-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathscale_handler.py
1009 lines (941 loc) · 40.2 KB
/
scale_handler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import numpy as np
import matplotlib.pyplot as plt
import time
from pandas import read_excel
import settings
class SCALE:
"""
This class handles the SCALE output, including extracting data,
sorting into a form similar to ENSDF, exporting concentrations,
plotting with given decay constants for a given isotope,
determining decay constants given two data points,
and extracting delayed neutron count data from ORIGEN
"""
def __init__(self,
filename,
fissions,
efficiency,
normalize_value,
volume=0.1583105694,
mass_normalize=21.90177):
"""
Initialize
Parameters
----------
filename : str
Name of file containing SCALE data
(This should be a .txt file which has been pre-organized
to only contain
ftype : str ['triton', 'origen']
Type of file
fissions : float
Number of fissions
efficiency : float
Efficiency of delayed neutron detector
normalize_value : float
TRITON mass multiplier
volume : float
Volume of the sample
Returns
-------
None
"""
self.fname = filename
self.vol = volume
self.fiss = fissions
self.eff = efficiency
self.norm = normalize_value
self.mnorm = mass_normalize
self.ENSDF_data = dict()
self.ENSDF_data['na34'] = {'halflife': [0.0055, 0.0001], 'emission': [1.15, 0.2]}
self.ENSDF_data['na35'] = {'halflife': [0.0015, 0.00005], 'emission': [0.57, 0.57]}
self.ENSDF_data['si35'] = {'halflife': [0.78, 0.012], 'emission': [0.053, 0]}
self.ENSDF_data['v61'] = {'halflife': [0.047, 0.0012], 'emission': [0.06, 0]}
self.ENSDF_data['v63'] = {'halflife': [0.017, 0.0003], 'emission': [0.35, 0]}
self.ENSDF_data['co71'] = {'halflife': [0.008, 0.0003], 'emission': [0.036, 0.009]}
self.ENSDF_data['co72'] = {'halflife': [0.0062, 0.0003], 'emission': [0.08, 0.02]}
#self.ENSDF_data['ag125'] = {'halflife': [0.0015, 0.00005], 'emission': [0, 0]}
self.ENSDF_data['cd133'] = {'halflife': [0.0064, 0.0008], 'emission': [1, 0.5]} # Fabricated uncertainty
return
def origen_activity_parser_deprecated(self, timestep):
"""
Parses the ORIGEN .out style of file. At a particular timestep,
gathers activity data. Combined with concentration data,
can generate decay constant values.
Parameters
----------
timestep : int
Time index at which to evaluate
Returns
-------
act_data : dict
key : str
Name of isotope (i.e. xe135) (hyphens are removed)
value : float
Value of activity immediately after pulse
"""
check_val = 'Nuclide concentrations in becquerels'
end_val = 'totals'
#decay_check_val = 'Nuclide concentrations in becquerels'
act_data = dict()
marker_indeces = list()
end_indeces = list()
recent_start = False
net_composition = 0
with open(self.fname, 'r') as f:
lines = f.readlines()
# Need to find each instance instead of only one
for ind, line in enumerate(lines):
if check_val in line:
marker_indeces.append(ind)
recent_start = True
elif recent_start and end_val in line:
recent_start = False
end_indeces.append(ind)
else:
pass
marker_indeces = marker_indeces[:-1]
end_indeces = end_indeces[:-1]
start_offset = 6
end_offset = -1
for type_index in range(len(marker_indeces)):
for line in lines[marker_indeces[type_index]+start_offset:end_indeces[type_index] + end_offset]:
data = line.split()
element = data[0].split('-')[0]
weight = data[0].split('-')[1]
isotope = str(element) + str(weight)
activ = float(data[1+timestep]) / self.mnorm
net_composition += activ
if isotope in act_data.keys():
act_data[isotope] += activ
else:
act_data[isotope] = activ
return act_data
def origen_activity_parser(self, timestep):
"""
Parses the ORIGEN .out style of file. At a particular timestep,
gathers activity data. Combined with concentration data,
can generate decay constant values.
Parameters
----------
timestep : int
Time index at which to evaluate
Returns
-------
act_data : dict
key : str
Name of isotope (i.e. xe135) (hyphens are removed)
value : float
Value of activity immediately after pulse
"""
# So far have branch_frac * lambda * atoms
# print isotopes that dont have branch_frac data
check_val = 'nuclide atoms (1/s) fraction n/s MeV'
end_val = 'total'
act_data = dict()
marker_indeces = list()
end_indeces = list()
recent_start = False
with open(self.fname, 'r') as f:
lines = f.readlines()
# Need to find each instance instead of only one
for ind, line in enumerate(lines):
if check_val in line:
marker_indeces.append(ind)
recent_start = True
elif recent_start and end_val in line:
recent_start = False
end_indeces.append(ind)
else:
pass
start_offset = 1
end_offset = -1
for type_index in range(len(marker_indeces)):
for line in lines[marker_indeces[type_index]+start_offset:end_indeces[type_index] + end_offset]:
data = line.split()
element = data[0].split('-')[0]
weight = data[0].split('-')[1]
isotope = str(element) + str(weight)
if isotope in act_data.keys():
if isotope[-1] != 'm':
isotope += 'm'
act_data[isotope] = float(data[2])
else:
print(f'{isotope} already exists')
raise Exception
else:
act_data[isotope] = float(data[2])
return act_data
def origen_delnu_parser(self,
collect):
"""
Parses the ORIGEN .out style of file. Collects the delayed neutrons
from each isotope as well as the time values for each
Parameters
----------
collect : str
Either a specific isotope ('xe135'), or 'all' for the total
Returns
-------
times : vector
Times (seconds) used in ORIGEN
counts : vector
Total delayed neutrons emitted in ORIGEN
"""
check_val = 'Delayed neutron intensity by nuclide (neutrons/sec) for case'
end_val = 'total'
marker_indeces = list()
time_indeces = list()
end_indeces = list()
recent_start = False
net_composition = 0
self.pure_dict = dict()
with open(self.fname, 'r') as f:
lines = f.readlines()
# Need to find each instance instead of only one
for ind, line in enumerate(lines):
if check_val in line:
marker_indeces.append(ind)
recent_start = True
elif recent_start and end_val in line:
recent_start = False
end_indeces.append(ind)
elif 'time' in line:
time_indeces.append(ind)
else:
pass
marker_index = marker_indeces[0]
end_index = end_indeces[0]
times_index = time_indeces[-3]
start_offset = 3
end_offset = 1
time_line = True
times = list()
counts = list()
t_begin = 2
for line in lines[times_index+t_begin:]:
data = line.split()
try:
times.append(float(data[1]))
except ValueError:
break
for line in lines[marker_index+start_offset:end_index + end_offset]:
temp_counts = list()
data = line.split()
if len(data) == 1:
continue
elif data[0] == 'total' and collect == 'all':
for cnt in data[1:]:
counts.append(float(cnt) * self.eff / self.mnorm)
elif data[0] == 'total':
pass
else:
try:
element = data[0].split('-')[0]
weight = data[0].split('-')[1]
except IndexError:
continue
isotope = str(element) + str(weight)
for cnt in data[1:]:
try:
temp_counts.append(float(cnt) * self.eff / self.mnorm)
except ValueError:
temp_counts.append(0)
self.pure_dict[isotope] = temp_counts
if isotope == collect:
counts = temp_counts.copy()
return times, counts
def origen_spectra_parser(self):
"""
Parses the ORIGEN .out style of file for spectra.
Parameters
----------
None
Returns
-------
time_data : 1D numpy array
Time values used
energy_data : 1D numpy array
Energy bin midpoints
spectra_matrix : 2D numpy array
Rows are the energies, columns are times, values are counts
bin_data : 1D numpy array
Bins used
"""
check_val = 'Delayed neutron source intensity (1/s) as a function of time'
end_val = 'total'
recent_start = False
energy_data = list()
spectra_matrix = list()
bin_data = list()
with open(self.fname, 'r') as f:
lines = f.readlines()
# Need to find relative end
for ind, line in enumerate(lines):
if check_val in line:
marker_indeces = ind
recent_start = True
elif recent_start and end_val in line:
end_indeces = ind
recent_start = False
else:
pass
start_offset = 3
end_offset = -1
for line in lines[marker_indeces+start_offset : end_indeces+end_offset]:
cur_row = list()
data = line.split()
if data[0] == 'boundaries':
time_data = [float(x.replace('sec', '')) for x in data[2:]]
if data[1] == '-':
curbin_data = [float(data[0]), float(data[2])]
cur_mid_energy = (float(data[0]) + float(data[2])) / 2
energy_data.append(cur_mid_energy)
try:
cur_row = [float(x.replace('sec', '')) for x in data[3:]]
except ValueError:
# ORIGEN sometimes removes the E in sci notation
list_row = list()
for val_inspect in data[3:]:
if 'E' in val_inspect:
list_row.append(float(val_inspect))
else:
if '+' in val_inspect:
usesplitter = '+'
elif '-' in val_inspect:
usesplitter = '-'
val_split = val_inspect.split(usesplitter)
list_row.append(float(val_split[0] + 'E' +
usesplitter + val_split[1]))
cur_row.append(list_row)
cur_row = cur_row[0]
bin_data.append(curbin_data)
spectra_matrix.append(cur_row)
energy_data = np.array(energy_data)
time_data = np.array(time_data)
spectra_matrix = np.array(spectra_matrix)
bin_data = np.array(bin_data)
# Energy bins large to small; reverse
spectra_matrix = np.flip(spectra_matrix, 0)
energy_data = np.flip(energy_data, 0)
bin_data = np.flip(bin_data, 0)
return time_data, energy_data, spectra_matrix, bin_data
def origen_parser(self):
"""
Parses the ORIGEN .out style of file. Volume is normalized to 1 and
atoms need to be divided by normalization factor
Parameters
----------
None
Returns
-------
comp_data : dict
key : str
Name of isotope (i.e. xe135) (hyphens are removed)
value : numpy array
Values of atom/barn-cm immediately after pulse
"""
check_val = 'Nuclide concentrations in atoms/barn-cm'
end_val = 'totals'
comp_data = dict()
marker_indeces = list()
end_indeces = list()
recent_start = False
net_composition = 0
with open(self.fname, 'r') as f:
lines = f.readlines()
# Need to find each instance instead of only one
for ind, line in enumerate(lines):
if check_val in line:
marker_indeces.append(ind)
recent_start = True
elif recent_start and end_val in line:
recent_start = False
end_indeces.append(ind)
else:
pass
marker_indeces = marker_indeces[:-1]
end_indeces = end_indeces[:-1]
start_offset = 6
end_offset = -1
for type_index in range(len(marker_indeces)):
for line in lines[marker_indeces[type_index]+start_offset:end_indeces[type_index] + end_offset]:
data = line.split()
element = data[0].split('-')[0]
weight = data[0].split('-')[1]
isotope = str(element) + str(weight)
iso_data = list()
for data_point in data[1:]:
try:
float(data_point)
except ValueError:
if '-' in data_point:
choice = '-'
elif '+' in data_point:
choice = '+'
new_data = data_point.split(choice)
new_point = new_data[0] + 'E' + choice + new_data[1]
data_point = float(new_point)
iso_data.append(float(data_point) / self.norm)
#conc = float(data[1+timestep])
#net_composition += conc / self.norm
iso_data = np.asarray(iso_data)
if isotope in comp_data.keys():
comp_data[isotope] += iso_data#conc / self.norm
else:
comp_data[isotope] = iso_data#conc / self.norm
#print(f'Net atoms: {net_composition * 1E24}')
return comp_data
def triton_parser(self):
"""
Parses the TRITON .out style of file
Parameters
----------
None
Returns
-------
comp_data : dict
key : str
Name of isotope (i.e. xe135) (hyphens are removed)
value : float
Value of atom/barn-cm immediately after pulse
"""
check_val = 'end-of-step 1 isotopics'
comp_data = dict()
with open(self.fname, 'r') as f:
lines = f.readlines()
for ind, line in enumerate(lines):
if check_val in line:
marker_index = ind
break
else:
pass
data_start_index = marker_index + 13
num_isotopes = 2237
net_composition = 0
# Values are lost to duplicate isotopes
for line in lines[data_start_index:data_start_index+num_isotopes]:
data = line.split()
base = data[0].split(':')[0]
element = base.split('-')[1]
weight = base.split('-')[2]
isotope = str(element) + str(weight)
conc = float(data[-1])
net_composition += conc
#####
#ensdf_inserted_isos = ['na34', 'na35', 'si35', 'v61', 'v63', 'co71', 'co72', 'ag125', 'cd133']
#if isotope in ensdf_inserted_isos:
# input(f'{isotope} : {conc}')
#####
if isotope in comp_data.keys():
comp_data[isotope] += conc
else:
comp_data[isotope] = conc
#print(f'Net atoms: {net_composition * self.vol * 1E24}')
return comp_data
def gen_comp_data(self, timestep):
"""
Parse file for each isotope and concentration for each time step.
Because only TRITON files mention TRITON, can search for that phrase
to determine file type.
Paramters
---------
None
Returns
-------
comp_data : dict
key : str
Name of isotope (i.e. xe135) (hyphens are removed)
value : numpy array
Value of atom/barn-cm at each time step (initial for TRITON, deprecated)
"""
check_val = 'TRITON'
with open(self.fname, 'r') as f:
lines = f.readlines()
ftype = 'origen'
for ind, line in enumerate(lines):
if check_val in line:
ftype = 'triton'
break
else:
pass
print('-'*40)
if ftype == 'triton':
print('\nTRITON Concentrations')
comp_data = self.triton_parser()
raise Exception('TRITON concentrations not time dependent')
elif ftype == 'origen':
print('\nORIGEN Concentrations')
comp_data = self.origen_parser()
else:
raise Exception
self.ftype = ftype
return comp_data
def ensdf_matcher(self, ensdf_dict, timestep, target='all'):
"""
Create a formated set of atom counts from directly after
the pulse occurs. These concentrations are then paired with
their associated Pn and lambda values from ENSDF.
Parameters
----------
ensdf_data : dict
key : str
Name of isotope (i.e. xe135)
value : dict
key : str
Identifier (emissions, halflife, conc)
value : list
value, uncertainty
Returns
-------
net_data : dict
key : str
Name of isotope (i.e. xe135)
value : list
key : str
Identifier (emissions, halflife, conc)
value : list
value, uncertainty
"""
timestep = 0
scale_data = self.gen_comp_data(timestep)
ensdf_data_copy = ensdf_dict.copy()
# Add ENSDF data to IAEA data
ensdf_data_copy['na34'] = self.ENSDF_data['na34']
ensdf_data_copy['na35'] = self.ENSDF_data['na35']
ensdf_data_copy['si35'] = self.ENSDF_data['si35']
ensdf_data_copy['v61'] = self.ENSDF_data['v61']
ensdf_data_copy['v63'] = self.ENSDF_data['v63']
ensdf_data_copy['co71'] = self.ENSDF_data['co71']
ensdf_data_copy['co72'] = self.ENSDF_data['co72']
#ensdf_data_copy['ag125'] = self.ENSDF_data['ag125']
ensdf_data_copy['cd133'] = self.ENSDF_data['cd133']
#####
net_data = dict()
in_ensdf_not_origen_count = 0
print(f' Number {self.ftype.upper()} isos: {len(scale_data)}')
print(f' Number IAEA isos: {len(ensdf_dict)}')
print('Using ORIGEN concentration uncertainties, metastable same as base')
for isotope in ensdf_data_copy:
if target == 'all':
pass
elif target == isotope:
pass
else:
continue
try:
atoms_barn_cm = scale_data[isotope]
except KeyError:
#print(f'Isotope {isotope} not found in origen data')
in_ensdf_not_origen_count += 1
continue
atoms = atoms_barn_cm * 1E24 * self.vol
atom_err = self.conc_uncert(isotope)
ensdf_data_copy[isotope]['conc'] = [atoms, atom_err]
net_data[isotope] = ensdf_data_copy[isotope]
print(f' {in_ensdf_not_origen_count} isotopes in IAEA but not {self.ftype}')
#print(f'3g == {scale_data["u235"] * 1E24 * self.vol / 6.022E23 * 235}g')
return net_data
def conc_uncert(self,
isotope,
filename='./scale_outputs/response_table.1.stddev.xlsx',
sheetname='response_table.1.stddev'):
"""
Extract uncertainty in ORIGEN concentrations from response table
csv file.
Parameters
----------
isotope : str
Name of isotope to get uncertainty data for
Returns
-------
uncertainty : float
Uncertainty in concentration
"""
df = read_excel(filename,
sheet_name=sheetname)
if isotope[-1] == 'm':
isotope = isotope[:-1]
search_name = f'irrad:oriout.{isotope}'
if isotope == 'sb134':
uncertainty = 0
else:
try:
uncertainty = df[search_name][0]
except KeyError:
uncertainty = 0
#print(f' {isotope} not found')
return uncertainty
def simulate_ensdf_SCALE(self, times, ensdf_dict, timestep, detect_isotope='all',
activity='ENSDF', errs=True):
"""
Simulate the delayed neutron response based on ENSDF
using SCALE composition data.
Parameters
----------
times : list
Times at which to evaluate delayed neutron emissions
ensdf_data : dict
key : str
Name of isotope (i.e. xe135)
value : list
List of half life (s) followed by average emission per decay
detect_isotope : str
Name of isotope to detect delayed neutrons from. Can be set to 'all'
activity : str
Where to pull decay constant data from (either 'ENSDF', 'ORIGEN', 'LAMDEBUG', 'PNDEBUG')
errs : bool
Whether or not to calculate the uncertainty for each time
Returns
------
counts : list
List of counts evaluated at each time provided
"""
net_data = self.ensdf_matcher(ensdf_dict, timestep, target=detect_isotope)
counts = list()
iso_list = list()
lam_list = list()
Pn_list = list()
atoms_list = list()
lam_err_list = list()
errors = list()
#input('Temporary debug measure (Press Continue)')
for each in settings.DEBUG_IGNORE_ISOTOPES:
print(f'DEBUG IGNORE {each}')
net_data.pop(each)
#times, _ = self.origen_delnu_parser('all')
prev_max_iso = ''
prev_debug_worst_iso = ''
print(f' Using {len(net_data)} isotopes')
print(f'{activity.upper()} decay constants')
if activity.upper() == 'PNDEBUG' or \
activity.upper() == 'PUREDEBUG' or \
activity.upper() == 'PURECHECK':
# Generate self.pure_dict (counts)
pure_time_data, discard = self.origen_delnu_parser(detect_isotope)
if activity.upper() == 'ORIGEN' or \
activity.upper() == 'LAMDEBUG' or \
activity.upper() == 'PNDEBUG' or \
activity.upper() == 'PUREDEBUG':
activity_data = self.origen_activity_parser(timestep)
# Trim net data to only contain isos also in activity data
trimmed = dict()
print(f'Removed isotopes due to lacking emission/decay data')
for conc_iso in net_data.keys():
if conc_iso in activity_data.keys():
trimmed[conc_iso] = net_data[conc_iso]
net_data = trimmed.copy()
elif activity.upper() == 'ENSDF' or \
activity.upper() == 'PURECHECK':
pass
else:
print(f'Activity {activity} not recognized')
raise Exception
for isotope in net_data:
if net_data[isotope]['halflife']:
# DEFAULT DATA IS IAEA WITH ORIGEN CONCENTRATIONS
Pn = net_data[isotope]['emission'][0]
atoms = net_data[isotope]['conc'][0]
lam = np.log(2) / net_data[isotope]['halflife'][0]
if activity.upper() == 'ENSDF':
if errs:
lam_err_list.append(np.log(2) /
net_data[isotope]['halflife'][0]**2 *
net_data[isotope]['halflife'][1])
elif activity.upper() == 'ORIGEN':
lam = activity_data[isotope]
# elif activity.upper() == 'ORIGEN' or \
# activity.upper() == 'PNDEBUG':
# puori_times, puori_counts = self.origen_delnu_parser(isotope)
# lam = np.log(puori_counts[-1] / puori_counts[0]) / (puori_times[0] - puori_times[-1]) #activity_data[isotope]
# if errs:
# raise Exception
#
# if activity.upper() == 'PNDEBUG':
# ENSDF_Pn = Pn
# ORIGEN_Pn = self.pure_dict[isotope][0] / (lam * atoms * self.eff) # at t=0, so no exp
# Pn = ORIGEN_Pn
# if round(abs(ENSDF_Pn - ORIGEN_Pn), 2) != 0.0:
# #print(f'ENSDF {isotope}: {lam}')
# #print(f'ORIGEN {isotope}: {lam2}')
# print(f'{isotope} % diff: {abs(ORIGEN_Pn - ENSDF_Pn) / ENSDF_Pn * 100}')
# elif activity.upper() == 'LAMDEBUG':
# # Decay constants
# lam2 = np.log(2) / net_data[isotope]['halflife'][0] # IAEA lam
# puori_times, puori_counts = self.origen_delnu_parser(isotope)
# lam = np.log(puori_counts[-1] / puori_counts[0]) / (puori_times[0] - puori_times[-1]) #activity_data[isotope] # Pure lam
# if errs:
# raise Exception
# if round(abs(lam - lam2), 2) != 0.0:
# #print(f'ENSDF {isotope}: {lam}')
# #print(f'ORIGEN {isotope}: {lam2}')
# print(f'{isotope} % diff: {abs(lam - lam2) / lam2 * 100}')
# #input()
# pass
# # Pn values
# #ENSDF_Pn = net_data[isotope]['emission'][0]
# #ORIGEN_Pn = self.pure_dict[iso] / (lam * atoms) # at t=0, so no exp
# else:
# print(f'Activity {activity}')
# raise Exception('Unknown activity')
iso_list.append(isotope)
lam_list.append(lam)
Pn_list.append(Pn)
atoms_list.append(atoms)
print(f' Times : Most impactful isotope during that time : halflife')
saved_max_iso = ''
for cur_t_ind, t in enumerate(times):
detect = 0
max_count = -1
max_ind = 0
max_iso = ''
max_half = list()
cur_err = 0
worst_atoms = 0
worst_counts = 0
worst_count_val = 0
debug_max_diff = 0
debug_worst_iso = ''
emiss_max_diff = 0
emiss_worst_iso = ''
if activity.upper() == 'PNDEBUG' or activity.upper() == 'PUREDEBUG':
pn_checked = False
else:
pn_checked = True
for ind, isotope in enumerate(iso_list):
if isotope == detect_isotope or detect_isotope == 'all':
lam = lam_list[ind]
Pn = Pn_list[ind]
atoms = atoms_list[ind]
count_val = self.eff * Pn * lam * atoms[cur_t_ind] # * np.exp(-lam * t) #Using prev defined vals
if activity.upper() == 'LAMDEBUG':
# Calculate PURE ORIGEN lambda
#puori_times, puori_counts = self.origen_delnu_parser(isotope)
#if np.isclose(puori_counts[0], puori_counts[1]):
# target_index = -1
#else:
# target_index = 1
#lam2_top = np.log(puori_counts[target_index] / puori_counts[0])
lam2 = activity_data[isotope]#lam2_top / (puori_times[0] - puori_times[target_index]) #activity_data[isotope]
other_count_val = self.eff * Pn * lam2 * atoms[cur_t_ind]# * np.exp(-lam2 * t) #PURE lambda counts
rel_diff = abs(count_val - other_count_val)
if rel_diff > debug_max_diff:
worst_atoms = atoms[cur_t_ind]
debug_worst_iso = isotope
debug_max_diff = rel_diff
worst_iaea_lam = lam
worst_ori_lam = lam2
worst_counts = count_val # IAEA
worst_count_val = other_count_val # PURE
elif activity.upper() == 'PNDEBUG' or activity.upper() == 'PUREDEBUG':
if round(t, 5) in np.round(pure_time_data, 5):
pn_checked = True
#puori_times, puori_counts = self.origen_delnu_parser(isotope)
#if np.isclose(puori_counts[0], puori_counts[1]):
# target_index = -1
#else:
# target_index = 1
lam2 = activity_data[isotope] #np.log(puori_counts[target_index] / puori_counts[0]) / (puori_times[0] - puori_times[target_index]) #activity_data[isotope]
Pn2 = self.pure_dict[isotope][0] / (lam2 * atoms[0] * self.eff)
if activity.upper() == 'PUREDEBUG':
lam2 = lam2 # Change Pn and lambda
else:
lam2 = lam # Keeping IAEA lam
time_index = np.where(np.isclose(t, pure_time_data))[0][0]
other_count_val = self.eff * Pn2 * lam2 * atoms[cur_t_ind] #* np.exp(-lam2 * t)#self.pure_dict[isotope][time_index] # IAEA
rel_diff = abs(count_val - other_count_val)
if rel_diff > debug_max_diff:
worst_counts = count_val # IAEA
worst_count_val = other_count_val # PURE
worst_atoms = atoms[cur_t_ind]
debug_worst_iso = isotope
debug_max_diff = rel_diff
worst_iaea_lam = np.log(2) / net_data[isotope]['halflife'][0]
worst_ori_lam = lam2 #activity_data[isotope]
worst_iaea_pn = Pn
ori_lam = lam2 #activity_data[isotope]
worst_ori_pn = Pn2
elif activity.upper() == 'PURECHECK':
if round(t, 5) in np.round(pure_time_data, 5) and isotope in self.pure_dict:
time_index = np.where(np.isclose(t, pure_time_data))[0][0]
count_val = self.pure_dict[isotope][time_index]
detect += count_val
if errs:
Pn_err = net_data[isotope]['emission'][1]
lam_err = lam_err_list[ind]
atom_err = net_data[isotope]['conc'][1]
cur_err += ((lam * atoms[0] * np.exp(-lam * t) * Pn_err)**2 +
(Pn * atoms[0] * (1-lam*t) * np.exp(-lam*t) * lam_err)**2 +
(Pn * lam * np.exp(-lam*t) * atom_err)**2)
if count_val > max_count:
max_count = count_val
max_iso = isotope
max_ind = ind
max_half = np.log(2) / lam
if debug_worst_iso != prev_debug_worst_iso:
if not pn_checked:
pass
else:
print(f' {np.round(t, 4)}s: Worst iso {debug_worst_iso}')
print(f' Atoms : {worst_atoms}')
if activity.upper() == 'LAMDEBUG':
print(f' Lambda : IAEA {worst_iaea_lam} : ORIGEN {worst_ori_lam}')
elif activity.upper() == 'PNDEBUG':
print(f' Pn : IAEA {worst_iaea_pn} : ORIGEN {worst_ori_pn}')
elif activity.upper() == 'PUREDEBUG':
print(f' Pn : IAEA {worst_iaea_pn} : ORIGEN {worst_ori_pn}')
print(f' Lambda : IAEA {worst_iaea_lam} : ORIGEN {worst_ori_lam}')
print(f' Counts : IAEA {worst_counts} : ORIGEN {worst_count_val}')
prev_debug_worst_iso = debug_worst_iso
#print(f'{max_iso} : {prev_max_iso}')
if max_iso != prev_max_iso:
if activity.upper() != 'PURECHECK':
print(f' {np.round(t, 4)}s: {max_iso} : {max_half} s')
print(f' Max count: {max_count}')
prev_max_iso = max_iso
elif activity.upper() == 'PURECHECK':
#if round(t, 5) in np.round(pure_time_data, 5) and max_iso != saved_max_iso:
print(f' {np.round(t, 4)}s: {max_iso} : {max_half} s')
print(f' Max count: {max_count}')
saved_max_iso = max_iso
prev_max_iso = max_iso
#print(f'Lambda : Pn : Atoms')
#print(f'{lam_list[max_ind]} : {Pn_list[max_ind]} : {atoms_list[max_ind]}')
counts.append(detect)
errors.append(np.sqrt(cur_err) * self.eff)
#print(atoms)
return counts, errors
if __name__ == '__main__':
# INITIALIZE
begin = time.time()
import ensdf_handler
import keepin_handler
import misc_funcs
from settings import *
# GENERATE DATA
ensdf_gen = ensdf_handler.ENSDF('./ensdf_data/eval_net.xlsx',
'Sheet1')
ensdf_dict = ensdf_gen.parse_file()
activity = 'puredebug'
errs = False
filename = './scale_outputs/godiva_irrad_post_pulse.out'
runname = 'ENSDF-ORIGEN'
timestep = 0
ORIGEN_gen = SCALE(filename, fissions,
efficiency, normalize_value, volume,
mass_normalize)
#generic_data = ORIGEN_gen.origen_parser(show_iso)
ORI_counts, ORI_err = ORIGEN_gen.simulate_ensdf_SCALE(times, ensdf_dict,
timestep, show_iso, activity,
errs=errs)
time_data, energy_data, spectra_matrix, bin_data = ORIGEN_gen.origen_spectra_parser()
# Spectra for different times
## for tind, t in enumerate(time_data):
## norm_factor = spectra_normalize / np.sum(spectra_matrix[:, tind])
## plt.step(energy_data, spectra_matrix[:, tind] * norm_factor)
## plt.title(f'Spectra at {t} s')
## plt.xlabel('Energy [MeV]')
## plt.ylabel(f'Relative Intensity')
## plt.show()
## plt.close()
# Counts over time for given energy
## for eind, e in enumerate(energy_data):
## norm_factor = spectra_normalize / np.sum(spectra_matrix[eind, :])
## plt.step(time_data, spectra_matrix[eind, :] * norm_factor)
## plt.title(f'Spectra at {e} MeV')
## plt.xlabel('Time [s]')
## plt.ylabel(f'Relative Intensity')
## plt.show()
## plt.close()
# Heatmap - 10^4 counts
fig, ax = plt.subplots()
x, y = np.meshgrid(time_data, energy_data)
# Column is energy spectra for given energy
z = np.zeros(np.shape(spectra_matrix))
for tind, t in enumerate(time_data):
norm_factor = spectra_normalize / np.sum(spectra_matrix[:, tind])
z[:, tind] = norm_factor * spectra_matrix[:, tind]
c = ax.pcolormesh(x, y, z, cmap='magma')
cbar = fig.colorbar(c, ax=ax)
cbar.set_label('Relative Counts')
plt.xlabel('Time [s]')
plt.ylabel('Energy [MeV]')
plt.tight_layout()
#ax.set_zlabel('Relative Intensity')
plt.show()
plt.close()
# 3D counts, times, energy
## from matplotlib import cm
## x, y = np.meshgrid(time_data, energy_data)
## # Column is energy spectra for given energy
## z = np.zeros(np.shape(spectra_matrix))
## for tind, t in enumerate(time_data):
## norm_factor = spectra_normalize / np.sum(spectra_matrix[:, tind])
## z[:, tind] = norm_factor * spectra_matrix[:, tind]
## fig, ax = plt.subplots(subplot_kw={"projection": "3d"})
## surf = ax.plot_surface(x, y, z, cmap=cm.magma,
## linewidth=1, antialiased=True)
## fig.colorbar(surf, shrink=0.5, aspect=5)
## plt.xlabel('Time [s]')
## plt.ylabel('Energy [MeV]')
## ax.set_zlabel('Relative Intensity')
## plt.show()
#print(times)
#print(ORI_counts)
#plt.errorbar(times, ORI_counts, yerr=ORI_err)
#plt.ylabel('log')
#plt.show()
## ORIGEN_gen.origen_delnu_parser('all')
##
##
## ensdf_dict = ensdf_gen.parse_file()
## filename = './scale_outputs/godiva_3d_depl.out'
## runname = 'ENSDF-TRITON'
## TRITON_gen = SCALE(filename, fissions,
## efficiency, normalize_value, volume)
## #generic_data = scale_gen.triton_parser()
## TRI_counts = TRITON_gen.simulate_ensdf_SCALE(times, ensdf_dict, timestep, show_iso, activity)
## plt.plot(times, TRI_counts, label=f'{show_iso} {runname}')
## print(f'{runname} n/f: {misc_funcs.delnu_per_fiss(times, TRI_counts, fissions, efficiency)}\n')
##
##
##
## activity = 'origen' #ensdf, origen, debug
## filename = './scale_outputs/godiva_irrad_post_pulse.out'
## runname = 'ENSDF-ORIGEN-ACT'
## timestep = 0
## ORIGEN_gen = SCALE(filename, fissions,
## efficiency, normalize_value, volume)
## #generic_data = ORIGEN_gen.origen_parser(0)
## ORI_ACT_counts = ORIGEN_gen.simulate_ensdf_SCALE(times, ensdf_dict, timestep, show_iso, activity)
## plt.plot(times, ORI_ACT_counts, label=f'{show_iso} {runname}')
## print(f'{runname} n/f: {misc_funcs.delnu_per_fiss(times, ORI_ACT_counts, fissions, efficiency)}\n')
##
##
## name = '6keepin235fast'
## keepin_response = keepin_handler.KEEPIN(name)
## plt.plot(keepin_response.true_data_time, keepin_response.true_data_resp,
## label='Keepin True', linestyle='', marker='.')
## #print(f'Keepin True n/f: {misc_funcs.delnu_per_fiss(keepin_response.true_data_time, keepin_response.true_data_resp, fissions, efficiency)}\n')
##
##
## keepin_delnu = keepin_response.simulate_instant(times, fissions, efficiency)
## print(f'Keepin Fit n/f: {misc_funcs.delnu_per_fiss(times, keepin_delnu, fissions, efficiency)}\n')
## plt.plot(times, keepin_delnu, label='Keepin')
##
##
## name = '6brengland235fast'
## keepin_response = keepin_handler.KEEPIN(name)
## brady_england_delnu = keepin_response.simulate_instant(times, fissions, efficiency)
## print(f'Brady-England Fit n/f: {misc_funcs.delnu_per_fiss(times, brady_england_delnu, fissions, efficiency)}\n')
## plt.plot(times, keepin_delnu, label='Brady-England')
##
## plt.yscale('log')
## plt.ylabel('Delayed Neutron Count Rate [#/s]')
## plt.xlabel('Time [s]')