_out.bias",
"final_layer.linear.bias",
)
original_state_dict, diffusers_state_dict = convert_if_lora_exists(
original_state_dict,
diffusers_state_dict,
f"{prefix}norm_out.linear.weight",
"final_layer.adaLN_modulation.1.weight",
)
if len(list(diffusers_state_dict.keys())) > 0:
logger.warning("Unexpected keys:", diffusers_state_dict.keys())
return original_state_dict
def convert_from_original_flux_checkpoint(original_state_dict: StateDict) -> StateDict:
"""
Convert the state dict from the original Flux checkpoint format to the new format.
Args:
original_state_dict (Dict[str, torch.Tensor]): The original Flux checkpoint state dict.
Returns:
Dict[str, torch.Tensor]: The converted state dict in the new format.
"""
sd = {
k.replace("lora_unet_", "")
.replace("double_blocks_", "double_blocks.")
.replace("single_blocks_", "single_blocks.")
.replace("_img_attn_", ".img_attn.")
.replace("_txt_attn_", ".txt_attn.")
.replace("_img_mod_", ".img_mod.")
.replace("_txt_mod_", ".txt_mod.")
.replace("_img_mlp_", ".img_mlp.")
.replace("_txt_mlp_", ".txt_mlp.")
.replace("_linear1", ".linear1")
.replace("_linear2", ".linear2")
.replace("_modulation_", ".modulation.")
.replace("lora_up", "lora_B")
.replace("lora_down", "lora_A"): v
for k, v in original_state_dict.items()
if "lora" in k
}
return sd
def get_module_for_key(
key: str, model: Flux
) -> F8Linear | torch.nn.Linear | CublasLinear:
parts = key.split(".")
module = model
for part in parts:
module = getattr(module, part)
return module
def get_lora_for_key(
key: str, lora_weights: dict
) -> Optional[Tuple[torch.Tensor, torch.Tensor, Optional[float]]]:
"""
Get LoRA weights for a specific key.
Args:
key (str): The key to look up in the LoRA weights.
lora_weights (dict): Dictionary containing LoRA weights.
Returns:
Optional[Tuple[torch.Tensor, torch.Tensor, Optional[float]]]: A tuple containing lora_A, lora_B, and alpha if found, None otherwise.
"""
prefix = key.split(".lora")[0]
lora_A = lora_weights.get(f"{prefix}.lora_A.weight")
lora_B = lora_weights.get(f"{prefix}.lora_B.weight")
alpha = lora_weights.get(f"{prefix}.alpha")
if lora_A is None or lora_B is None:
return None
return lora_A, lora_B, alpha
def get_module_for_key(
key: str, model: Flux
) -> F8Linear | torch.nn.Linear | CublasLinear:
parts = key.split(".")
module = model
for part in parts:
module = getattr(module, part)
return module
def calculate_lora_weight(
lora_weights: Tuple[torch.Tensor, torch.Tensor, Union[torch.Tensor, float]],
rank: Optional[int] = None,
lora_scale: float = 1.0,
device: Optional[Union[torch.device, int, str]] = None,
):
lora_A, lora_B, alpha = lora_weights
if device is None:
device = lora_A.device
uneven_rank = lora_B.shape[1] != lora_A.shape[0]
rank_diff = lora_A.shape[0] / lora_B.shape[1]
if rank is None:
rank = lora_B.shape[1]
if alpha is None:
alpha = rank
dtype = torch.float32
w_up = lora_A.to(dtype=dtype, device=device)
w_down = lora_B.to(dtype=dtype, device=device)
if alpha != rank:
w_up = w_up * alpha / rank
if uneven_rank:
# Fuse each lora instead of repeat interleave for each individual lora,
# seems to fuse more correctly.
fused_lora = torch.zeros(
(lora_B.shape[0], lora_A.shape[1]), device=device, dtype=dtype
)
w_up = w_up.chunk(int(rank_diff), dim=0)
for w_up_chunk in w_up:
fused_lora = fused_lora + (lora_scale * torch.mm(w_down, w_up_chunk))
else:
fused_lora = lora_scale * torch.mm(w_down, w_up)
return fused_lora
@torch.inference_mode()
def unfuse_lora_weight_from_module(
fused_weight: torch.Tensor,
lora_weights: dict,
rank: Optional[int] = None,
lora_scale: float = 1.0,
):
w_dtype = fused_weight.dtype
dtype = torch.float32
device = fused_weight.device
fused_weight = fused_weight.to(dtype=dtype, device=device)
fused_lora = calculate_lora_weight(lora_weights, rank, lora_scale, device=device)
module_weight = fused_weight - fused_lora
return module_weight.to(dtype=w_dtype, device=device)
@torch.inference_mode()
def apply_lora_weight_to_module(
module_weight: torch.Tensor,
lora_weights: dict,
rank: int = None,
lora_scale: float = 1.0,
):
w_dtype = module_weight.dtype
dtype = torch.float32
device = module_weight.device
fused_lora = calculate_lora_weight(lora_weights, rank, lora_scale, device=device)
fused_weight = module_weight.to(dtype=dtype) + fused_lora
return fused_weight.to(dtype=w_dtype, device=device)
def resolve_lora_state_dict(lora_weights, has_guidance: bool = True):
check_if_starts_with_transformer = [
k for k in lora_weights.keys() if k.startswith("transformer.")
]
if len(check_if_starts_with_transformer) > 0:
lora_weights = convert_diffusers_to_flux_transformer_checkpoint(
lora_weights, 19, 38, has_guidance=has_guidance, prefix="transformer."
)
else:
lora_weights = convert_from_original_flux_checkpoint(lora_weights)
logger.info("LoRA weights loaded")
logger.debug("Extracting keys")
keys_without_ab = list(
set(
[
key.replace(".lora_A.weight", "")
.replace(".lora_B.weight", "")
.replace(".lora_A", "")
.replace(".lora_B", "")
.replace(".alpha", "")
for key in lora_weights.keys()
]
)
)
logger.debug("Keys extracted")
return keys_without_ab, lora_weights
def get_lora_weights(lora_path: str | StateDict):
if isinstance(lora_path, (dict, LoraWeights)):
return lora_path, True
else:
return load_file(lora_path, "cpu"), False
def extract_weight_from_linear(linear: Union[nn.Linear, CublasLinear, F8Linear]):
dtype = linear.weight.dtype
weight_is_f8 = False
if isinstance(linear, F8Linear):
weight_is_f8 = True
weight = (
linear.float8_data.clone()
.detach()
.float()
.mul(linear.scale_reciprocal)
.to(linear.weight.device)
)
elif isinstance(linear, torch.nn.Linear):
weight = linear.weight.clone().detach().float()
elif isinstance(linear, CublasLinear) and CublasLinear != type(None):
weight = linear.weight.clone().detach().float()
return weight, weight_is_f8, dtype
@torch.inference_mode()
def apply_lora_to_model(
model: Flux,
lora_path: str | StateDict,
lora_scale: float = 1.0,
return_lora_resolved: bool = False,
) -> Flux:
has_guidance = model.params.guidance_embed
logger.info(f"Loading LoRA weights for {lora_path}")
lora_weights, already_loaded = get_lora_weights(lora_path)
if not already_loaded:
keys_without_ab, lora_weights = resolve_lora_state_dict(
lora_weights, has_guidance
)
elif isinstance(lora_weights, LoraWeights):
b_ = lora_weights
lora_weights = b_.weights
keys_without_ab = list(
set(
[
key.replace(".lora_A.weight", "")
.replace(".lora_B.weight", "")
.replace(".lora_A", "")
.replace(".lora_B", "")
.replace(".alpha", "")
for key in lora_weights.keys()
]
)
)
else:
lora_weights = lora_weights
keys_without_ab = list(
set(
[
key.replace(".lora_A.weight", "")
.replace(".lora_B.weight", "")
.replace(".lora_A", "")
.replace(".lora_B", "")
.replace(".alpha", "")
for key in lora_weights.keys()
]
)
)
for key in tqdm(keys_without_ab, desc="Applying LoRA", total=len(keys_without_ab)):
module = get_module_for_key(key, model)
weight, is_f8, dtype = extract_weight_from_linear(module)
lora_sd = get_lora_for_key(key, lora_weights)
if lora_sd is None:
# Skipping LoRA application for this module
continue
weight = apply_lora_weight_to_module(weight, lora_sd, lora_scale=lora_scale)
if is_f8:
module.set_weight_tensor(weight.type(dtype))
else:
module.weight.data = weight.type(dtype)
logger.success("Lora applied")
if return_lora_resolved:
return model, lora_weights
return model
def remove_lora_from_module(
model: Flux,
lora_path: str | StateDict,
lora_scale: float = 1.0,
):
has_guidance = model.params.guidance_embed
logger.info(f"Loading LoRA weights for {lora_path}")
lora_weights, already_loaded = get_lora_weights(lora_path)
if not already_loaded:
keys_without_ab, lora_weights = resolve_lora_state_dict(
lora_weights, has_guidance
)
elif isinstance(lora_weights, LoraWeights):
b_ = lora_weights
lora_weights = b_.weights
keys_without_ab = list(
set(
[
key.replace(".lora_A.weight", "")
.replace(".lora_B.weight", "")
.replace(".lora_A", "")
.replace(".lora_B", "")
.replace(".alpha", "")
for key in lora_weights.keys()
]
)
)
lora_scale = b_.scale
else:
lora_weights = lora_weights
keys_without_ab = list(
set(
[
key.replace(".lora_A.weight", "")
.replace(".lora_B.weight", "")
.replace(".lora_A", "")
.replace(".lora_B", "")
.replace(".alpha", "")
for key in lora_weights.keys()
]
)
)
for key in tqdm(keys_without_ab, desc="Unfusing LoRA", total=len(keys_without_ab)):
module = get_module_for_key(key, model)
weight, is_f8, dtype = extract_weight_from_linear(module)
lora_sd = get_lora_for_key(key, lora_weights)
if lora_sd is None:
# Skipping LoRA application for this module
continue
weight = unfuse_lora_weight_from_module(weight, lora_sd, lora_scale=lora_scale)
if is_f8:
module.set_weight_tensor(weight.type(dtype))
else:
module.weight.data = weight.type(dtype)
logger.success("Lora unfused")
return model