From 4ef72904b70b0c2e49b073901d8aecf81201c8c2 Mon Sep 17 00:00:00 2001 From: Alvaro Bartolome Date: Tue, 16 Apr 2024 12:37:52 +0200 Subject: [PATCH] Set `config="default"` in `Distiset` when only one leaf `Step` (#540) * Fix return type hint in `BasePipeline.run` * Fix casing in `Distilabel`->`distilabel` * Set `default` as the config if there's only one leaf node * Add alternative way to `load_dataset` when `config='default'` * Update `docs/sections/learn/distiset.md` * Remove outdated `docs/tutorials/*.ipynb` * Remove `docs/snippets` from `.pre-commit-config.yaml` * Remove unused `docs/snippets/*.py` * Rename `HuggingFace`, `huggingface`, etc. to `Hugging Face` * Fixed some typos with `codespell` * Fix `TestWriteBuffer` in `create_distiset` * Fix `test_pipeline_cached` in `test_pipe_simple.py` * Revert `BasePipeline.run` return type-hint --- .pre-commit-config.yaml | 1 - docs/sections/learn/caching.md | 10 +- docs/sections/learn/cli.md | 2 +- docs/sections/learn/distiset.md | 7 +- docs/sections/learn/steps/generator_steps.md | 4 +- docs/sections/learn/steps/global_steps.md | 6 +- docs/sections/learn/steps/index.md | 2 +- docs/sections/learn/tasks/feedback_tasks.md | 4 +- docs/sections/learn/tasks/text_generation.md | 2 +- docs/sections/papers/deita.md | 2 +- .../pipeline/pipeline_dataset_checkpoint_4.py | 15 - .../tasks/complexity_scorer_example.py | 53 -- .../tasks/evol_quality_example.py | 42 -- .../tasks/quality_scorer_example.py | 51 -- .../create-evol-instruct-dataset.ipynb | 616 ------------------ src/distilabel/distiset.py | 8 +- src/distilabel/steps/tasks/pair_rm.py | 2 +- .../utils/card/distilabel_template.md | 11 +- tests/integration/test_pipe_simple.py | 2 +- tests/unit/pipeline/test_base.py | 2 +- tests/unit/test_distiset.py | 2 +- 21 files changed, 41 insertions(+), 803 deletions(-) delete mode 100644 docs/snippets/technical-reference/pipeline/pipeline_dataset_checkpoint_4.py delete mode 100644 docs/snippets/technical-reference/tasks/complexity_scorer_example.py delete mode 100644 docs/snippets/technical-reference/tasks/evol_quality_example.py delete mode 100644 docs/snippets/technical-reference/tasks/quality_scorer_example.py delete mode 100644 docs/tutorials/create-evol-instruct-dataset.ipynb diff --git a/.pre-commit-config.yaml b/.pre-commit-config.yaml index d464724388..59ac8caa8c 100644 --- a/.pre-commit-config.yaml +++ b/.pre-commit-config.yaml @@ -5,7 +5,6 @@ repos: - id: insert-license name: "Insert license header in Python source files" files: \.py$ - exclude: ^docs/snippets/ args: - --license-filepath - LICENSE_HEADER diff --git a/docs/sections/learn/caching.md b/docs/sections/learn/caching.md index 2eb14b16a9..e6000ea476 100644 --- a/docs/sections/learn/caching.md +++ b/docs/sections/learn/caching.md @@ -1,6 +1,6 @@ # Caching -Distilabel `Pipelines` automatically save all the intermediate steps to to avoid loosing any data in case of error. +Distilabel `Pipelines` automatically save all the intermediate steps to to avoid losing any data in case of error. ## Cache directory @@ -13,7 +13,7 @@ with Pipeline("cache_testing") as pipeline: ... ``` -This directory can be modified by setting the `DISTILABEL_CACHE_DIR` environment variable (`export DISTILABEL_CACHE_DIR=my_cache_dir`) or by explicitely passing the `cache_dir` variable to the `Pipeline` constructor like so: +This directory can be modified by setting the `DISTILABEL_CACHE_DIR` environment variable (`export DISTILABEL_CACHE_DIR=my_cache_dir`) or by explicitly passing the `cache_dir` variable to the `Pipeline` constructor like so: ```python with Pipeline("cache_testing", cache_dir="~/my_cache_dir") as pipeline: @@ -42,7 +42,7 @@ Finally, if we decide to run the same `Pipeline` after it has finished completel ### Serialization -Let's see what get's serialized by looking at a sample `Pipeline`'s cached folder: +Let's see what gets serialized by looking at a sample `Pipeline`'s cached folder: ```bash $ tree ~/.cache/distilabel/pipelines/73ca3f6b7a613fb9694db7631cc038d379f1f533 @@ -65,7 +65,7 @@ The `Pipeline` will have a signature created from the arguments that define it s - `pipeline.yaml` - This file contains a representation of the `Pipeline` in *YAML* format. If we push a `Distiset` to the hub as obtained from calling `Pipeline.run`, this file will be stored at our datasets' repository, allowing to reproduce the `Pipeline` using the `CLI`: + This file contains a representation of the `Pipeline` in *YAML* format. If we push a `Distiset` to the Hugging Face Hub as obtained from calling `Pipeline.run`, this file will be stored at our datasets' repository, allowing to reproduce the `Pipeline` using the `CLI`: ```bash distilabel pipeline run --config "path/to/pipeline.yaml" @@ -100,5 +100,5 @@ ds Internally, the function will try to inject the `pipeline_path` variable if it's not passed via argument, assuming it's in the parent directory of the current one, called `pipeline.yaml`. If the file doesn't exist, it won't - raise any error, but take into account that if the `Distiset` is pushed to the hub, the `pipeline.yaml` won't be + raise any error, but take into account that if the `Distiset` is pushed to the Hugging Face Hub, the `pipeline.yaml` won't be generated. diff --git a/docs/sections/learn/cli.md b/docs/sections/learn/cli.md index ba2f159a83..e819957b94 100644 --- a/docs/sections/learn/cli.md +++ b/docs/sections/learn/cli.md @@ -43,7 +43,7 @@ $ distilabel pipeline info --help ╰─────────────────────────────────────────────────────────────────────────────────────╯ ``` -As we can see from the help message, we need to pass either a `Path` or a `URL`. This second option comes handy for datasets stored in HuggingFace hub, for example: +As we can see from the help message, we need to pass either a `Path` or a `URL`. This second option comes handy for datasets stored in Hugging Face Hub, for example: ```bash distilabel pipeline info --config "https://huggingface.co/datasets/distilabel-internal-testing/ultrafeedback-mini/raw/main/pipeline.yaml" diff --git a/docs/sections/learn/distiset.md b/docs/sections/learn/distiset.md index c5f11c91a8..e96e7478a5 100644 --- a/docs/sections/learn/distiset.md +++ b/docs/sections/learn/distiset.md @@ -20,6 +20,9 @@ ds = Distiset( This object works like a python dictionary (the same approach followed by [`datasets.DatasetDict`](https://huggingface.co/docs/datasets/main/en/package_reference/main_classes#datasets.DatasetDict)), where each key corresponds to one of the `leaf_steps` from a `Pipeline`. +!!! NOTE + If there's only one leaf node i.e. only one step at the end of the `Pipeline`, then the configuration name won't be the name of the last step, but it will be set to default instead, as that's more aligned with standard datasets within the Hugging Face Hub. + ## Distiset methods We can interact with the different pieces generated by the `Pipeline` and treat them as different [`configurations`](https://huggingface.co/docs/datasets-server/configs_and_splits#configurations). The `Distiset` contains just two methods: @@ -54,9 +57,9 @@ Distiset({ }) ``` -### Push to HuggingFace hub +### Push to Hugging Face Hub -Pushes the internal subsets to a huggingface repo, where each one of the subsets will be a different configuration, so it's easy to download them and continue working with any of the pieces. +Pushes the internal subsets to a Hugging Face repo, where each one of the subsets will be a different configuration, so it's easy to download them and continue working with any of the pieces. ```python ds.push_to_hub( diff --git a/docs/sections/learn/steps/generator_steps.md b/docs/sections/learn/steps/generator_steps.md index 76ed0ece79..9f5f28af3b 100644 --- a/docs/sections/learn/steps/generator_steps.md +++ b/docs/sections/learn/steps/generator_steps.md @@ -40,7 +40,7 @@ It will yield `GeneratorStepOutput` objects, an iterator of tuples where the fir Unless we are doing some testing, we are more likely going to work with a proper dataset: -### Load a dataset from HuggingFace hub +### Load a dataset from Hugging Face Hub The easiest way to ingest data from a dataset is using the [`LoadHubDataset`][distilabel.steps.generators.huggingface] step, let's see an example: @@ -57,7 +57,7 @@ load_hub_dataset = LoadHubDataset( load_hub_dataset.load() ``` -We see that creating a step to load a dataset from the hub is almost the same as loading it directly using `datasets.load_dataset`, with one remark, we have to call `.load()` on our step. The reason for this extra step is because internally we want to do the actual processing at the correct moment in the whole pipeline, we don't just need to take care of this call because we are working with it outside of a `Pipeline`. +We see that creating a step to load a dataset from the Hugging Face Hub is almost the same as loading it directly using `datasets.load_dataset`, with one remark, we have to call `.load()` on our step. The reason for this extra step is because internally we want to do the actual processing at the correct moment in the whole pipeline, we don't just need to take care of this call because we are working with it outside of a `Pipeline`. And let's request the following batch: diff --git a/docs/sections/learn/steps/global_steps.md b/docs/sections/learn/steps/global_steps.md index 13f2bf3eb6..264c8094ee 100644 --- a/docs/sections/learn/steps/global_steps.md +++ b/docs/sections/learn/steps/global_steps.md @@ -1,8 +1,8 @@ # Global Steps -The global steps are the ones that in order to do it's processing, they will need access to all the data at once. Some examples include creating a dataset to be pushed to the hub, or a filtering step in a `Pipeline`. +The global steps are the ones that in order to do it's processing, they will need access to all the data at once. Some examples include creating a dataset to be pushed to the Hugging Face Hub, or a filtering step in a `Pipeline`. -## Push data to HuggingFace Hub in batches +## Push data to Hugging Face Hub in batches The first example of a `global` step corresponds to [`PushToHub`][distilabel.steps.globals.huggingface]: @@ -22,7 +22,7 @@ push_to_hub = PushToHub( ) ``` -This step can be used to push batches of the dataset to the hub as the process advances, enabling a checkpoint strategy in your pipeline. +This step can be used to push batches of the dataset to the Hugging Face Hub as the process advances, enabling a checkpoint strategy in your pipeline. ## Data Filtering diff --git a/docs/sections/learn/steps/index.md b/docs/sections/learn/steps/index.md index 2ad73870c2..8e2a7ce5dd 100644 --- a/docs/sections/learn/steps/index.md +++ b/docs/sections/learn/steps/index.md @@ -95,7 +95,7 @@ This is a small type step that shows what to expect when we are creating our `St ## Runtime Parameters -Let's take a look at a special argument implementation that we will find when dealing with the `Steps`, the [Runtime paramaters][distilabel.mixins.runtime_parameters.RuntimeParameter]. Let's inspect them using the previous example class: +Let's take a look at a special argument implementation that we will find when dealing with the `Steps`, the [Runtime parameters][distilabel.mixins.runtime_parameters.RuntimeParameter]. Let's inspect them using the previous example class: ```python print(conversation_template.runtime_parameters_names) diff --git a/docs/sections/learn/tasks/feedback_tasks.md b/docs/sections/learn/tasks/feedback_tasks.md index 6d2638990f..16fbd0b327 100644 --- a/docs/sections/learn/tasks/feedback_tasks.md +++ b/docs/sections/learn/tasks/feedback_tasks.md @@ -5,7 +5,7 @@ This section presents tasks that work on the `LLM` output to return some feedbac ## UltraFeedback -[`UltraFeedback`][distilabel.steps.tasks.ultrafeedback] is a `Task` inspired from [`UltraFeedback: Boosting Language Models with High-quality Feedback`](https://arxiv.org/abs/2310.01377), where the authors present the methodology that leaded to the creation of their famous dataset: +[`UltraFeedback`][distilabel.steps.tasks.ultrafeedback] is a `Task` inspired from [`UltraFeedback: Boosting Language Models with High-quality Feedback`](https://arxiv.org/abs/2310.01377), where the authors present the methodology that led to the creation of their famous dataset: ```python from distilabel.steps.tasks import UltraFeedback @@ -65,7 +65,7 @@ Let's see what this different aspects mean. ### Different aspects of UltraFeedback -The `UltraFeedback` paper proposes different types of aspect to rate the answers: `helpfulness`, `honesty`, `instruction-following`, `truthfulness`. If one want's to rate the responses according to the 4 aspects, it would imply running the `Pipeline` 4 times, incurring in more costs and time of processing. For that reason, we decided to include an extra aspect, which tries to sum up the other ones to return a special type of summary: `overall-rating`. +The `UltraFeedback` paper proposes different types of aspect to rate the answers: `helpfulness`, `honesty`, `instruction-following`, `truthfulness`. If one wants to rate the responses according to the 4 aspects, it would imply running the `Pipeline` 4 times, incurring in more costs and time of processing. For that reason, we decided to include an extra aspect, which tries to sum up the other ones to return a special type of summary: `overall-rating`. !!! Note Take a look at this task in a complete `Pipeline` at [`UltraFeedback`](../../papers/ultrafeedback.md), where you can follow the paper implementation. diff --git a/docs/sections/learn/tasks/text_generation.md b/docs/sections/learn/tasks/text_generation.md index 87540dc41a..3935454a05 100644 --- a/docs/sections/learn/tasks/text_generation.md +++ b/docs/sections/learn/tasks/text_generation.md @@ -75,7 +75,7 @@ from distilabel.steps.tasks.text_generation import TextGeneration system_prompt = "You are an AI judge in charge of determining the equality of two instructions. " wizardllm_equal_prompt = """Here are two Instructions, do you think they are equal to each other and meet the following requirements?: -1. They have the same constraints and requirments. +1. They have the same constraints and requirements. 2. They have the same depth and breadth of the inquiry. The First Prompt: {instruction_1} The Second Prompt: {instruction_2} diff --git a/docs/sections/papers/deita.md b/docs/sections/papers/deita.md index 36e6d7d2b7..cf5a597d30 100644 --- a/docs/sections/papers/deita.md +++ b/docs/sections/papers/deita.md @@ -346,7 +346,7 @@ distiset = pipeline.run( ) ``` -We can push the results to the hub: +We can push the results to the Hugging Face Hub: ```python distiset.push_to_hub("distilabel-internal-testing/deita-colab") diff --git a/docs/snippets/technical-reference/pipeline/pipeline_dataset_checkpoint_4.py b/docs/snippets/technical-reference/pipeline/pipeline_dataset_checkpoint_4.py deleted file mode 100644 index d98a601808..0000000000 --- a/docs/snippets/technical-reference/pipeline/pipeline_dataset_checkpoint_4.py +++ /dev/null @@ -1,15 +0,0 @@ -from distilabel.dataset import DatasetCheckpoint - -dataset_checkpoint = DatasetCheckpoint( - strategy="hf-hub", - save_frequency=1, - extra_kwargs={ - "repo_id": "username/dataset-name" - } -) - -new_ds = pipe.generate( - dataset=dataset, - num_generations=1, - checkpoint_strategy=dataset_checkpoint, -) \ No newline at end of file diff --git a/docs/snippets/technical-reference/tasks/complexity_scorer_example.py b/docs/snippets/technical-reference/tasks/complexity_scorer_example.py deleted file mode 100644 index c230bc11ff..0000000000 --- a/docs/snippets/technical-reference/tasks/complexity_scorer_example.py +++ /dev/null @@ -1,53 +0,0 @@ -import os -from datasets import Dataset - -from distilabel.tasks import ComplexityScorerTask -from distilabel.llm import OpenAILLM -from distilabel.pipeline import Pipeline - - -# Create a sample dataset (this one is inspired from the distilabel-sample-evol-complexity dataset) -sample_evol_complexity = Dataset.from_dict( - { - 'generations': [ - [ - 'Generate a catchy tagline for a new high-end clothing brand\n', - "Devise a captivating and thought-provoking tagline that effectively represents the unique essence and luxurious nature of an upcoming luxury fashion label. Additionally, ensure that the tagline encapsulates the brand's core values and resonates with the discerning tastes of its exclusive clientele." - ], - [ - 'How can I create a healthier lifestyle for myself?\n', - 'What are some innovative ways to optimize physical and mental wellness while incorporating sustainable practices into daily routines?' - ] - ] - } -) - -# Create the pipeline -pipe = Pipeline( - labeller=OpenAILLM( - task=ComplexityScorerTask(), - api_key=os.getenv("OPENAI_API_KEY"), - temperature=0.1 - ) -) - -# Run the pipeline in the sample dataset -new_dataset = pipe.generate(sample_evol_complexity.select(range(3,5))) - -print(new_dataset.select_columns(["generations", "rating"])[:]) -# { -# "generations": [ -# [ -# "Generate a catchy tagline for a new high-end clothing brand\n", -# "Devise a captivating and thought-provoking tagline that effectively represents the unique essence and luxurious nature of an upcoming luxury fashion label. Additionally, ensure that the tagline encapsulates the brand's core values and resonates with the discerning tastes of its exclusive clientele." -# ], -# [ -# "How can I create a healthier lifestyle for myself?\n", -# "What are some innovative ways to optimize physical and mental wellness while incorporating sustainable practices into daily routines?" -# ] -# ], -# "rating": [ -# [1.0, 3.0], -# [1.0, 2.0] -# ] -# } \ No newline at end of file diff --git a/docs/snippets/technical-reference/tasks/evol_quality_example.py b/docs/snippets/technical-reference/tasks/evol_quality_example.py deleted file mode 100644 index 7524f955b9..0000000000 --- a/docs/snippets/technical-reference/tasks/evol_quality_example.py +++ /dev/null @@ -1,42 +0,0 @@ -import os -from datasets import Dataset - -from distilabel.tasks import EvolQualityTask -from distilabel.llm import OpenAILLM -from distilabel.pipeline import Pipeline - - -# Create a sample dataset (this one is inspired from the distilabel-intel-orca-dpo-pairs) -sample_evol_quality = Dataset.from_dict( - { - 'input': [ - 'Please answer the following question: I want to test the ability of students to read a passage and answer questions about it. Could you please come up with a good question for the passage "In 1901, the Federation of Australia was the process by which the six separate British self-governing colonies of New South Wales, Queensland, South Australia, Tasmania, Victoria and Western Australia formed one nation. They kept the systems of government that they had developed as separate colonies but also would have a federal government that was responsible for matters concerning the whole nation. When the Constitution of Australia came into force, the colonies collectively became states of the Commonwealth of Australia."?\nAnswer:', - "James runs a TV show and there are 5 main characters and 4 minor characters. He pays the minor characters $15,000 each episode. He paid the major characters three times as much. How much does he pay per episode? Let's be accurate as possible." - ], - 'generation': [ - "Certainly! Here's a detailed and long answer to the question you provided:\n\nQuestion: Read the passage below and answer the following questions.\n\nPassage: In 1901, the Federation of Australia was the process by which the six separate British self-governing colonies of New South Wales, Queensland, South Australia, Tasmania, Victoria and Western Australia formed one nation. They kept the systems of government that they had developed as separate colonies but also would have a federal government that was responsible for matters concerning the whole nation. When the Constitution of Australia came into force, the colonies collectively became states of the Commonwealth of Australia.\n\n1. What event did the passage describe?\n2. How many colonies were involved in the Federation of Australia?\n3. What did the colonies keep after forming one nation?\n4. What was the purpose of the federal government established by the Constitution of Australia?\n5. What were the colonies called after they became states of the Commonwealth of Australia?\n\nAnswers:\n\n1. The passage describes the Federation of Australia, which was the process by which six separate British self-governing colonies formed one nation.\n2. Six colonies were involved in the Federation of Australia: New South Wales, Queensland, South Australia, Tasmania, Victoria, and Western Australia.\n3. The colonies kept the systems of government that they had developed as separate colonies.\n4. The federal government established by the Constitution of Australia was responsible for matters concerning the whole nation.\n5. After becoming states of the Commonwealth of Australia, the colonies were called states.\n\nIn-depth analysis:\n\nThe passage provides a brief overview of the Federation of Australia, which was the process by which six separate British self-governing colonies formed one nation in 1901. The colonies kept the systems of government that they had developed as separate colonies, but they also established a federal government that was responsible for matters concerning the whole nation. This federal government was established by the Constitution of Australia, which came into force on January 1, 1901.\n\nThe passage highlights the significance of the Federation of Australia by noting that it was a process by which the colonies collectively became states of the Commonwealth of Australia. This transformation marked a significant milestone in the history of Australia, as it created a unified nation out of six separate colonies.\n\nThe passage also provides information about the systems of government that were kept by the colonies after forming one nation. Specifically, it notes that the colonies kept the systems of government that they had developed as separate colonies. This suggests that the Federation of Australia did not result in a complete overhaul of the existing systems of government, but rather a reorganization of these systems to create a federal government that was responsible for matters concerning the whole nation.\n\nFinally, the passage uses descriptive language to emphasize the importance of the Constitution of Australia in the Federation of Australia. It notes that the Constitution came into force on January 1, 1901, and that it established the federal government that was responsible for matters concerning the whole nation. This language emphasizes the significance of the Constitution in the formation of the Federation of Australia and the creation of the Commonwealth of Australia.\n\nIn conclusion, the passage provides a detailed overview of the Federation of Australia, highlighting the significance of the Constitution of Australia in the formation of the Commonwealth of Australia. It also provides information about the systems of government that were kept by the colonies after forming one nation, and emphasizes the importance of the Constitution in the creation of the federal government responsible for matters concerning the whole nation.", - 'James pays the minor characters $15,000 each episode. Since there are 4 minor characters, he pays them a total of 4 * $15,000 = $60,000 per episode.\n\nThe major characters are paid three times as much. So, each major character gets paid 3 * $15,000 = $45,000 per episode.\n\nThere are 5 main characters, so he pays them a total of 5 * $45,000 = $225,000 per episode.\n\nIn total, James pays $225,000 (major characters) + $60,000 (minor characters) = $285,000 per episode.' - ] - } -) - -# Create the pipeline -pipe = Pipeline( - generator=OpenAILLM( - task=EvolQualityTask(), - api_key=os.getenv("OPENAI_API_KEY"), - temperature=1 - ), -) - -# Run the pipeline in the sample dataset -sample_quality_dataset = pipe.generate(sample_evol_quality) - -print(sample_quality_dataset.select_columns(["input", "generation", "generations"])[2]) -# { -# "input": "What happens next in this paragraph?\n\nShe then rubs a needle on a cotton ball then pushing it onto a pencil and wrapping thread around it. She then holds up a box of a product and then pouring several liquids into a bowl. she\nChoose your answer from: A. adds saucepan and shakes up the product in a grinder. B. pinches the thread to style a cigarette, and then walks away. C. then dips the needle in ink and using the pencil to draw a design on her leg, rubbing it off with a rag in the end. D. begins to style her hair and cuts it several times before parting the ends of it to show the hairstyle she has created.", -# "generation": "C. She then dips the needle in ink and using the pencil to draw a design on her leg, rubbing it off with a rag in the end. In this option, she is continuing the process of using the needle, pencil, and thread, which is most related to what she was doing in the previous sentence.", -# "generations": [ -# "C. Then, to everyone's surprise, she dips the needle in ink and starts using the pencil to draw an intricate design on her leg. The creativity in her actions is truly unparalleled. After showcasing her artwork, she skillfully rubs it off with a rag, leaving everyone in awe of her talent." -# ] -# } \ No newline at end of file diff --git a/docs/snippets/technical-reference/tasks/quality_scorer_example.py b/docs/snippets/technical-reference/tasks/quality_scorer_example.py deleted file mode 100644 index b3e7fd8099..0000000000 --- a/docs/snippets/technical-reference/tasks/quality_scorer_example.py +++ /dev/null @@ -1,51 +0,0 @@ -import os - -from datasets import Dataset -from distilabel.tasks import QualityScorerTask -from distilabel.llm import OpenAILLM -from distilabel.pipeline import Pipeline - - -# Create a sample dataset (this one is inspired from the distilabel-intel-orca-dpo-pairs) -sample_evol_quality = Dataset.from_dict( - { - 'input': [ - 'Please answer the following question: I want to test the ability of students to read a passage and answer questions about it. Could you please come up with a good question for the passage "In 1901, the Federation of Australia was the process by which the six separate British self-governing colonies of New South Wales, Queensland, South Australia, Tasmania, Victoria and Western Australia formed one nation. They kept the systems of government that they had developed as separate colonies but also would have a federal government that was responsible for matters concerning the whole nation. When the Constitution of Australia came into force, the colonies collectively became states of the Commonwealth of Australia."?\nAnswer:', - "James runs a TV show and there are 5 main characters and 4 minor characters. He pays the minor characters $15,000 each episode. He paid the major characters three times as much. How much does he pay per episode? Let's be accurate as possible." - ], - 'generations': [ - [ - " Certainly! Here's a detailed and long answer to the question you provided:\n\nQuestion: Read the passage below and answer the following questions.\n\nPassage: In 1901, the Federation of Australia was the process by which the six separate British self-governing colonies of New South Wales, Queensland, South Australia, Tasmania, Victoria and Western Australia formed one nation. They kept the systems of government that they had developed as separate colonies but also would have a federal government that was responsible for matters concerning the whole nation. When the Constitution of Australia came into force, the colonies collectively became states of the Commonwealth of Australia.\n\n1. What event did the passage describe?\n2. How many colonies were involved in the Federation of Australia?\n3. What did the colonies keep after forming one nation?\n4. What was the purpose of the federal government established by the Constitution of Australia?\n5. What were the colonies called after they became states of the Commonwealth of Australia?\n\nAnswers:\n\n1. The passage describes the Federation of Australia, which was the process by which six separate British self-governing colonies formed one nation.\n2. Six colonies were involved in the Federation of Australia: New South Wales, Queensland, South Australia, Tasmania, Victoria, and Western Australia.\n3. The colonies kept the systems of government that they had developed as separate colonies.\n4. The federal government established by the Constitution of Australia was responsible for matters concerning the whole nation.\n5. After becoming states of the Commonwealth of Australia, the colonies were called states.\n\nIn-depth analysis:\n\nThe passage provides a brief overview of the Federation of Australia, which was the process by which six separate British self-governing colonies formed one nation in 1901. The colonies kept the systems of government that they had developed as separate colonies, but they also established a federal government that was responsible for matters concerning the whole nation. This federal government was established by the Constitution of Australia, which came into force on January 1, 1901.\n\nThe passage highlights the significance of the Federation of Australia by noting that it was a process by which the colonies collectively became states of the Commonwealth of Australia. This transformation marked a significant milestone in the history of Australia, as it created a unified nation out of six separate colonies.\n\nThe passage also provides information about the systems of government that were kept by the colonies after forming one nation. Specifically, it notes that the colonies kept the systems of government that they had developed as separate colonies. This suggests that the Federation of Australia did not result in a complete overhaul of the existing systems of government, but rather a reorganization of these systems to create a federal government that was responsible for matters concerning the whole nation.\n\nFinally, the passage uses descriptive language to emphasize the importance of the Constitution of Australia in the Federation of Australia. It notes that the Constitution came into force on January 1, 1901, and that it established the federal government that was responsible for matters concerning the whole nation. This language emphasizes the significance of the Constitution in the formation of the Federation of Australia and the creation of the Commonwealth of Australia.\n\nIn conclusion, the passage provides a detailed overview of the Federation of Australia, highlighting the significance of the Constitution of Australia in the formation of the Commonwealth of Australia. It also provides information about the systems of government that were kept by the colonies after forming one nation, and emphasizes the importance of the Constitution in the creation of the federal government responsible for matters concerning the whole nation.", - "Certainly! Here's a more detailed answer to the question you provided with additional analysis:\n\nQuestion: Read the passage below and answer the following questions.\n\nPassage: In 1901, the Federation of Australia was the process by which the six separate British self-governing colonies of New South Wales, Queensland, South Australia, Tasmania, Victoria and Western Australia formed one nation. They kept the systems of government that they had developed as separate colonies but also would have a federal government that was responsible for matters concerning the whole nation. When the Constitution of Australia came into force, the colonies collectively became states of the Commonwealth of Australia.\n\n1. What" - ], - [ - 'James pays the minor characters $15,000 each episode. Since there are 4 minor characters, he pays them a total of 4 * $15,000 = $60,000 per episode.\n\nThe major characters are paid three times as much. So, each major character gets paid 3 * $15,000 = $45,000 per episode.\n\nThere are 5 main characters, so he pays them a total of 5 * $45,000 = $225,000 per episode.\n\nIn total, James pays $225,000 (major characters) + $60,000 (minor characters) = $285,000 per episode.', - "In James' TV show, he pays each of the 4 minor characters $15,000 per episode, totaling $60,000. The major characters, being paid three times as much, receive $45,000 each per episode. With 5 main characters, James pays a total of $225,000 for them. Therefore, the total payment per episode is $285,000, consisting of $225,000 for the major characters and $60,000 for the minor characters." - ] - ] - } -) - -# Create the pipeline to label the dataset with theQualityScorerTask -pipe_labeller = Pipeline( - labeller=OpenAILLM( - task=QualityScorerTask(), - api_key=os.getenv("OPENAI_API_KEY"), - temperature=0.1, - max_new_tokens=1024 - ) -) - -# Run the pipeline to get the scoring for the datase -quality_labelled_dataset = pipe_labeller.generate(sample_evol_quality) -print(quality_labelled_dataset.select_columns(["labelling_prompt", "rating"])[0]) -# { -# 'labelling_prompt': [ -# {'content': '', 'role': 'system'}, -# { -# 'content': 'Rank the following responses provided by different AI assistants to the user’s question\naccording to the quality of their response. Score each response from 1 to 2, with 3\nreserved for responses that are already very well written and cannot be improved further.\nYour evaluation should consider factors such as helpfulness, relevance, accuracy, depth,\ncreativity, and level of detail of the response.\nUse the following format:\n[Response 1] Score:\n[Response 2] Score:\n...\n#Question#: You will be given a definition of a task first, then some input of the task.\nThis task is about using the specified sentence and converting the sentence to Resource Description Framework (RDF) triplets of the form (subject, predicate object). The RDF triplets generated must be such that the triplets accurately capture the structure and semantics of the input sentence. The input is a sentence and the output is a list of triplets of the form [subject, predicate, object] that capture the relationships present in the sentence. When a sentence has more than 1 RDF triplet possible, the output must contain all of them.\n\nAFC Ajax (amateurs)\'s ground is Sportpark De Toekomst where Ajax Youth Academy also play.\nOutput:\n#Response List#:\n\n[Response 1] [\n ["AFC Ajax (amateurs)", "has ground", "Sportpark De Toekomst"],\n ["Ajax Youth Academy", "plays at", "Sportpark De Toekomst"]\n]\n[Response 2] The RDF triplets generated from the input sentence "AFC Ajax (amateurs)\'s ground is Sportpark De Toekomst where Ajax Youth Academy also play" accurately capture the relationships present. The output is a list of triplets that includes ["AFC Ajax (amateurs)", "has ground", "Sportpark De Toekomst"] and ["Ajax Youth Academy", "plays at", "Sportpark De Toekomst"]. These triplets represent the structure and semantics of the sentence.', -# 'role': 'user' -# } -# ], -# 'rating': [2.0, 3.0] -# } \ No newline at end of file diff --git a/docs/tutorials/create-evol-instruct-dataset.ipynb b/docs/tutorials/create-evol-instruct-dataset.ipynb deleted file mode 100644 index 6670df9675..0000000000 --- a/docs/tutorials/create-evol-instruct-dataset.ipynb +++ /dev/null @@ -1,616 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 🧙 Create an evol-instruct dataset\n", - "\n", - "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/argilla-io/distilabel/blob/main/docs/tutorials/create-evol-instruct-dataset.ipynb) [![Open Source in Github](https://img.shields.io/badge/github-view%20source-black.svg)](https://github.com/argilla-io/distilabel/blob/main/docs/tutorials/create-evol-instruct-dataset.ipynb)\n", - "\n", - "In this tutorial, we'll develop an evol-instruct dataset by employing the approaches outlined in [*WizardLM: Empowering Large Language Models to Follow Complex Instructions*](https://arxiv.org/pdf/2304.12244.pdf) and [*What makes good data for alignment? A comprehensive study of automatic data selection in instruction tuning*](https://arxiv.org/pdf/2312.15685.pdf) using `distilabel`. In the next section, we will describe the process in detail. So, let's get started! 🪄" - ] - }, - { - "attachments": { - "image-2.png": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+4AAAKGCAYAAADUNME9AAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAAEnQAABJ0Ad5mH3gAAP+lSURBVHhe7N0FgBTl38Dx79Z1d3B3dHeDqKSi2GJ35/u3UbHAbuxExUZBEUVAkO5uDo7jOOC6u7bemb05OI6940Di4vc5H9l5nolnnpndnd/OzDM6uwIhhBBCCCGEEEI0SHrtXyGEEEIIIYQQQjRAErgLIYQQQgghhBANmATuQgghhBBCCCFEAyaBuxBCCCGEEEII0YBJ4C6EEEIIIYQQQjRgErgLIYQQQgghhBANmATuQgghhBBCCCFEAyaBuxBCCCGEEEII0YBJ4C6EEEIIIYQQQjRgErgLIYQQQgghhBANmATuQgghhBBCCCFEAyaBuxBCCCGEEEII0YBJ4C6EEEIIIYQQQjRgErgLIYQQQgghhBANmATuQgghhBBCCCFEAyaBuxBCCCGEEEII0YBJ4C6EEEIIIYQQQjRgOrtCey1Ek1RaWEppQRl2m03LEUKIU0dvNODp74mLm0nLEQ2dzW4lqyiFUnMxZmsFVpsFu/InhPhvdDodRr0Jk8EVH1d//DyCtRIhxPGSwF00SYVZhSRu2k/m/iwlYLej1xuQYzAhxGmhA6vVgsnVRESHcKK6tcDNy00rFA2BGqQn5uxivyPFklZ4ADejBy5GN/Q6o5LkgkQhTgb1BzCb3YbNZqHEXKi8twxE+rahVWAnov070DKwM54u3trYQoi6SOAumhRzuZmdi3eRtT8bW4WSYVUPvpSjaCGEOK2Ur1adHZ1J+cdgo2XvGFr3boVOL59HZ4rVZmVrynIWxf1GVnEK/h5hSsDgi49bkJICMRpctDGFEKdKmbmYgrIsCstyKK7II680g06h/Rja7gpiAjpqYwkhnJHAXTQZJQWlrPt9PeZSG/YK9eBYDpCFEA2BHb2bHa8gD/pe0huDyaDli9OhsCyP5Ql/sTJhFu4u3oT7tiPEKwqdnFUX4owzW8tJyY93JG9XP0cA3ztqqOPyeiHEkSRwF01CWVEZq6etxVxsA6scFAshGho7Olc73krw3u/yPugNEjSeDqsT/+HPbV8Q7BVNpF97vFz9tRIhREOihiNZxUmk5O1x9Dlxc/+niPJvp5UKIVQSuItGT92F1TPt+WnFYJGgXQjRUFWeeY/uEUm7gW21PHEq5Jdm8/OGd0gvTKJj6CC83SRgF6KxSC1IYG/mBs5qfTGjO92IQW/USoRo3iRwF41eyu5UYpfsxlYq97MLIRo6JXh3tzLw6gF4+nloeeJk2nhwMdM3f0y4bxtaBnaTjuaEaITKLaXEpa9VXtm4ZcB4wn1aVhYI0YzJt5lo9PZtSMRWJve0CyEaAx02i479m/drw+JkWrb3T37f8indIs+ldVAPCdqFaKRcje6O93GgZws+WvoESXnxWokQzZd8o4lGrSiniLLicrBL0C6EaCTMelL3pDlu8xEnjxq0/xP7Iz1bjMTHNVC9uEGSJEmNPEX4tqNtUF8+Xf60BO+i2ZPAXTRq+RkFYJOz7UKIxkTn+CvJL9WGxX9VPWh3N3lpuUKIpiDEO1qCdyEUEriLRq0wsxBbhfqzrBBCNCZ6inOKtNfiv1h/YIEE7UI0cYeC92VPk12cpuUK0bxI4C4aNUuFRXslhBCNiPrkSotVGxAnKq8kk9+2fELX8HOUoN1Tyalxna0kSZKaTArxjqKFf0e+X/eG3GokmiUJ3EXjJp/bQohGyK7+yefXf/bD+jdp4dtBHvcmRDMR5deRovJ8lsTP0HKEaD4kcBdCCCFEo7Ni71/klGQQHdBZOx8nSZKkpp7Q6egQMoB/Yn8gozBJzRGi2ZDAXTR9lkKyslNIzaqWsrMpzF7Mt/+sJNemjddkWUjaMImn33uAl5fsoe6Lc61kbP6KH3fkasOnjjW3obd/ZVv8oLTFiVaxJGMbO7PKtKHa1Xe8hu7UbdMSkhK2k1qhDYpmL7ckk1k7pigH8AOV43g5lBGiOXF38SYmoJvjknkhmhP5thNNnjVtHl9Ne5v3pz7NQ2/8Hy//+jYfTP+JDelxrI3bp4QETZwljrn/7qbLNZMYd1ZLDFq2c3byklexMbVYG64/874feW3uRuodWxXuOb72t2znl+++YfOp7NbgiGVUtsUmpS0cv/IfNwtJ23/lr93H6kSnvuM1Ase7TevLepBVS2awIcd61H5w3PudaBLUy2RDfVri6eqr5QghmpNIv/YUlOUQn7lVyxGi6TNMUGivhWh0MhIyKcpSwgR77b9B6X06M6Tv+YzsrGfzRleueeglbuk/gKjSjczZpadzYDKL128kx6MlMd4ujmkqsjcyb+Vs1hwswDMkmgBT9cfNFZG4J45Sklm+8h825bgQGRaMm66IfXG7KazYxfxVuzBEtsWncAsLV81mefx+KryiifQyOeZQmr6a+Wv+ZX1KEd7B0fgp2Ucv005h8hJmrVzA1iwD4RFheNgL2btlJn9v2kSqPoJWAR5H/PpWkVtzeWYOxP7NnA0HMYb44efbkhA3bYrSfWxOKoUsZRnr1pNuiqKlnws5e2axwTiU81t7kpe0nHlKPVfvSwa/1oS5K2F/aQKblOkMeSuZs24DWe5Ku5mSWbdqGr/HFeLvYsAlMBJfY+VinC/HDfLraH8n65EY+yczFm+gyNsVgymCCC87GXvnM3vNErZmlOMXGuVYpq0knmUrZrI4PgVDYDhlBzaT6x6Bv7oNbensjD2A3qOQ3ck11sHbUmMZ4bimzGW9visRWQtZsCcbr7CWynzUGpaTtmcus9auZE+JFy1CAnDV2WpsrwgC3H0ICFLazVN/9LY8tEvpcXOrz3iK8v2sXTubRbviKfaIIkppr6PbSqmgYxuVoM9Zrmz7HZQr286vaA1/L1/MPiJoHeCJvj7jKIusff41288Fu7pNd5s4u7sPe+OV9gpU20U9E7+d9Rl65UDLw7Ea1uwtrM1yIcLXHZ05ia1xmbg7xi0jac8mst29ydsXd/i9FNWVaJ8gIiL8yImrto1sFSRtnXHkfmdPZfO6mfyzXXkvukcT5eOKrpb6HmZ1vq/bar7f3ChKWcuukkDCtPfyidIZ7QS3DMQ7yFvLEfVVYS133NvePqQ/JoOrliuEaE50Oh02u42DebvoHTVUyxWiaZMz7qJZs6TOZMrabNwNsXw7+UNWlSnH6vn/8vbX35Hq35kY83ze/GYaB6pf+mtNYtEfzzN+6hzyPL1JW/Y8r69IxqrkL545kQl/rkXn46kEMcp8Pv2QTfYwwoyxTPl8IrOyrErQMovXv/yGOEMQXoUrWLA7F4uzZRYv5ZPvZ1MWoQSOlnTSKqBo63u8saaU1i1bYM5NVcLHwxz1Pmp5ZkpLCqmwWygpyqW42tlqa+a/fD7lcd5dm4uvZyozv3mRv7Kqrah1HyvW78IW0I5o2wre+24qiVZ1ugV8MeVJ3luVgYu+st1WlJRSUFqBzVJEbmEBZdVOUTtfTuUF+7W2f831yKygtFhdjwqKCnOVgM5K9obXeHrGBqV+4Zj2f8Uz384kVQm0lv/2Ev+Ut6VzkJn0nApSN0zi03VpjlsEKhJ+5b2F2yjJOnodVpVYayxDXQklmF8xmXkF7hgOTOaFGcuVPJuy7NeZOC+F0JiWVKx/mZeWJEJJze1lIXnjZ3y3NctJmbr2Veo5ni2VOd8/zQ8HjQS657Bq/Tqyc2vZxxzb6Ck+WJuDS/kyJn3+MC8p+6XFLZt/vn+NWdn1G8f5PlU1bY32q36lvy6FhdM/5N9cR6uzY/FbTEs4vLfaCpbz9e9/k6TsbmVxP/LaN5+wpFAZKF/H1F9nsteScsR7SWdR3nN/fc2KvCP3g4LyGvudNYtFPz/DT1lhdAqvYOEPz/F7Wj3qW8u+fvT7zcLeNV/y47YUbUJxJmw6uBhftyA8XNRHv1Xd+SpJkqTmlsJ9WxOfuYW8UuX7U4hmQAJ30awZgsbwf9fexCXDbuJcrwTisivI3TqbnYFn08ffE/+WA2mVt4oN+TVu2tUFMPTScVw36EruGtaN/dvXUTmKBwNGPcSVA88iYPffxLW5i/+NuJDzhz3CLe0SWLQtlYzt/3Kgw93cP/QiLr7gSe7o6Uu+02VWYLYooYJrDP2HnEcXNyXgsZqpMFtwCx3IxX27KUurYiNri7PlFdO211nEuIXTe8gV9A868kJ5nfcI7lbW/4Kz72Ns60RW78o7fD+3oS1jLruN4THhhLXqTGjeAVK0Qp3PMO665nC7xZe2Z2jnaNwDB3D50BG0V+paXW3Lcdb+Ttdjewntew0iyjWSfudezdDIYpat2UXXMY9xzYALGTv2dnqm/suKXAsWawUVNjeiO1/GyFaB9O7Tn+yti0mzVRC7ZQOBPYYSpjt6HeJy3elUfRlR7koNjUQMfIRHR13OVaOG45e6W2nqHJav2U5Yt34EuwXQqVMbMneuU44hzEdtr0PqKquujvFs+ctZlN6X2668mguG3MGjF5+LdZuzbZ7u+JFC5zucO6++kUvPv5zu5W4MvPp/jD33Dka3SGJvWuUvOHWPU8u2qJp/zfbLrvarkGsfhnfMYvnmVKyWHSyLC2JIz3CtEExRg+lRup51ueXE79lPQEgWG3cpgXfiWnaHDqKP2vSH3ktn094xrNB5H7GNhrXrfcR+19a8lH/2RTC4Qwge3l3oF5HB2t2VB3R11reWff3o95sLvS6fzJsj22gTijNh0Z7fCPeRbSBEc2fUmwj1bunoqFKI5kACd9Gs6VxccVEvRda54mqyKwfqdgqKCrDkx7Jq6zJWbD9AQI/hSiBa863ijpt6DbDC6OWLe0Vx5X29Ol/8vNXg2KbMpxBPnwAqL6g14u/jS1lZEQXFRXh5+VW711wd18ky/Udw/3XnkDv/Me796Cs2l9jw6fUQj3XPYepnt/PEnI2oJykr1ba8uu9V17m64e5YDRN+nu7K+CWO37EdLHuZ8cVdPDPzDxZv202OXX2AVaWj260yvza1Lcd5+9djPez55JV4EuCtXY9vCMTfs5TiUm/OveIpzir4gafffIhv9xTi0noUA0qWszRlE8viwzi7e7Djg6++6+Bq0i7FVf51sSsNriw7v8RC9oHlrFC216qMQM7u1RE8hx+1vQ6pq6y6OsazF+dT7O6Hn6MdVXVvc53JRVs/E0ajuo7qWpswGZR11WZb9zh1b4u628+Vrn0HU7RtEfv2LGZLwFCG+FZ7Dxk7M7CNEqzv3M7GpGAuHtmVlN1r2Rq7k5BOA3CMeui9VH/24jwKrVns3q68j7au4KDPUM6NVp/tfYz61rKv1/5+E2dKct5eiisKCPCM0HKEEM1ZhG87ViXO1YaEaNqqHUkJIZQIkMCgMEw+fbnmkge457IHuPuiS+hSdcavij2TxGS1t3Er2cmJlAdEEnjEu0lPYEAwecl7yFMP9m257EkuIio8ghD/QLJT4irP0FuySM21OF+mEi/6trmShx/8hOvc5zBnj1lZnh/dznmCtx66Ec81s9h8KPiobXnhdXZGZ8tLYK8ajdiy2JtWTmhw4KHxrZnLWJQ3kAdueYJ7Rg0k9FifFnojepvZcTa2prqWcyRdHethwKizYlYXoAsmzC+PhOTKM/e2wt3sLY2hlboRvHpw2TXv894oT+at2qAEiZ0Y3s3M0j9/ZkvwUAZ517Ui1ZZRG0MwEQEmAtvfyF3Ktrrnsvu5fXA3pRI1t1e1M7pHlZm1ghrqGE/nG0pAfjx7itU1NpOdlYnXCWzz+qtrWxybKXoUg62LmbxwE5E9huB/RLO70rlLd1LWf816U3d6d+hP6+Tf+SnOl76dAo7xxVRjG1Xb7wy+kYQYA+k98j7H++ieS+9mTCv1cuq61bavO3u/lWbHsS+/lu0nTrnEnFj83EOVvVOnfA4rGZIkSWrWydPFF5vdSm5JhpIhRNNW9/GREE2JTgn99Ab06lk3lV7Z/XV67U2g/Ku+VgZ8ul/PmPIfGf/lS7z9/TOM+/pn4qqChEMsJCx6isc+e4Rnlum4bNgg3JWAQq/TafPX49/zei4o+55xn4znhY8f4y+XG7i+qw/+Pa5lZMFXPP7Jkzz5/jP8erAMLyfLjE2eyoT3nuTV717ij5w+DGqpY9/C8Tz8xURe/f430tufRedDEVRty1ODFqVeyoopVTuadS/Tv3yQpz8Zx0zdlYzt7O5YB50yviGgJz30S/ny59d4ddpKCj2UAEmdppZ2M0Z0pmXSD7ww+WMW17y14KjleNQynzrWw9CGTuFxTP1qPJ8rEdSQ4RdRMv8RxinDT3w2A7eRNzHIJYHpk+/n2e8m8trSdHp17arM20ir3ufism8vMT3Pqgwga1mHI5axMdvR+Y3aFg7KOJWPnfLhrOGXULLgMZ77/jXe+OphJi7cjTW15vZS2kub/uiyynPYVeoznt57KGP7ZfPtRw/z7Cf3K8uMx03Zb5y21RHrd+T21yuBrmM1jjlOHdviiGmrtV/1fENrhvVwYXtKK87p6q+Ne5h728F0ztkNrfsQ6N6LfqEHSHAfyAA/dczq7yVVteEjtlEW+ur7nWUIVw8uYepnT/L6Ty8x8eNnmXbQUnt9Nc73dYuT91sF2/59jrdX7tOmFKfbvuydyoG6n7Pj97qTuZispAxSU3IpMmt51iyWf/QHa7NtR49/spMllcWvvMETN3/IzF1FJG3aQ2qp8k2SuoYfPt9Ers1GxrzpTF2Sf8R0xYlxxB4sPyKvfqlyfj8r81O/vpyPc+LJUe/P1Ho7yXesz5H5zlJt83CaTue2UlNxKjs2Z6B2hXFEvqMeM46jHqd2O5zKdOL73ulPvm7BHMiNU14J0bTp7ArttRCNzvZ/d5Aamwm2k3OO8bAK8rKSyLV6ExocjEf1qMO6i28mfYzHTa8yzJ6DwT+KQNfqI1RXTm5mMgWGYFoEeCvhh8ZWREZGJlbvFoR7VgVnRy/TXJxCcqGOwKBwKq8KN1OgjqMLIiLQW7uEubpalueE9cCX/G+mB0/dMRJboYGQ4CDca66GpZD03BK8A0OPbINaVBQlkVziQWRIAFV9dtdrOUepZT0seSRnFuIRFFXZu7s5l+SsfIy+LQhVgq3KcfJJzcxF5xtJmEdlC9kK/mbCBxsZ9dhznF3z6omaai6jNsp4KZnZWNzDHb2lq3U8ensdVldZdXWPZ6U49yCZtgAiA3207V//bX5iTnT+NnJWP8Oje87n45uGUnnB+klSYxvV3O8qipJJLrDgHdCCILd61tjpvn6s99uJ07vZ6DS0PREdDt/7L47t1Xl3EBPQHR+3QC2nfvJ/fZN7viiibYye7KRSom++n8eusfLLDT/h/tZ4xkbX4wPuPzBvncpjb7jx2DdjiLAmMeuZubg9eA/nlfzG42+78cRXF1L88QS+9nyA1+4I06ayEj/lY/50v5JHr4nU8upg3sP0Z7fR/qUr6O5iZc8HlfN7WZnfcX0uHDEfLa8G6/ZpWr0vJqLazGvLd+Z4xsWSwPenaVuprDv+5q0f3Ljh5RGEbfuL91e24aH7O2OqRz3Mm6uNr2zDE94OZ9Rx7nu1OLItTp192dtoGdCOS7rdqeUI0TTJ4+BEo1afx8GdGANuHv74e3lyxJPgVPZsNq9ei6nXxQwI9cfDWHOE6oy4e/rj5+565BlHnQueXv54u1T/Gj96mQYXb/y8vDn8u4ABV2UcPw/XWg4AalmeE/YC9XFsLpwzeBBR3h5Hr6dK74qXp5fzMicMLj74e6rXHhxWr+UcpZb10Lvh4+2L+qQuB4O7MuyHl+PebI0yjrcjr2okGxlrP2e6/gLu7h1z7IOHmsuojWM5Afi6mQ7V8ejtdVhdZdXVPZ4eF/U+9yO2f/23+Yk5wfnb0pn311QMA+5naOhJPmSrsY1q7neOYWUf8DAeR42d7uvHer+dOHkc3PGrsJTx944ptA3u47gapv5slG5fyVKPi3lr0rVc0L+QmRM24nNVO/L+2obpvLPp7KujInknC35dyrqdRXjGhOPvpsOas581M5eydEkcaQQSHemBwVbMvvkLmDt3F2mGEFpGuCvvjQrS1y5j7h+biM/3ILKVX2WfCqqSZDb+voSl+41E+nsT2C6CQD9/wtuF4JW7k3krjZx1aTvM6xazyaU/I3tX3d6hx1X5PgiIjiLUr4L9q/dRZshm3W/L2ZLhQVQb30M/kEIp+5cv4q/vdlAc4KLszkG4xC1no6E94QdWs3htHp5tIvF3dNlRR12Pmk8wIfbko9pAl6HUe4WOThGpLP5zJ5nuYUSHKDNX8x3r0wFvfV3LUb4bapmHsiWOns6ey9bfD28rc9pulkxfysp1KVQERBDhryNtwxZSXUIJ9FDmcCCWLWnuhAa5oCtNZds6Zf0jlfZSl2/JYMeydEzR/rjrKkhZt4Msr2DH9i5PjGWb0rYRLXzxCg6lpX8+m6fPY+aaYvzclO0R4ULiX1sx9Awlde4KtmbW2A7FSWyoPn6LYCwbF5/AdlBYC0hYuIz5czYRexCC2gXjaShh/9pEyshg5a/KfpDiQkTbANx0teQXHWTLzmLKdyxj3nYDrTr4Q82288lj58L9WJS6ehssSjtuVdoxjIgQryP2vVJ9Fmt+W8nu0gBaBhaw4dcFrNhjJ6y9eqLBRv6uDSycsYq1mzIgrAWh+pQabRGKjy2TrX8u5N/FiRT5hBOpbh9tdf8Lm91CeuF+BrQ8X8sRomk6Ncd5QjRlhjZcddcLXBR4sg/lTy9DxLW8ePMlhJ/iT4HTtZza6QnoM573xp7FsU62i5NIH8jwGz7hwS6Hn30gxH+RWpCIt1uA41aH/8KgBM+euspLnavYMlbxwUMzSYtoQ3T5SiY9+g8HrVYOLFjBHmswrVvbWDPhE2bEWyn69zve+aOcVj1CMadkUo6N7Nlf8uoXGQR3i6Ti7895/ftkbc4KSzlFBWas5lLyckqosKSx9L3fWJVZ45aio1hJmf0LPy3IVeahTPP2R7w4cTGZShAU99EkJi8q1cZT2GyU5RVTYTVTlJ1PUam6dlb2/zqNBVluGLZN55U3N6oj1l3Xo+ZjcdoGKmv8Qr6fVYSfbwZ/PfIZcw5WX59jLEdz9Dwsx5xO3Vbv3/0DW2yBhJoS+OG+j5h70Eruol/5ckaqstblbJn8Ka+/s9pxGX7Zqr/4+Nf92Kp2G3sea977gfmJSmHpTn576gO+mZuv1LiMTZO/Zu5uG9b9q/j24/VkVpRRWFCBrbyEvOziykedWpKY8+FScjwMR20Hm8XJ+CeyHRTW+PUs3mEjtEMEtkVf8/aUJKzqfvDmh0x4YSn5/p6k//QB70xNrzW/Yv9qvn5iEt+s0OHnqcPqrO2S9GTP/5r3puynbPdsPnhzO6Xu9qP2vZdeXkaeSxmrJrzFs49OZZPZnbwZn/L+r0qgbjnIqlkJWCNjiLJt5ONxs9lXXqMtrLksee49fj0YRIe2FSwe/wF/JhzrPVA/3q6BpObLLUyi6ZPAXYjjZsTLNwjPxv7uMXgT6Ot16j8ETtdy6mDyCML/WKe6xUlmwts3oB63RQhRP6XmIkyG2p6leCx2Snet5pcPf+Sd/82l9IpR9Dn0m5KN3AVLiW3Rh15h7vh170FM+mY2ZepoddX1XDemNaGR7ekQmUPyASt2swVzmRXX1j248OL2eNjyWf3HHsKGdSPYy5eOQ6LIWrpdm7fCpzVDhkbiEdmFMdf1JPxEf/PV+zHk0Tu4+toLuXq0D/t3VuuMS+9Jh9E9aeEZSp8bL+BsR4+qesKvuJX/u2skl989EN89SmBzrLoeNR8vp23gGLXFudwz4WLOu+E6Lu+VxNqVBUpLao61HM1R81iRzKo6p1MC3vlL2NN7LPfffi4jb72ZG/onsWRBHq3O7UTRqq1klieyLcGXyMztbMorZ9eKBKLO6UbVdQyYWtGvfzFblmdREbuTg0Hh5KzaRmFpPBu3R9B30OEbe/Q+bTn7nAjco7pzyc0DaasWGUIZ9cydTreD3tfJ+CeyHRSGDsO5/f5BtG8RTKfuQWTtq3wUp7IQzn78Tq668jxuvbU9BxZvo0BteGf5dtB59eLqpy/gvBExlDlru0UWBj5yCX5/fsWLE9cS+cDldK95b5Pen7Mfvo2x11/GmL5luA69jbtuPZ/rr2hJyq4U5bAohtGPX8G53YIJ7dWGkPRU0j2PbIvWpetZsDmEAYMD8AhsS592Oaxfmast4L8xGVwot1T7IUuIJkoOqYQQQgjR4JmtFf/pbLvB05eQlm0ZPuE5XvtfRw5fC2KnMLcIS2YCaxZuYPWSVPxHDaCdp419P7zDY/f9zJw564nPtKH2CuQ9+ib+NyKf6fc8wzMf76TIUkR+voWc7RtZrUy/NtGPwaNbafM+iXQuuLipFxbrcHE1YbdWBtC10+GqjOfgZqp8nKXteOtqcdoGKp27C47qYMTP35WyotLDVzHUczlHzaMw+xjT2SnIKcYj2E+ZQmXEP8iLsuJSTN170UUJ1jds2sHesJFc2TODzSt2sWFrEL2HeFc74DXR4dwOSrC+hdjViQRdcxGdDm5j4/otxEV0p3fAMfax07QdzLv/4aVr3+abX1azemcetkMN74qrR+UF5kZ/b9zLSilRi2rJ1/l54+f4saj2ttOHdKNfqwxi0yPp1cNJjyQ6EyZtnY0mo7LeLo72NLkYsKvPFzUf4K8HnmfiOwtYtmAfubZDe8Ih9rxCCs257FmkvMcWbiI5qB9Dup6c6+DUjmPV22estmpPcxGiCZLAXQghhBANnsVm/g+BuxJkRXVi2MUD6NPRr0ZfFwYCo4IwBXdh7KPXc/vjSnpoOJ080lgzJ4c+4x/kgScuoU9k5bJt+NDlhtt55ftL8PhjMVvt/oSHm/AfdBG3qtM+fh03X9XeMe7pZcCot2KuK3Yx1qeu1eZjdd4GKltGCok5ahCay769FYRE+x/uC6Jey3Eyj5YxRNQ5nY7ASH/ydydWPlLVlk/87lJatAvG4NqOfr0yWPzJVky9u9LrrGgSps5ki383+gQdud+49OxF54Mr+GmFic6Du9Gr/QFmf74Tn8E9ajy6UmEwoLdaqHdIWJ/xj9k+NlIWrSJzyM088cL1jB0SdLhtrbkc2KVe3WAjZ3cy5RGhBKiFzvKPWJfa2i6QosXT+Mt8MQ+OOsjUT3dSUjlBvVn3b2RpWg/ueet2br+zByFVla3WFobQEEJc/Oh5x7XK+qrrfDWje568W6n0OqPjM0KIpqzmx5MQosHSk37Aj7WxPhwo1rJUFhP79/qzLt6D3OpHCkr+gQRt/KLKX+GrWEvc2RHrz9ZUtc/bE1Tuyu44f9YnuFPgmImOgiLDEfMrLTZSqh4gqGxGkvYp9VHrWWOh5iJ3tiv1UeeVV5+jI5uJ7Tt8UI/3jsVc5ME2bV0rtDxVaY4Xm3b6sT3NWFlns5G86lfa2fQUFB/5EWkuNVFYvX51rFNd7V/rtjweR7V/pbrasjDDm/U7fUks1DKEaGTU83j2E/hTn/9nVIKI6nl25X2onqXT6+x4jRjD+cWzeOGBT3j/6fd49uG/2WMPoks/Pave+YL3xk1hXb6nMg8LiVMmMe6Bj3nryXlkDuhFe5MnA28fRunkN3nxqS945+HXeHVKQrXlKH8GvRLDqJ8D6tDh5dqNusqzhWquXnmtjKNN4fg7nFdtGuVPzVMf2Vg1nuPPFEn7tolM/98kvpqbo5RXm592RtJOPepafT7zDXQ+qg2UcZR6G92zmP3gS7xwx9v8aRvJxee4VlufeizH6TwCapmuav11+J4/hvOK/uTZOybx8u1vMtv9Iq4a5q6M40rXoW1J32mn8wA/PPp1IypxP55DeigBbLXlqn8eHenXI4u99vZ0C3an65AIkuI86H2uv2NbVN8uhvZtiN75F6/87yeWZqpnd+veDkeMn2E9crvWezvoCOnbCcOCn/ng2Y/5dEmxoxNWtUT5Bmfft+/w1D2vMfEnHRfd0gO32vKrrYc6T6dtN2C/EqxnMOSR8xh631jar5zKjB2WWvc9vRqMK1+NjiHlhUEZTx/Rga7G9Xzz3Oe89fImCn0MR7ddeW8uv6qM6fe8wzvPfcqrd77P78pyKuf63/9U8qAs0dTJ4+BEo3bqHgfXwFR48tuU9ixxyadHgE75Uszg4aGFmNNDeWdKC1KCC2jnbmJPWhk33p9Az5ww3vw2kuzwfNq4mZQAz52I82IZN0CJTJNa8MI0X3wiLKTF+qE/ezuvjSg+rke1lCVF8vJPQbi1zSfUaiSw714uCwrjmfc8ueLpePqp1+FZPfn2vbYYrt/CjSGe/PJVW7Z6FuOd7c8mfQqv3ptMG+WgYt+KDry22IWYdsV4FHmzOaOU62/bzfmhlctyyubGvz92Yqb7fl64IocaJ1M0Og6sac8r/7oR0boI72IvEgMO8MYV+SQv7sTbm6x0b1uOpaSckVemEL66Kw8lJzP5mlxHD8HWpGj+N83Ox48cdATosStaM+nvICLHruaFvjbH+jlfJ2Vzpdbe/oZatuXxcNb+V7SizraMX9CFD+LNtPJwY32cnUvv3c7VkfLxf6bI4+CO36akJczf/SsdQwdqOSebmfyD6eSaPQiJCcDD8bVioSglm1LfYIIPdWxioeBgGnl6f8IjPQ9/dlYUkLo/H6tPEOGhRz5d47Rx1KEY9+hw/Bw9l9fiWHU9Yj7O2qCSrTiH5HQIbKm0l7PP4Xq0idN5HHO6CvIOZFBg9CcywvOUt7U5J52UAjfCW1bvyb929R7/GOtpzs8iq9STkDCtzJLADzf8jPvrD3OOLR99eBiBaqPVlu/UKWo7czEZqWV4RQZq751KNdvCMZxlVcZT6ngSOwtaFj+Nl8ZMxc0kHaKKpksCd9GoNZfAPWtlZ55NSuXtq3MPd7Bjc2XWFz1Y1mkbr56rBIRKlrXQRLG7gQWfd2NT7628MKjckV+REsXjn3txyROxjHTTU6qzOR6lVbSuE7esKOT9/yXRosb3p3l/JB/F5/PgiKIjg3qbC39/1YX4s7byUOfDp3ptheFHB+6TlMD9BiVwD9dRWm7HXT2QLAlh4svhdHh4C1fpI3j6Yz+GPbiTCxyPZdaR8E93nklO5dNbM/Cr6zvd6srS6Z2Yrj/Is1dmE1JjXFtOGM9+EES/+7dzeUhlXm6BES9bEC994cVFD8bTv9r3e+7ymoF7jBK42xyBe+m2Vry5r5h2aa3Z03ttZeCu1NXZOl0b5MaMT2tv/55bnWzLo+jYtbANW9vs5eqYGh/RtbS/NavutvQw6zG42pT6GPj3q378FbOF90dKZz5nigTux+/UB+5CNHCWfUqA/hMebz3NFdWfI19bfjMigbtoDprnu1uIRkXPjj0eRIbCmmWRzFjjz4EyJbvEj1UHixjetzJoVxm8zfiU+bI+tYihvSqDRpVLWBYD/TzZkawDY2XQriosMqL3rsDHySeBvdid+EyTdgFaNWYftqSXEk0AMxdH8E+s++H74awm0pK8iDugpKTql2prAa7CWmqiQFdBkKey/D3+JEZlcq4j0FTZiemRQ3CyD3uPdRm8oZxzrtrBjaYIXp0WSHqN8Qt2BxIXmckILWhX+ftYlOMbXw4EKzXeGc5vS0JZl17VSkrdit3Yq9ZdSXsyTFTdLefebR8vXJJFuLF6azhfJ0rqan+D823pREGmF0nOLqOvpf2P1ZYujqBdYTOSV2InwFfuBRSNkPoWlCSpuSZDNJd98ADnq30N1Ce/OSUhmgEJ3IVo6NRAq8hE/C4/ck0WrAkxjP82DGuRC4VGM741rsOzFpsodjHjXdltrMaCj5uBkmpBoq0wgJ9WGzlvaBY+Wp7KmhTGe1M68tpCP9LiW/DaNx2ZtOJwL7O2MhN5hV6s31PZs+6Ov7vyyorKCNZe7sGyxZFMX6SkxaHsrHlvt83EmnlhlAxI5iw1cC824upp0Xq4raTzNONZYcDxGGKNNS2Spyf059rnBxyZJvTm3Y2e7F3Tns82HLHC5BcYcVHmVfPhUSVKu+Ul+bO50IanzYcpn3VkVrZWlhrEb2rdlfTbOm/yjvXjgarGOtXZ/qXOt2V18Sva8rLS5r/ucWPrgo68NKUts5K0QkVt7V/ftszdEc2csgyu6F6fzgSEEEI0HAa8QvycPI62tnwhRFMib3EhGjq9DZPRStfBiYwdmM7YS1KJOeiLzkMJyswm8qv3uKbQeVjwKFfyq59QtbuQXWwmwFsbLvdi+vctyR4cxy1tjoxODcE5XHHeQa7rVURAZCbXKq+v7Hr4kmq90Y7JrYCLLkzmgoHJ3HlWCXv2Vs5Y55HPVTfuZvwtSroxkcF+1X8G1xO3qAPf5KfyxAUFqA+B8VLqWqYEskdUNd+FAo8K/KrF/IawZF6bsJapL645Mk3YwLNnF9KyRwK39ToyEPX2slKuzLvmCW2TwYZH61RuHZbO6GH7uCjMi60HKxfm3TaJcWrdlfTUmByCj/kJefQ61dn+Ps63ZXWRXZO5XmnzoS0qaNP7oPI6mUHBWqGitvavT1uWHojkjb9duOiGRLppVwsIIYQQQoiGTwJ3IRo8K1HBVhIOeDqCMnOOG7leFei98ukb4cW/azwO9ZZelu1OhtrpWYg3ize6VfaWriiIC2O5OY9BUUogbXHn7x/asa51POPPLT664xzXCqIjimnpb8HFvZxWkcVE+1YL7l1LiHT1ZFeaGg3qSMtxwdenvLKsVjoOrOzAO7EFPHRzCq21m+Z92uTT4kAwi7Iqh9WrCzatCqK8Yw7tjzyBfjSbiY1/d+bTlEzG3ZBOdI3xfdvl0jophH9Sq34B0JOa7oohtBS3FG8S1Tjf4kZaoZnAI2PnenK+TnrPutrf4nRbVufuW0prpc1D3G14+hfTJqKUwOpBdi3tf6y2rEgL482fA+h69S4uj5DrCkVjpu6/kiRJklQ9CdH0GSYotNdCNDoZCZkUZZUon9lN+zeoIH9Y93drZu3xY95qL9qM3segiDLaKoHgljnt+H6zL5s2R/DbZhPtemYxpJWNtbPa8fMWXzZuiuTXLTpGXZ3AsCAbZZvbMn6hJ7YiXxauDOfv1T64ds6mTY1rynUeZbQMKyPU26aEh9XoywnVBfD1zAg27Q5lblIRN12WRozBiyXrTHQ9K5dwdXPYXdi2zh9jt3S6mYL54PMWJKqPcdsQzqyVYewy5TCkQz5tjQF8NS2K5fH+LF4axTJ7Bg9dnkn4ET3i1WBzYdXvXfimKJXx12cQ5STI13sW0c7Nj29/jWbpXj+WLmvB0uIihvbPwy22JV+s8GPj2lD2Rh7gnsElGJKD+beogIu6lDnuBbcr7TMvFi4YWEDF7pY8/k1LViS7ciAxkGUH7Izp6O50nQa3KKdNi9rbP9jZtgw/3MlcFe+AEqJDyvGv+ctKLe3fKriojrbUs3RaV6al6shLCOHvFeHM2W9jTLcTfRad+K90RjvBLQPxDqq6DEYcS1rBfhKydhDk1ULLOfmsqWv5+adMonuH4XbEB9+pYU1cxZdPTWH64jJaD2979DPEFae7TsfFlsvqT+eS3LIDLTzrUTlLGkte/5RPJ2+mtFMfOqiPBLFms+KT+aS3aU+kPZ3Y2BJ8wjyPuO2nyvG3RSnJm/ZT4heAV13fKSdD9fXwOLUbypaxganfpdGtn9/pW78G7kDuToa3H4vR0MwbQjRp0qu8aNSazePgVBUmDmYZcQ8oJeiIIFtPToYbBfoKIoIsh8+g25T8LDfyMRMWZMb9JP+2UVbgTmqJldCQCuePAToOtnITKTnKl61nGRE+tmNfCmRzZe06T6L65BB+rDPzSrslZZsw+JQS7ln1cae0TbobRa7lRPpZD3Uid1LV1f61bsv6q639j7stxRkhvcofP0ev8rt+pUPoAC3n5LPumM64t914fPJFhJ/yrxULcZMmMNnjXl65LRRcTNoTPCzs+vpLNne9k2v7m05znY6T5SBTb/kG3cRnuKbtsStn3voLj7/pxmNfX0i4TllfdYXVHtFv/Bn3N5/isqK5vP29G9e/PJwoJ7OrtS3M8fz23Dbav3g53ar/2KnMe8aT83B/4C5Gtz7Fn4bV1uPKU9yzuzVuBk+9qOetKd1P3/o1cMv3Tpde5UWTJ2fcRaPWXM64Oxhs+Hpb8DgqULXj7mnGz0PrNbyKrjLf39OG6RT8+G90teDvZT0p89YZbfioPeK72o88u18bnZXIFqV412ezK+2mztv7iDPXStt4mfF1s5+6wLau9q91W9Zfbe1/3G0pzgg54378TviMe3ESW9bl49XCFxflTWFN28PGfQZCTemsnbmUpUv2kEoA0ZEe6DJ3Mn+lkcGXtEUXv4O4Yj9CfJVP1pIUtm4sJLSFur0qSF+7nH/+2MzefA8iW6nztVG0ex1zp61he5KesPZBNX6sy2bH34tZ8G8syeU+RMZ4Y0nYyr8zVpFiDMMnwJ+oMHfH51Fp/Fbm/fAPWwuU+RpNhLgeZNEKPR2j0lk+K5ZcnwiiAitD/IrknSyctoz1O4vwbBmOv2v1d/3RdbIl7CRB+cpM/XcRi1dn4RITSaC7Oo2zdVKyyzPZ9uciFizZR6F3OJFBLo7PleK49fwzfSP7rS4Urd2Nftg5dA2ovsJmMjesYt4f69m+rwK/Vso6mlPYNENp7/0GIvx9CGwTWPmjoy2Prb9vxzRqCF1CPfAODiWmhRfGiiy2zVzI4hX7SUtOI7nQnSjTfuYf1RYWDixfzKzvd1IU6ILBLYQwf+3DVe+Kp68fYW1D8ClT9oPYMgxpm5n/505yvA+34yHO1tdaQMKi5fw7ZzO7DtoJaheMp+PLtoykZWr+VvYVehIRY2PX79sw9Aghbe5KtmV6ENWm8tnlhxSqdShFn7yJebP3UhHaAr+cbcz9ZS2JBNMyonIfcL5dS0j8dyHzFidhdS1h2wY9543tfmj9vEoPsmVbGQERXsqxQBkH18RREBCMr2O9j73Mxk7OuIvmoCm8V4UQQgghnNNlsuSVn1icpvbVYSZ2yjf8sbGEAwtXsscWTOvWNtZN/JQ/4qvfsmIj5e+pTF2U7+irwpq0hu8/XOfIz5n9Fa9/mUFw90gq/v6CN35IgYL1fPn0Mso6tCVcCTjTq/eKactl6XNv8fUaOyGRJuI+epu3p2VgLimmuMyGpbiA/MKqbiVtWEuKKCq3YS7MJz+/3HH3riV+IT/OzMPNuJcf//cTa4uVMTNW8eHDf5EW3oaoilW89+g8DlZfhaPqZCV1zs+8ed/XLMzxwit5Pm8+tYBUay3rpNb7+Q+YdjCQ9m3MLBn/IX8l2LClLOG9R2aT7OVO7ozfmbev5q0+6vwmM+GtndgjgjFt+42JTywkraKMwoIKbOZS8rNLDvXNUp31wGq++2Q9OVZlO330Id/t9KNNZA4L35/HluzKNjqqLQptlOUVU6FMU5ydT2FptT5ZLOksfW8GqzOVdlXmPeWJd/nkt2xcDIfb8ZBa1tcav4El222EdozAtvgb3p2iBM7KOqb//hmvfLYPY4gneYtXsjlHWa45ibkfLSPHw8Cej97nq0WHO3ZVVdZhEp//mY9LyQY+vu8N3pi0DYtnPgufnszcJKV9nW5XGxm/f8HrU9Lw8Mzj348Xkezop6Xa+iWuZMqnG8lVN4clkxUfTGdlirVeyxRCNA4SuAshhBCikVDD2ONMHp0YMjCbNQuysFbsYdVaPwaNCqXV2Gu59sLWSjDdlvZKcJh8oPqTKdRpq/6t9tqWx+o/9hA6rAtBnj50GNKC7KXblCIL5vIKLO7h9LlmMJ0ct+VUJlvGOv7d3p4bnr2QEZeN5p4HOnNg9npKO/WjX1t3QgaO4MKzQzA4xtfh1b0ffVu5EXbWKC4Z3dLxtApD1DncPeFiLrzlYoYEHCQ+qYK8BcvY1aIXPcPc8OvejZj0zWzOVKM2bdlO66TDf/Q1PHjnuYx59AI6JWxic3aO03WyZa1nweZg+g8OwCOwDX3a5bB+ZRb5y9eyv/dF3HbDcK555WZGqM8Or1qmmmw5rPwjgc4P3swVlw3hsvGX0z1+NauLYhhybiQekV248LruhBuqTXMoaWzFJO6x0uXiAfQ97yx6hrsQ3iHUUXRUW6S40n50DyI9Q+h1w/mc3Vm9/8j5vHVB/bnlhertqG7zynLn65uDocNQbrt/IO0ig+jYLYisxHSsyjqunZ1Cz/+7gUuuGM71E6/irAAdGEMZOf52rrp2NGNHe7N/Z8ah+R+qQ/AAbnpuDGPuGUGXEhf6PXc9l914OSM7prMvodz5dk3PY+O8g3S+8xouuuZSHnrmHEKPaj+Vs+FjLVP9QaT6dI01CdH0SeAuhBBCiCbMlW6ju5K7eAMpG9ezPaIfg8JsJP44icfvn8rcuRuJz3Ry1lGnXp5cg62I/AILOds3sWbhRtYl+jJodCvwHcBdL/Yhb/LbPHzHDLYVHJ6fPbeAYm8//LQreI1BvniXllF8HLGGzs0Fx9XSOhdcXJVqWOwU5BZjydzHWqUeaxanETByAG2rP8jbaZ10uLprHWuYvPHxqKCksNjpOtnzCiky5xG/WJn/ws0kB/dlSFd3inJLlcDWp/IAUmfCxXFNfTWONvLAP0i7XN2krLtfOSVFx7HCek9atrGw9O1vmPzi96xw702fFpXrdnRbOLLrpa5pa1tfc9w8Xr72Hab8uoY1O/OwqV1DKetYUOSBzxG3ByjU9nD0mqe0s5uywW01r0ZQSlxNWh0MGF2U167qPIyYjHZl9Fq2q0eJsjx3/AIqb4jTK/Mw1mh2la6WJq57mY5RhBCNQI1PHCGaKEshWdkppOZkUVz1RW1LZ+nsb1lT2AguEztmXUtISthOqrNrD4/FMe8pp7cdyg6yfV/KUc9Y/y+suYv59p+V5P6X1bAeZOH0x3n4/ReY4TgTU4va2uyU71NWMjZ/xQ87cjn2EirH/VEZt7Z6lWRsY2fWiW+Fk9Lm9WDNmM9Hn93PI1OmccTVzKdEtXYTTYap1wB6563jh593Ez6qN372dNbMyaHP0/dz/+MX0SfiiB5CFHrc3U0UZuUr7zUbWTsPVF6CbPQnLNyE/8CLuOXxa7lNSTeNbae8x8Cnzyju/+pZxnotY/6aw58fupBgArIPsM/xRrGRp8yrpGULQuvo48KgRGVWc107u4HAqEBMQV248tHKetz60FA6Ve8ywWmdbOTsOUC+UmbNOMCB0iDCwwOcrpMhNIRgF1963H61I++2x67i/J5e+IX5UpiQQpEyD1tOMklZ6npVo/cnNKSAxF2FahWwZSeyrzCclpE127gOllQ2b/Zl5L1n0/+ym3np09G0rLNPED1GvRVLHR/bx+J8fd1IXbSGrLNv4vHnr2XskODKvmT0fgQH5ZEYW7mO5owMMo+8Kv4E1bJd/XwJCiziYEKRsjwb+XtTyavZ7J5umPLzHZ/H1nSlzTNqjFAXi7IuW1Md21QI0XBJ4C6ahbw1E7nzwxeY9POz/O/Vm5i4dA8V9lz27lxPYlkjuMTqWHVVAs5VS2awIad+UY1534+8Nndj5T2GjnlvOK3tYM1czozlazme44pjKtzD2rh9lGiDJ8J8cBa/HOzKww88w5iwOo4Sa2uzU75P2clLXsWm1OJ6XBhYOe5GZVzn9bKQtP1X/tqdpg2fgJPQ5sdmJm71j8S1eoI3bryUmOM49j8x1dpNNEjqCc/jTsY2DDmnnA1bIjnrXB90+iC69DWw+p2veH/cd6zL98SgU8bTK//TKYdGdj2hZ/fCY86XvHD/W3y8woqvSafMy4uBtw6l9Ku3efmpyUx6+E1e/yYRS9wcXrtpEu+M+4xZqZ3p1914aNm6gH5cfmUp0+58k1f/9zoTprpwxV3KvJUyvV6PXqfOV6unIxmJ7t6CvV99wKtvryFbPfPvqJNapnOMrw56Db+Q84pnMeGBz/ng6Q947pE5xJsPz6e2Olni5vLKrW/z/P3/ort+NH3cna+T3acvl48t47d7J/Huc5/z2p0fMmOHFa+hIxiSNoMX7nuP559eT6mfEaVGh5Zr1/kw+NZzKfnyDZ576H2evXcBbndcTF8vpcygx6C0sXpm+ND4Slsra6Wsl/K6qv0NgbRpk83CD2Yy7cOveO6Kl/hiQV617aNOd7gt7MYo2rfdz2/K8r6ek4u1rnnXnLZqXKfraye4T0cMC6by4bOf8tmSIjyNemUdfRl881nkfPw6zz3wJk8pbb+3VG0FbVnK/NSZ65R0aP5qOqIOBvRKeygTVY6vNziKnG9XL/pfN4DsT97mxf97k3fnl+FjVNv88Prpo3rQ32sN79/1LhMmbMMaoG2XeizTcnAFnz80g02llfmNMQnRHMjj4ESjVr/HwdnIXT6Oh5KvYvI1AyDlGx79ZD9Xj7+WvZ98jMct73FNsIGK7I0s2LSJbFMbBvU7hzYeeqxFe1i1eTV7C3WEtB3JyHZhmGyF7N06h5WpFQS3H82oNkEYKCdtz3wWx2fhGjGEkd3aHtXjec35tyzfwarsAPq3jcTFksK23flEdoqiYG8irgFmNm/aQqFff87r3Rk/+y6+mVRZ17HuCUfXiSISd+/B2KoXLawJbEpzI5JtLN2TR0jXMZwToRwxVSnbx+p57/LO3jbccc5ZdO7kzYJPPsL1sjsI3L+VwsAhXNCzDZ7quOZUNm9YwJY8V1p3G81Zkd5H/NpXnKoEr6ZIbHsXsd3SjmEDumDZPZvFKS5073cB3ZUDOqdtWLqPjUlGOreLwuqYRwvYt4gtRWEMHDiU1upNnYcUsU8JDg3eOazdVkq3c0bTqnQLSzZtIMUaQKfu59E/1APrgS/530wPxj9wA5H6Y22PCjL2LmRJXDIWn84M6TuIKBJZ8+97vBMbxW0jz1MOcruhPmK4UgkHdi5g1YE83COHMKJzOb9OctJm1sPbybFP5R5dT0qV7ZNqwK9wFavKe3BZ/04YnY63j81proRZNrJ4bwHBnS5kWIwX8X/fy2emB7nFdyfbSyIYpLaXLpFN+6y07dDGsZ7W3O1sKAjGb/szfO46gXeGFR1RryrFqeuJN3Slh3dK3fuMwtl21Ktt/ocL94wOYEdCISGdlTpG+zn2kaPXHWUf3YY9qh+t1K6kbensiM0mrFNnvHOPfu9VKU1bydTf3mB98J1c028gZ7XyJbvmtnOt3Bf36f3J27mc0jZjGWyKPca+qacwRZnG1J3uwcoMypU23A+92rcgTmljR7uNDCcvaQVLY/eQqwuhR+/R9Aw4OT0Wy+Pgjl/l4+B+oX3IyXocnIWilGzKfIMJqn6JeTXWgkzSij0JC/eoPNNapaKA1P35WH2CCA91d5SZ8zJIzdYREB3s9JnaFdnppOYZCIwJwqvOs8cqM/kH0inyDCEy8Ih+yWtQxjuYTp7Fk5Bof9xrfBUeWScr8R++xDee9/D0BTbyDEFEhLge/kx3sk4qc04GKdkWvCLCCKxqJ0sxGfuLcGkRip/y9nGqXJnfgUIMoWGE+NSo2LGUrObta7dz7tQ76ad8HBbOeI9HN57Lly/10kZwwlH/Etyjw2qvUz04W19zQRZZJUobhx1uF5W1MJuUdBt+McF4n9TOzJ1vV3V/TFG+j0OjfY7srb6Kul2SyvCMCtR6vm8+ViT8Jo+DE02e828qIZowo6evEpTaHZe3VbHl/8vbX39Hqn9nYszzefObaRywWUjcOo84WzhtQm2s+uVFpqcqB3pb3+ONNaW0btkCc26qErLbyN7wOhPnpRAa05KK9S/z0pJEbc6VnM3/oC6TZb+8wvTkUhIWvc5ncaW42ZNY9MfzjJ86hzxPb9KWPc/rK5IdvRpXsjqtE1Zlur++ZkW+FWvmAr6Y8iTvrcrARR/Lt5M/ZFW1q6FttlIKSiuwWYrILSzAcRJWCfZnzZ5DjquB3bOf5tNtJcqIWSz6+Rl+ygqjU3gFC394jt/Tqp/Rt5C88WNe+fJd5he6ULr1TZ75+Dm+jDXjWTCH13+a6RjHWX2tmf/y1dylZCttXDmPt5ijHIzoD0zmhRnLK2dfRVm3xTMnMuHPteh8lC2ntuWnH7LJHkaYMZYpn09kVlb1eh1re6jlr/H0jA3YAsIx7f+KZ76dSaqllMISpV2sxeQVFlXr8dhK2uqXef6fXRj9vMndPo8N6iXnztqsGsc2d1JPx/b5bjyTd+nxd9NjrXW8f/l8yuO8uzYXX89UZn7zIn85LklV2nTFZOYVKAeQVe2lS2Hh9A/513EtbwU7Fr/FtIRyRz1qp7b9Z3y3NeuY+0xt29FRkvon36wvwM8jlT++flmpo7WWdbeRumESn67LcLz3KhKm8t6irZQ6eW8cqPbmtFao953aMJflkVta5nzbafvRa199ynpdAB46cz32TStJ6z/h++3ZjveXNXsR3/y92LHMQ6z7WLF+l7KsdkTbVvDed1NJrL6riUbOqARnobUG7SqDTzCRNYN2lYsP4e2iaFEtwDX5hRDdxnnQrnIJDCWmTX2CdpUJ3+gWxwjaVcp4US2IaXV00K6qWSed43963MMjaVE9aFc5WSeVKSCEmHYRh4N2lVEJKNvUEbSrXNX5RR5/0K5yiaJTy0SmPvYpHzzzAa/9YmHU5R20wlo46v/fgnaVs/U1qT9m1AjaVQbvQKLanuygXeV8u6r7Y1RtQbtK3S4tm1/QLkRzIYG7aCbslCYt4KfZH/L65F8pHXQ5/Q99udvI3TqbnYFn08ffE/+WA2mVt4oN+XraDH6Am/p0IiygGx0DMjioBiVWMxVmC26hA7m4bzc8bDksX7OdsG79CHYLoFOnNmTuVB8bVMX5/DfZz+GOUYHMn6oETJujuOX83jh+J1YCj6GXjuO6QVdy17Bu7N++znE/YiWD0zrVpPMZxl3X3MQlw27iXK8E4rIP3/in9+jM0M7RuAcO4PKhI2iv9lNkaMHoscoyh1zL9b382ZeUgq1wKf/si2BwhxA8vLvQLyKDtbuzKmdyiJ7AXvfw0MgruXFIT0pMZ/HQFddy+QVjaJsVr5Qb61FfPQE97+ORUZdz1ajh+KXu1vKr82DAqIe4cuBZBOz+m7g2d/G/ERdy/rBHuKVdAou2pR/+ceNY28OWybI1u+g65jGuGXAhY8feTs/Uf1lR1p5zurbEI7Avl5w9iIiqT0dbFqs2JNJnjLr8y7jluns4Rz2t7aTNDrORtaWOeroN5rorr+aC7u0orWM8nfcI7r72Ji44+z7Gtk5k9a48Zc5GIgY+wqPV28u1D8M7ZrF8cypWyw6WxQUxpGeYuqR6q2ufqWs7GgIv5IFrbuCCc+7jqtYJrN6dQ6bTdSqge68+ZG5fSrqtgtgtGwnqcQ6u25299w5H7l7RwxioBE5hHS7n0o4urHS27Rz3Duvw6Hwz9w+9iLOi1OtFjrVv1oOhLWMuu43hMeGEtepMaN4BUqr9qCDOFPXXRknHn/S0vOV/PDZWvUrMWXkDSsYIxnwwkVdeHsvV99/Mcz8+xtW91UuxnIwrSZIjCdH0SeAumg2Dmz+hwV0Ydc3HvDOmZ2WQ7GCnoKgAS34sq7YuY8X2AwT0GK4EtFYSljzJg59/wqxNy9hTYHPcR+XT6yEe657D1M9u54k5Gym05pNfYiH7wHJWKNOvygjk7F4dtXmrbLXM30hQh0FEZW8jM6wfHQ9VyB03R/evyrGLly/uFcXV7iE2O61TTToXVxwd/epccTXVp9dYdTzHBLiYXJQqW7AX5ynrlsXu7Uqdt67goM9Qzo12XEB/BBej9guI0YhJWW5lZ7UmDHY1wqlffV1N2jyUf10c09Wg88XPWz2FoLZlIZ4+AVSe4DDi7+NLWVm1+5Htx9geSnleiScB3tppL0Mg/p6lFJfW8sWvzq/UG1+vmh+XR7fZYeo+VXs99Z5++DtmV/f66FzdcHfsCib8PN2V/BLH4cnR7eVK176DKdq2iH17FrMlYChDfI/v473ufab27XhUHUuLyatlndzajaBPwQpWZGxlWXwYZ3cPosjpe6OWute57XT4ePkfcUas7n1Tod5bXPnKOcteZnxxF8/M/IPF23aTo6x0neML0cAZfPyV98/xfTacOXrcAoMIi1S+B+UMshBCSOAumgsluArqzYh+w+nXIlALKKoYCAwKw+TTl2sueYB7LnuAuy+6hC6uSazcmEG/Kyfw8KU30k97DIsNP7qd8wRvPXQjnmtmsZlgIgJMBLa/kbuUae+57H5uH9zNMW4lYy3zz2P17OlYRo7j7JQp/LBHC8/tmSQmq72GW8lOTqQ8IJLAqneqzXmdjpveiN5mPnyW2gmDbyQhxkB6j7zPUed7Lr2bMa2OvO/5mE5WfQ/RExgQTF7yHhw96tpy2ZNcRFR4+OGAzXCM7aELJswvj4Rk9ey1MovC3ewtjaFVYC3Xr+qCCPXJIiFJ7V1aCWHzU8g4Zu/9umPX06Hu9bHlJbBXvSzflsXetHJCgwNrTH+YKXoUg62LmbxwE5E9hmg/DJwkdWxHW77aY3T1OgYRUts6GbsxtFM+y/7+nW3BQxnk7eL8vXFEHwfV1LrtamuVuujxcHGhoCDH8V7LPBhPtjrTaqyZy1iUN5AHbnmCe0YNJFRrU2vBXmLTCysHhBBCCCFOAwncRfOgN2BUgtUjGRy9yqodrvp0v54x5T8y/suXePv7Zxj39c/E2cPo3tbAij9f5+3v3mV1ibfjcTP7Fo7n4S8m8ur3v5He/iw6G3w4a/gllCx4jOe+f403vnqYiQuPvNzb2fy3xU3h+6zh3HnO+dx4UWc2/Kks0xFJW0hY9BSPffYIzyzTcdmwQah31jnqanBWJ3Waw+uCXsnQ6bU3t9rbrJJqvNONEZ1pmfQDL0z+mMX56nTatAq98kKnUwIhz3O4enAJUz97ktd/eomJHz/LtIPVzyor4yrT6apmrrSxQR2uHMCgdtGsr6W+1ep4xDyUPLUX3iNVWzdlCv+e13NB2feM+2Q8L3z8GH+53MD1Xb2qzfMY20PvzznDL6Jk/iOM+2o8T3w2A7eRNzFIDRaPWAeNPoCzh51Pzuz/Me6LR3hY2XZ7Kmpps0N1rU89HVPWPp7KupfpXz7I05+MY6buSsZ2dnfM32l7GVozrIcL21NacU5X/xptW70NDztUXqNOR+0zdWxHo0saf2p1nGG/nCs6e9WxTiY69R5M6c7txPQ8y/HjgtP3nuN9cJhBaVuDup51bLsj2kVxxLCzfVNpk4guQ/Da+CpPff4Yk3ZZ8Kt8Mx2a1hDQkx76pXz582u8Om0lhR5GZWorKeveZcLc6rfDCCGEEEKcWtKrvGjU6terfH1VkJeVRK7Vm9DgYCo7tjZTmJNOqUc4IW5VyzBToI6nCyIi0Pvw2XtLHimZ2Vjcw4n0c9KZkdP511DVK/lNrzLMnoPBP4pAx/W91Tmr0/GrKEoiucSDyJCA2ju6UVQUJZNcYME7oAVBJ7S8k1PfI5WTm5lMgSGYFgHeTtpacaztYc4lOSsfo28LQpWA7Fispekk5VnxD47A59ija+pRT4ejx6vqJf+pO0ZiKzQQEhyEu7N95hAbOauf4dE95/PxTUMrnwpwUtW+HW1lmSTlQ9AR+3V9111Vj/dGdce57epiLUklpdybCH+vWvajQtJzS/AODD12vY6D9Cp//Kp6lW8X0l/LEUKISisTfpde5UWTJ4G7aNRObuDeAFh3K4H7R0c9tks0P9aD6qPWPBn/wPVE1idgtKUx87OHiTv7a57oJgcuDZ0E7sfvcODeT8sRQohKKxNmSOAumryTeP5ACPGfGdpw1V0vcNEJ3bMrmhJDxLW8ePMlhNf3U1ofyPAbPuHBLnLQIoQQQgjR1EjgLhq3GvfsNn5GvHyDqOOxwqK5MHgT6Ot1HB/SJrx9A45xOb1oSHRN7vNLCCGEEKeKHOKJRs1o+m/3twohxJmg0+vQG+XKGiGEEELUjwTuolHzDvZC73j4tBBCNCY2vPxPfheCzYLaM48kSZIkVU9CNAMSuItGzTfEV9mL5VNbCNGY2FH7hfXwk/4IhBBCCFE/EriLRs0r0AtXdxf1+QhajhBCNHBGG2FtQ9HJTe7HzS5/8id/8ufkT4jmQAJ30ei16tMSg5ucdRdCNAZ29CY7Mb1itGEhhBBCiGOTwF00ehEdw/Hw9wCDTcsRQoiGSAna3ey06BIp97cLIYQQ4rhI4C4aPfVy0x7nd8PooVP2aKuWK4QQDYkdnYsdD3832g1sq+UJIYQQQtSPzq72kCNEE1CcV8K639djKbNjN6v3jsr9o0KIhqDyTLunErT3vawPRhd5jOWJ2JS0hHm7ptIuuJ+Wc3o8ds0EcjPzmu3jRwtyi/D29XQ8wlCI+ijMK+LL+e/g5XP6rixate8PXhozFTeTdPopmi4J3EWTUlFawY6FO8lJycNWpmTY1ItK5GBDCHEmKF+vJht6o52oblG07d8avUEudDtRhwP3vlrO6fH8nW8x/LKz6NKng5bTvDx+7Ys8/+kj+Ph7azlC1O3xayfywYyX8Q3w0XJOvVX7ZkrgLpo8CdxFk5SXlk/ipkSyD+ZoPTfLwbI4AcUF4O6p7D4GLUOI+rBjtysBuxKkh7UPI6ZHNB4+7lqZOFFnKnB/8b53ufim8+g1uKuW07zcNuwRJk2fgF+gr5YjRN1uG/Yw7/32ogTuQpxkEriLJk3dvUvySigtKMVmk11dHJ/CBfNIefge3Hr0xr2nmvrg3qsvxsAgbQwhjmYw6vH098TNy03LESeDBO5nhgTu4nhJ4C7EqSGBuxBC1MJus7G+a1dKYmMrM/R6us2eTcD551cOCyFOm6rAve1pDtxf0gL3ns00cL9dCdzflcBdHIfblcB90mkO3FdL4C6aAbl+WAghaqFTAvWoJ57QhsA1Ohr/887ThoQQp516qkHS6U0qZ/mSTnEyk7svhawiZ2UNPKmc5Z/KJEQzIIG7EELUIeT663GJiCDwkkvwPess4u6+G1t5uVYqhGjWyovITM4mr9imZWgsZeSmZJJTYNEyjsGcwJyJX/P7mhJl2kw2/TKfFbuU1w2drYzMnbvYvDqB9MIabXDSWNgzdQoffRVLsZZTNzP7Z3zLxBtfYsKnu6jQcq07F/PZ87PYnGcmfcUiZv1zQCs52uFx679OttTFvDr8WaZstJzQ9DVZ4+fw2tXvMHWd2tNudUUseewRHnh5K6VajhCieZDAXQgh6qB3daXdxx/T6aef6Pj993h27syWkSMpT0nRxhBCnF7OTredyqRylm9m10ev8cBFT3L3pV+wPMeq5RexesKz3DPmae67d3a18etIlgy2z13D5vgSbMV7WfLVLOauynE+7mlPVWrkW1L45+Fn+b87J/PVqx/y2LU/sbWixjgnJVlIW7eW5asOUuLoq+YYqXQbMz9YSWb0IM4bEIBBy7ck72LlnG3sLywlbtYspv+6/ehptXR43Bpl+Zv47r5J/LJe/TmgepmVpFnL2e7eib5dDbVPX+9kIXHuBg74d2PwANcaZe70GNKSgnnLWJdfPb8hJZWz/FOZhGj6JHAXQohjCLrsMgyeno4nFLR45BFaTpjAttGjyV+1ShtDCNH82DFXWNCFhBNWvo2F83NRz6/aMjeycImdqHa+6MzaGffSDDb/Npupn/3D4k25SsivspG3dTUzP5vNwq1FjmkdvDty0dM3cu2oEKwZe1k9P44MdQJbHnEL17MzWRlQXu9ZtI19aals/HUOM37fTVZFEfFz/mHa1yvYlXWqzn4fZo1bw7xVxXR7/Hk+/PNNPvxgONFGG7nbN7FxdzYHFi1g2ufzWbO36oxxOakrl/L7p38y8689ZFc2gsJ5vjV7L0u+/ZPfZyZQ4HR1zGRuXMmfn81k2o9riMtU2tpWQuLyHRwsUsJbdxfcfb2VwL0md7recAP33Kf1lVCaxsbf5jBt8gIWzFrNspWHf5Qt37+FOZNnMXtJKmW2YhJXbGHT+l1snL+W1VvzDm8zazabVyXh0r09bVy0PI05ZY+yDXeTWnwc28ycyIp/0wgY2p+urkXsnTefXz9V6rEomVLl0N27b3uiy+LYeNTZeCFEUyaBuxBCHCf/ESPoMnMmex96iNTJk7VcIURzpPPswMCBJnb9s550q43MeavZ6duDgV2NlSNYU5n9yKu8NWUnKXHr+O7et/hmRQnWnX/z2j1fM23mKqaNm87Gqjtwyvfw5/OT+WlBLpZ1c3l//J+sz1WCuvLdzHxmMlMXF2Arj+ev5z/n1Vsm8cWPi/jt5fd4/trXeeOjpfzz+be8OmE5pzx29/PBx8VC7A8/MWNxJm5twvHTm4n9/hvevudlXnxrKUt++o137v2eFTkWkn/+mKcfm8uWxCRWTHqXF95Uz3jbnOdb9vP7/97l4y9WsPjzz/hh+aEoX6NM9+snPHnv76yMz2DXtO95/rYfWZ9XQPySPWSq22HjatbuKka9DuJISp2VOr7/0QbldTGrX36HD2ZkKLH3Jn6e8BO//r2vcjRrIjPG/8ycGfOY8tiH/Lg2m7hl8eSo816/gqUbsg/P23KQxL12QmLCqB632wt38v3/Kdto+gHKrfXfZuYta1mdHET/C9qQ88vnTHxpOXtTUtjw+3r2KU1hCIkg0qeMg3EZlRMIIZoFCdyFEOIEuLdqRY9Fi8j991/i7r8fW0XVnZRCiObFlW6juuC+fR3L45NZOnsf/sP60dZUWWrds4YFG3R0u3oMF9wwkn7hOaxfGE/iog0kGntwx48T+eDri2irxfn1Z8Ft2G2889tDXNrJTrZ7f575fQIPXxGoxP77Sa7n7fUnyhBxNnc/P4xWRZv58ZGJPHTfHOK0m9Ctvv156JcXeOvlQfjlbmfd+gMsnRGHbsBQxl47kjFDA8lauklZhSSn+da4TayOM9DnyWd4748nGdulxnlzdbrpsdiGXs1zb9/FUxPPJSR9I8s3+DPy8RFKWxpod9P93DMm0MkZ92osmSTElRB1/hiuun8QbVzc6HZx/8oyQxAj3prAe9+PpZshh3273Rn2yFBaGgx0uP0hxt3WBm0TYysuIK8EPP290Gl56i0Tm979joXGoTz8xghaOkauzzYrZ/vsTeTE9GZIVwNFWQVUmLyJOns0/5t0KZ3V+eg98faBQqVMCNF8SOAuhBAnSL18vtPPP+PWsiVbzzuPirQ0rUQIcao4u7v1TCaVy8C+9PJNYtnHf7B0TzADzm95KGC0ZuVTaDeTtOAffvtmDdlRXejRwZvCXCXS8w8kxFuPMSIIX22Cqnmq7EoYqAaCdtuRy6v61yc8EFe9Bx4eoAtS5uWqx8PbDZ0yQdUd9/81qZzl25WwNez863hx5os8dXMMZWtm88eSyu7SdP7+BHnoMYUH4KeroKw4l7w8O+aEjcz8ag7LMoLpPjBKWa98p/nW/EIl7PUiONIDnUsgwYGVh6uHlu2YDryC/RzBsy7AG28qKCmxOspVh+t5OKmq/lXZjWG07eTOnimfMPGeP4iN6E2/LiZtHC+CIpS2dHfHQ1mI1Xp43qqqeTqSVqD+W5WnTEFxYRmWsgoser2WV49tVryT5csKiR7Zn5ZGA61uuJ5rB5Sx+NmX+b/bZrJT2W0cy9BmWLW8hpRUzvJPZRKiOZDAXQgh/gP1vvfoceOIfvppR/BesHatViKEaC507p0YOMSbtGVbyWjVm8EdD5/n1UcEE6DXEXze9Yz76CGeeuUarhgRRVC4H6TGsWFjGntmbSSh5tXgCp2bCy72TBI2JRE7YwPxDejCHvOu1fw5K47kQj1+YV6Y9Ebc3CvX25a4naVrlTrP204ygYTHhBASqkcX0Y/bJz3EM+/fyW139nac1XaWrw8LxJ8cdi7dQ/K2VayJrXH5gCGY0HAdOTsTSDfbyN+UQArBRNW8wfxYyuNYt6qMmHP60WvM5Tz65sV089bKnFECcDUEz09JJSOr7NA97noPH3yUQLwot7BaEOnL4IcupmPOcqZ8srOePeIr81ixjk0F0Qw8PwKDsoScZB19xo9n0iv9MO3ayKZ9SnhvK6QgH3yCT99z0oUQZ54E7kIIcRIEnH8+XWbMYM8DD5D2zTdarhCi6dJhNBnRq0nnStfzexFsdKHt6H5EG6vKDBhaDuGqa0LZN+kF7hz+CLeOep1fNlQQPmYkQ8JT+fPe53jxp3IlEFXGNyiHZXoDRqMynVGPsVcfBkQUsGT8y7wxC6JbmNAr+dXH0SmHckZlOeqwyqD8qzcaOe4r74+XNZcNk97l4fOf4qm3duM56gouH6IFzvoclo57kYlfHsBn2AWc1yOS4XcPIzx2Go8qbXD7OY/zzKe7lcqGOs03xAxkzOgAkr9T5n/PAsoiAzEalPWqnLsyXQjD7xpGi4Q/GDfsYR58aQ+h11/FRZ2VtVbbRhnXqGyD6nRKm6htYzDoMCjtpVfbyxhCdAzsX7iIf3+cxptXP834T/dWG1eZUJ2f2r7qNH5t6NzBSNwnrzL+w90c+jnBpQWtWuvI2JuC2l1c1fSmlkO5/e625P/xG3/vUfYJdZ51brNCNs7dQVm3PgyOVtfWRu6yqTx93sM88PxG6DmQ/m0NWFNTSCp0J6pDqGN6IUTzoLMrtNdCCCH+I2tREbtuuw2XsDDavPuucuBedRekEOK/2JS0hHmxU2kT3FvLOT1euu89Lr5pFD0Hd9FyToSN8uws0rKteIQHE+ythdXlBaQmleMVHYx3bR8VpfmkZNgJjPFDfTDY6XbH8Md4Z9oL+AU6ObtrLib9QD74K+sUYFLC0XJWPTmOD9Iv4O13+2ArciU02udQh2220gLSkwqwegUQGu5x+B5xp/lm8g9kUuYTQqif858hbErbpCUVogsMJVxZ/vGyJszm2WsXE/PuK9w7uIR/HniaKfar+PmzYdoYTijbLOVgMW4RoQR4VP2UYCNp8hs8+WsEj828hd7uWvZxsmUt543Lf8H84ASevSZQ+6HCSlFKOrk2H0JbeCltaSNn2gc89LE79/x5D0Ma4En3O4Y/yrvTJ+AbcPoqtybxL14aMxU3k4eWI0TTc+jHSyGEEP+dwcuLzr/+imtEBNvOP5+KDOn1VwihxzUwhJj24YeDdpWrD+Ft6gjaVe6+RJyhoP2YTJ6Etokg1BG0axwnunUYfIOJqha0q/Tuyvq2a0GLakG7ynm+Cd9oZd61BO0qvdo2ynQnErSrDMEt6dLewsqJL/Pk9a/za0JrLr6pj1ZaC2WbRbQNrxa0q/REXHIuvfUJbN3h5J6HerLnKvO5YAyXj/KvdoBuwEv5PolyBO2qYratTSFozLn0lSvlhWhW5Iy7EEKcItmzZ7Pvqafo8M03ePc5xsGgEKJOh864B53mM+73v8fFN/7XM+6N1x0jHuOdX2s54+6EuSCXPIsHwQEN8qcGJ6yUZuZSYHbFL8wbVzml9Z+dkTPu++WMu2j65ONJCCFOkcALL6Tzb78Rd889pH//vZYrhBBNl8nHvxEF7SoD7sFBhEZI0C6EaNjkI0oIIU4hj3btHM97z/z9d+IfeQS75RQ/XFmIJsx+Bv7O1HIbyl9zX3/5O/6/M7HPCNEcyKXyQghxGthtNg688gp5S5fS+eefMQUFaSVCiPpQL5X/J/bn036p/JPXv0yrjtFExDTPHrynffE3F904EnePxnQWXZxJ076YxUd/vXJaL5Vfu3+WXCovmjwJ3IUQ4jTK+usvEp99lg5TpuDdq5eWK4Q4ljMVuD9+zYuER4cQEtE8f2z759fFDL1kMK5ux/mMdNFsqfvMx3+/KoG7ECeZBO5CCHGalezaRez11xP1xBOEXHedliuEqMuZCtxfvv99xxnn5to53Z0jHuftX5+vd+d0QtypPkJw+gsSuAtxksk97kIIcZp5dOzouO894+ef2asE73LfuxBCCCGEqIsE7kIIcQYYfX3p8scfGDw82DZmDOacHK1ECFE39UJBSacvqZzlS5JUW1I5yz/VSYimTQJ3IYQ4Q3R6PS0nTiTivvvYMnw4RVu3aiVCCCGEEEIcJoG7EEKcYUGXXUann35i1y23kPHrr1quEMIZZ+fZTmVSOctvLknlLF+SpIaUhGgOJHAXQogGwLNzZ3ouWkT6d9+R8NRT2K1WrUQI0dCZC/LJK7ZpQ4ridHZtyaRcGxRCCCH+KwnchRCigTD6+dF15kx0RiPbL74Yc26uViKEaLAs+5h+17M89NBC0rXf26z7tzB7WiyZ8vubEEKIk0QCdyGEaEB0BgOtXn6ZsNtvZ8uwYRTv2KGVCCEqObtQ9lQmlbP8ymTeuo5t0cM5p3gjK/arkbodQ1QXRl7WnmCDnZL4WHbtS2LN97NZsqP0qOkbflI5y5ckqbakcpZ/KpMQTZ8E7kII0QAFjx1Lpx9+IPaGG8j8/XctVwjRsFSwY2484eeNYMQ5FtbOTUIN3a0H1vHTZ5vJtVpJ/ec3Pnh0Blt0PrjrJMAQQghxYiRwF0KIBsqza1d6LFxI6pdfsu/ZZ7Hbqt1DK0QzVfM826lOVZyV2YtjWbk1gv4DvYk6rweGRevYY64sU1WOp8P97Au49caz6NfZ/fC0jSSpnOVLklRbUjnLP5VJiOZAAnchhGjATAEBdJs1C7vFwvZLL8WSl6eVCNFMOTtqP5VJ5SxfSUXL17Epcz9zx73Pa29tJS9lE8s3KpG76tB4Orz8vTFUm65RJZWzfEmSaksqZ/mnMgnRDEjgLoQQDZx633vr118n9MYbHc97L46N1UqEaG6cHbGf6lSlRr6tgA3zDtLtif/jsTfu5OE3H+SJ23zZPCeWMnV0h6rpa0wrSVKTTlWclZ2qJETTJ4G7EEI0EiHXXEOHb74h9tpryZo5U8sVQpwJttxtrNvbhkFn++Hp7aEkT6LO60nw2o1st+jQ6ZWkjGdQjrT0ejncEkII8d/IN4kQQjQiXj16OO57T/n4YxInTJD73oU4Q/SBg3l8xk309dAyFPqokTz/9y0M6H4xr34xilCDgZb3PcXzNwfJAZcQQoj/RL5HhBCikTEFBtJt9mysxcXsuOIKLAUFWokQQgghhGiKJHAXQohGSGc00uattwi++mrH895Ldu/WSoRo2uzyd1r/pM3l73j/zsQ+I0RzIIG7EEI0YqHXX0/7yZPZqQTw2bNmablCCCGEEKIpkcBdCCEaOe9evej+778kvfce+19+We57F0IIIYRoYiRwF0KIJsAlOJjuc+dizs5m59ixWAoLtRIhhBBCCNHYSeAuhBBNhHrfe9tJkwi6/HLHfe+l8fFaiRBCCCGEaMx0doX2WgghRBNRuH49u++4g9ZvvEHA6NFarhCN16akJfwT+xMtA7trOafHC7e/S7+h3WnbtaWW07y89cjn3DvxRrx9PLUcIeqm7jPvznge3wBvLefU23BgLi+N+QU3U7XnMwrRxEjgLoQQTVRFRgax116L/3nnEfXkk+h0Oq1EiMZHDdznnoHA/ZHLJmIyGfD0aZ4BQfz2RFp2iMKotIEQ9aHuMx/NeeW0Bu4bJXAXzYAE7kII0YTZzGb2Pvoo5vR0Onz9NQYvL61EiMblTAXurz3wERfeMJwegztrOc3LvSOf4o1fxuMb6KPlCFG3e0Y8xZvTnpHAXYiTTO5xF0KIJkxvMtHuww8JuOACtgwfTmlCglZyMlVgzsih4fVlb8GSmefkCb82LBmZWLWhU8ZWREVmsTYgTh51i57OVMVZWXNIKmf5kiTVllTO8k9lEqLpk8BdCCGagbDbbqPtRx+x47LLyJk3T8s9OezbX2drq2HsX2/Rco7Bson9g/1ZajKyxGRiqbs/q895hKyDJzeUtu//mB3tryD5gA1y/yT+/HvIOKi8LvqV3R36s3dBuTZmTRaKXh/CchcTS4xKHdVkcmX1ff9o5fVjm3kf63o+RHaZllGDbcHDrO89jrwKLUMIIYQQohYSuAshRDPh078/3ZWg/cArr3Dw7bc5WXdK2fPzsVoKsBQogbcll4pMJVKtyKEsLhGzs6DUkkpZYjHu/zeXAQcS6DvvaTx2fkzil1ux2/IpTyvCnpdMWe7hHwLsuQcoiU/FWj22txVTsTeWkn3ZR5ztt+fuV/IysZUUYa0oxVZqx56+nYJlyyhMNoO5CFtZMbaiCiwH4ynLrhnAW6nYtx9bq/votu8gAw9Wpr7vna/UK52KQ4F4CebMwkPnemw5ynLjlDpqlbEXK8spKlSGLVjSlfpUZiuTZVNRaEM/6D7avn8fPi5qndMc83XMI7H61Qs2rKkJlXUsy1D+q+VXACGEEEI0aRK4CyFEM+ISFkb3+fMp3buX2BtuwFpSopWcHJYfb2Vt3xFsPXco20b1YHX3+8nKrh5WV6MEtHazUmYpw2YLxL1DONbf7mV9j4Fs6NWJdTHncmBnDvmvnsfqdmezY0xvZX63kB6vTLfvR3Z1bcmGi25ix5BWrB75LkUWK2U/38q66C5sOX8IG2+bTrm6aGsCqU+8T1FZPCljryQ5Xs0sJn/iCDafP0wZvztxMzMdVTqSDbvFrNRRSVYdOlM+Gbd1ZMsLqx2BtW3J02zq9gDZJTnkvjCMNR2GsuMSpY4dx5K8tVqAnf8zuzoOJXG1+itGGXlPD2L9A39im/sSO655idyyPNJv7cDGEeexeeiFbO0Rzfr7/1LqnUj6LZ1Y1WkY24Yr7XnBENZd+wVltTRnc1H94tjTkao4K2sOSeUsX5Kk2pLKWf6pTEI0BxK4CyFEM6N3caH9p5/iP2yY43nvZYmJWsl/ZcNWqgTh6Xr8v99E378fwyPxb3I2mZWiCmwlJUqsXhV12iid+n9sv3AM22+eRKHfIPw6eirxdDHWHKsyfRpDMhfSwu1b9r0ai//XW+i3cyUxIb+R8MZ8LPHbMJ/7Eb22r6Xnx1eiW/E7uXvXkfLqVOw3TKdf3A66XOmNEsuDoTXhbz2Ml1tbIn/7nci2ylef3YLLNd/TZ9s8orvuJ/vvDZXVqsYe/zk7OrZjbTs19SDuNxu+5/Wn/LefKCgrJvf7GViGXYRP/IckvJVM0K/blDqupXWnxex77mcqqlbV+1wC+qeQ+dNKbMULSJ9RiN9F52IvKVaGlfW1KG1TVk6FfhSdNm2h22MdKft7NrYNn3NgqoWQadvpt+FHAgxp2EuVNmzWR6k1D9dPR1I5y6+gOLsI86FhK2W5BZRaD49jKymgoFTdCQ/nNb6kcpYvSVJtSeUs/1QmIZo+CdyFEKKZCr/rLtq89x7bL7mE3AULtNyTwK8t7i0MEByMUaeENWX7SR4dxDJPT5aF30hmnjqSAY87f6bv9u303x9Lux6L2fvgx5Sqwa5bZ7x6eaBzdYWEPZSVF5A34Xw2Dr6W9Iwo3MM90Xc4G++ir4g9+xx2vrsWm61MCYKTKU/T4dFvAEblz21gH1xqe4KVzhu39jHoDCG4BOiwVxx9Tb+uw6P0LCznnHIllaTQ6Sp/3K6+lYDCv8iY86eSTATdcRHGPXGU0RHvvl7Kt2o43r1bYlPqXV51LKmPJvjWUVj/mkr2n1PJMV1O+EX+WmEVHca2HXE16DEFK2VmM6SlYta3xauHJxhbKG0SoYwlGoyKfUy74zNmJWi/0JTu4NtrXuLjvwodV2SoV1ese/kdvl5U6hiqybJ1Ph9/HqcE/kIIIcSxSeAuhBDNmO+gQXSbO5f9EyeSNGnSybnvXac/MsBUAtfIOVkMKS7m7OQfCPZTM+1KQF+IOTOT8riNFCeVqbFrJZMbei3g1rVuh5urH/4T59J7zUq6vns7vu18KHjzQQ7sGkL7xUvp/GAPZVKLEry3xj0GStavV4aslG/Ycvist16tkw37oXvkleFjfQPayrHmZFKh1LEiOwerGtsHXkLopZD1+DPkBF1D2FAPdO3b48YuCtcVKtOkUrghEX3bDrhWawTTJbcRyB8kPDMH0zW34efsiUVKHavTde6Kh2EHefOTsRduIXfpATmvpKo6wXa6UpWa+aYYuvcsJHZNnuMqCEvsHvZZ9exfs4cytbw8kR27Quna15WCXVuY/9Vspn+zkh0pFihKZeuiWLat3MqKObtIUe9YKctmx4z5TP9iMWt3a1dWFKawfVM6Bxcs5I+/9lNatezTmVTO8iVJqi2pnOWfyiREMyCBuxBCNHOuERGO+96LY2PZdfPNWEudnyGsjc7HB4PBC4O3Cb2XJ3pPTwzKt4vOVflXTV7KgMEFg4cHehfltTEU10gXSt4dzqqQUFZ3G0ta8UhiXrsbd28PDJ7KvLSgV9f6dlo905Hcmzuztmtb1t82A3tYOO6DB+OyYxLbevdi+686PIOTKU1sR8Tzd2KYeiXr2ndl51/luJjc0bvr0EUoQXBwImk3D2Dre6lK3ZS6eKoLcVHK3Wo8396AS1Qkuj0fsDU8RKmjkoKDWXXVN0qZJ/5334RLShaet96Kt1GpY5f/o824FmRd3ZV1HfuSsGsorV+8FldvpS2U+aptgecIIm4KpzyrG2G39nb8RqFT2slRblTaxlOpg7Le6teyXvlXTbq2d9Hq+V4UPdiVlf2epdgzQPsBQjQMrnQcFEP6+j0UYyNtwwF8x55Li127iSsHa1wce4M70N0nnfVzDmCLiCTSup2vnlnIgfJyigoqsFWUkp9dQrkln5UvTmZmUgBtW5tZ8fxXzN1nw3pgIz898yU/r9Lh66WT+EQIIZoxnf1kdSsshBCi0Uv5/HPSpkyh8y+/4BYdreUeSzkVKQUYI4LRq88uz9bhEuyp5FuxpGahCw9VQuF6suVTkakEzqHVA2mw5x2kNNWMsXVrXFwr86zpeykvD8Q92g/ycrB6B2BUFmQvSVMCZFdcoj2wphZhCA90/EptL0yhNNmCS9tI7BmZ6CPCHPWy56ZgdonARa1yvVgwJ2co6xWBUZ2xxpaTSFmWCy5tlHx1xrZCZV2UtqhaF0su5RlGXCK8K4PvauX2okzMuuDKOljzlPqbcNHNZs9N8/H54APCWiWTfElfEv0+Z8DUqzGq0zczm5KWMDf2R2ICumk5p8frD37ChTcMo/ugTlrOYbbc1bx3axxDfrqEvKe/oejBG3B95yty73uMEZs/5TPzVTx/V4Syn1koTEojPW0H0yZkMOq3m+i+6nuemN2JN9/siylzKW/cFkfvCcNoabSRPH0qq7o8yFM9VvDcBDO3/HA5HVy0hZ5m940az+tTn8I30EfLEaJu944czxu/Po1vgLeWc+ptOjiPl8Yo31smZ5czCdE0VDvkEEII0dxF3HMPbd5+m+0XXUTekiVa7rEoQbIatKsv9V5a0K4yYDyeoF2l9z0qaFfp/KLw6HQ4aFcZQtvgoQTtjrPXfpVBu0rnEYZbtL9SH1dMWtDuyPeOwKNjNEZlRJMWtDvy/Y8naFcZMUUeGbSr9AEt8WivBe2ODO8j18Xoj2tV0K6qVq7z0oJ2lcEP11BPdIH9CeiZxMGRMayMPIukwitp89ylzTJor85+mv/qWqLOtwNdow6wfd1ududG06lVAN36uLB7dQLbNlfQaZDyvjAnMffht3nzveWsWnyQXGvV1IfnbMsvosiSz96lW1m3eDspQT0Y2NnVUabz9cLHUDXm6f87E20uf43770zsMUI0BxK4CyGEOILvWWfRbc4c9o0fT/KHH560572L42SIIeiN2fQ7mM7gzDQGrJhMWJdqv1yIM0/vQ/cB3uz6YRUpbdrS0mQgfGAbLCvnsSazFd3aG7Ed2Maq9E7c8to1XH9bJ4KrftgxGtBbrTgefBAcRJDJl663XsIND1+mpIsZ3sO9cjwhhBBCIYG7EEKIo7hGRtJjwQIKN21i9223YSur9lxyIYRGT9CgDrjuTCWkbxvclBxjx850yNtHRufOtHFRxohoSyfDVn6a+CMfv76DIh8lYFfHa9uSFrvmM+mxP1hd0ZWLrizjrwe/4JOJ3/PefV/xd6wS0hvUThT1crAmhBBC7nEXQghRO/UrIuWTT8j46SfHfe+uLVpoJUKcXlX3uEcHdNVyTo83HvyEC2q5x73ezCVkpZXjGeGPe7V7R8y5maQVuBIa44N6C7s5N4u0bCue4cEEeDaMcP3+Uc/w2tQn5R53UW/3jRzP66f5HvfNB+fLPe6iyZMfcYUQQtRKp9MR+cADtHrtNbZdeCH5y5drJUKcKZX30J6+pHKWfxzJ5E5QlJ8StB+Zb/IPIirGWwnaq4YDiWobogTtak8IR4575lIVZ2WSJDlLKmf5pzIJ0fRJ4C6EEOKY/M45h65//03CuHGkfPqp3Pcuzoiah+qSTn1SOcuXJKm2pHKWfyqTEM2BBO5CCCHqxS0qiu4LFlCwejVxd92FrbxcKxFCCCGEEKeSBO5CCCHqzeDuTocpU/Ds1o0tI0dSnpKilQhxujg733YqUxVnZc0hqZzlS5JUW1I5yz+VSYimTwJ3IYQQx0W9773FQw/R8sUX2TZ6NPkrV2olQgghhBDiVJDAXQghxAnxHzaMrn/9xd5HHyX1yy+1XCGEEEIIcbJJ4C6EEOKEucXE0GPhQvIWLybu3nuxVVRoJUI0EXY7VqsNi8XaLJPaEaXVSb4kSbUlIcSpIc9xF0II8Z+pXyVJ775L9p9/Op737hIWppUIcXKoz3GfE/sjUQGdtZzT46ELXiAvu9Bxi0hzZLPa0Ov1yhGjliHEMaj7zEfzXsTnND7HfevBBfIcd9HkSeAuhBDipMn991/2PvYY7b/4Ap8BA7RcIf67ysD9h9MeuL/54GeMvmEo3Qd11HKalwdGPc+rU5/AN/D0BWGicXtg5HO89uu40xy4L5TAXTR5cqm8EEKIk8Z/5Ei6/PEH8f/7H6lff63lCiGEEEKI/0ICdyGEECeVe6tWjvvec+fNY8+DD2Izm7USIYQQQghxIiRwF0IIcdIZPD3p9PPPuEZHs/W886jIyNBKhBBCCCHE8ZLAXQghxCmhduYVPW4c0U89xdZRoyhcv14rEeLE2U/z35lZasP5a95rL38n8ncm9hkhmgMJ3IUQQpxSAeefT5fffiPuvvtI++47LVeIpqMiK5VdK2PZuSObYsfTsGxk/zuXmcsLHeVCCCHEfyWBuxBCiFPOvW1bei5a5HhcXPzDD8t97+LEqCfWGlKy5rP5g094/v/+YumyXaz98Rdeu/VPdpTZKdgdy474cufTNaakcpYvSVJtSeUs/1QmRXN9ZKNoPiRwF0IIcVoYvLzoPG0appAQtl1wARWZmVqJEMdm1JuU43PtCL1BsJH91298t6Ut93x1N3ePu5xbX7mfFyYNJcakjeJgU4L4bSz4ei6/T1nNzlRLZW5BCmt/+kfJW8PuTJtjvOK4Lcz9Yi6zZiaQ6zhzL4SoD6vd6viMEKIpk8BdCCHEaaOeEYkZP54Wjz7K1pEjKdy4USsRom4mgwt2uxrgNhC2IjbPP0CrsWfTyl3LU5gCffCqfnRlSWPDnAPYIiOJsO3gm2cXk2QpZf3bP7KsNIK2URayUiqgcBs/PL+W8vYtCTHnklWmTS+EqJPdblf/h0Fv1HKEaJokcBdCCHHaBV54IZ2nTyfu7rtJ//FHLVeI2rkZPbFYlQD3iOtjT0eqUiPfVkBenhsBoUqwYMth2YRJPHf96zx2+S+sL6uaTvnXGM6wh89jUBd/gntEE5SeQYbVhrXCjNniQsRZgzmrh6syDwvmcjNW92B6jO1NO89qyzqjSeUsX5Kk2pLKWf6pSRZbBS5GN+W1EE2bBO5CCCHOCI927eixaBGZSgC/97HHsFsqLyEWwplw31YUV+Rjs9ucHLqfgaT3wte31HG23K73Z8iEh3nx69G0KS2ixFptPHMK/zzyPm+/v4rVi5PIs6kXxXvQ//Fr6J29gLeu/5Tf15dg9+3JDc93I/+bL3nu3n/YWdAw1lPlLF+SpNqSyln+qUolFQWEeccor4Ro2iRwF0IIccYYvb0dPc4bfH3ZduGFmLOztRIhjuRqdMPHLZBSc7GWc4bpvel5XgyJUxeyK7/2S/htB3awJr0jN706lmtv7UiwwZEL/q0ZNf4+nr3NjWV/xDuyfHoN4dbPHuQir3UsWSc3uQtRH6VK4N4qsLM2JETTJYG7EEKIM0qn19Py+eeJePBBtowYQdGWLVqJEEeKCehASUW+8srZebdTlVTO8nUEXnwFtw5OYcot7/HWE1N49745JISHE2Kyo+zWlSmiNR0N25j64lQ+fWMnRT569JZU5jz+IZOe+YHPfsml8znRWOMX8/4dk/n0mR+Zn9aWXt3VQzRny5UkqaGnKs7KTn6qsJQqnw2dlNdCNG06u6NHByGEEOLMK9m1i9gbbiBq3DhCrrlGyxWi0rK9f7I8YRYR/u21nFPvrQe/ZPQN59BtUAct52i20gIykouwefkTGuaO46R6deYSstIq8Izww72q0FxMxoEidMGBBPtUdqplycsmPUeHX1QAng2kg+z/O28CL//8GL6B3lqOEHX7v1ETeOWXx/EJ8NJyTq1dKat4YsTHBHiGaTlCNE1yxl0IIUSD4dGxIz0WLiTjxx9JePJJ7Fa5XFgc1jKgE8Xl6hn3hkXv7kNY2wginAXtKpMHQVHVgnaVyZOQNqGHgnaV0S+QyNYNJ2gXoqErN5eg0+klaBfNggTuQgghGhSjry9d/vgDvZsb28aMwZyTo5WI5i7Kvx3uLl4UlGU7uWD21CSVs/zmklTO8iVJqi2pnOWfipRdnMKAlucpr4Ro+iRwF0II0eA47nufOJHwe+5hy/DhFG3bppWI5m5Y2yvIK05TXjk7jJd08pPKWb4kSbUllbP8k5usNovjs+CcNpcqw0I0fRK4CyGEaLCCL7+cTj/9xK6bb3Y8Nk6IvtEjKC7Pc3RIJYRovnKLU2kd1A1/jxAtR4imTQJ3IYQQDZpn5870XLSItG++IWH8eLnvvZlzMbrRP+Y8copStRwhRHOUX5LBsHZXakNCNH0SuAshhGjwjH5+dP3zT3Q6HdsvuQRzbq5WIpqjoe2uIK8kzdExlRCi+ckuSsHb1Y/2IT21HCGaPgnchRBCNAo6g4FWr7xC2G23Oe57L96xQysRzU2ARygXdLqJlNw9yFNthWhe1NtkMgsSubn/U1qOEM2DPMddCCFEo6N2VrfrppuIeeEFx33wovlRD1/eX/IIZpuVIJ8oLffke/KyNxxXerh5umo5zUtSfBoRrULQG+Rcj6gfdZ95d/Yzp+Q57ur7/kDWdoa0voiRHa7RcoVoHiRwF0II0Sipj4mLvf56vPv3p+WECY6e6EXzklOcxpsL7icmuBtuJk8t9+TavysZc4UFo8npE9qbvKK8Ejx83NHrdVqOEHUryi+hc/+2yj5z8j+TswuTlOjdxqPDPkCvk8980bxI4C6EEKLRUjuq2zd+PCWxsXT8/nvHM+BF87I6cS5/bf+a6KCujo7rhBBNU0FpNml58Y6gPdgrUssVovmQn6qEEEI0Wup9763feIOQ669ny7BhlOzapZWI5mJgy9EMbzeWA1nbqLCUablCiKakKmi/96xXJGgXzZaccRdCCNEkFG3Zwq5bbqHlSy8RdPHFWq5oLhbs/pWFe6bJmXchmpjKoH2vI2iPCeio5QrR/EjgLkSVsgNgyQFbmXr9rZYphDg99Mp/rmDwBvfW6ql0Lf/4mLOzib3uOnyGDCHm2WflvvdmpjJ4n04L/w64uZz8jrGEEKdXbnE6mYX7JWgXQiGBu2h+ylMh5RNInawE6RXg2gqMLcAlRgkclAM9nUkZSQ72hTi9lK8iu1lJpVBxECzJyr/7lPdoEQRfCy0eBs/O2rjHZs7KYqcSwPsNHUr0+PGOXsFF82CzW5UAfhoL4n4hyDuaAK8IrUQI0RjYbFYyChIprSjgxr7j6BDaWysRonmTwF00H4UbYP+rkDsfPPqD1zlgkvukhGjQrHlQtAxKlOTRCaKfgsCLtMK62S0W9j7xBOUHD9JxyhQMXnIGtjlJVQ78v1v7GmWWMoJ9ok9Zr/NCiJNDDUkKy3Icz2jvGNqXsT0fxF3et0IcIoG7aPps5bDvWUj7RgnWR4HnWaB31wqFEI2C3aIE7xuVIH4uePeBDl+AKUgrrFv699+T9MEHdJ46Ffc2bbRc0RxYbVYWxk1j0Z7puJo88PUIwdstUK7AEKIBsdos5BanUVCSiaeLN5d0u4su4QO0UiFEFQncRdOmnmWPvV7Z0/3B79rK+2eFEI2Xejl9/p9Quh7afw7Bl2sFdStcv57dd9xB6zffJOD887Vc0VxYbGa2JC93BPG5SnDg4xGMp6sv7iYv9Prm+Xx2Ic4ki7WCkopCSsrzyFfekx1CejO0/ZW0DuyijSGEqEkCd9F0ZSkH97tuBd8rwVN+uRWiSSnfC7nfQsQ90PIFLbNuFenp7Lz2WgJGjyZq3Dg569pMHczdw6rEOSRkbSerOAUPFx9cTZ6YDG4Y9Eb0Or2yb0g/J0KcLDa7DbuSzNZyJWAvV4L1fMdZ9nDfVnQM7cOglhfg6x6ojS2EqI0E7qJpqgragx6o7HROCNH0WAsgc5ISvN9Z7+DdZjaz99FHMWdm0uGrrzB4yv2TzZl6Jj41P5EDubsdqaSiiAo1uFDylUhDG0ucaft3RbFteRdKi9wdqaTIjfa94xl+9VJtDNFQqT+CmQwuuBhc8XMPJiagA1H+HQjyDJcfT4U4ThK4i6ZHgnYhmo9DwftdSvD+vJZ5bKlff03q55/TSb3vvVUrLVcI0RBlZkK7dpCfXzkcGAg7d0JISOWwEEI0BxK4i6alZA9s7K98qz8oQbsQzYUavGe9XXnPe9DFWuaxFaxZQ9zdd9Pm3XfxHzFCyxVCNDRqkN6l2q3PP/wAN9ygDQghRDMhgbtoOuw2JWgfCMa24DVMyxRCNAvl8ZA7BfrHgilAyzy2irQ0dl5zDYGXXkqLRx6RSzeFaEDy8uCFF2DDBnj9dbjrrsoz73/+qY0ghBDNiPS+IpqOg2+BpRQ8h2oZQohmw7UtuPeCuLu1jPpxCQuj+/z5lMbFseumm7CWlGglQogzxWaDzz+Hc86B3r1h2TIYMgQ+/RQ++0wbSQghmhkJ3EXTUJ4EB14DvxvUnlC0TCFEs+JzCeSvhpx/tIz60bu40F6JBnyVKGHLiBGU7d+vlQghTjc1SB88GBISYMUKuOWWw1/rQ4dCRETlayGEaG7kUnnRNCQ8BXkbwfcqLUMI0SwVrwJbIvRcqGUcn/yVK9lz7720/eAD/NQoQQhxWhw8CE88AaWl8M470LatViCEEMJBAnfR+NnKYVUEBD4MplAtUwjRLNnNkPYc9F4NHu21zONTnpzsuO89REkRDz4o970LcQqpgfqbb1bet/7qq3D++VqBEEKII8il8qLxy/hFCdijJGgXQoDOpATsgyHpfS3j+LlGRtJjwQKKNm9m9223YSsr00qEECfTtGkwcCD4+MDq1RK0CyFEXSRwF41f2hRwV775hRBC5XkWZPykDZwYvasr7SdPxrt/f8d97+VJSVqJEOK/2roV1CcwzpsH8+fDI4+AyaQVCiGEcEoCd9H4FW2o7FFaCCFUxkDQGaF0n5ZxYtRL5CPvv59Wr73GtgsvJH/5cq1ECHEisrNBeUvxf/8Hb70FX34JISFaoRBCiDpJ4C4at9K9ytG1Kxi8lQG1uwZJkiRJUpJLSyhar7z+7/zOOYeuf/9NwrhxpHz6KdI1jBDHx2qFjz6C4cPh7LNhyZLKx7wJIYSoPwncReNWqByYqwfoNY7ZJUmS1MyTIQIK1igvTg63qCi6L1hAwerVxN19N7bycq1ECFEX5W3juI89PR1WroTrrtMKhBBCHBcJ3EXjVrxNOUCXTumEEDWYWkDhZm3g5DC4u9NhyhQ8u3Zl66hRlKekaCVCiJr27YMrroBPPoFff4WXXgJPT61QCCHEcZPAXTRulgJlL3bTBurHkh7Moh0e2lBTV8GSyb/w3kaLNixEM6F+LliLtIGTR73vvcVDDxEzcSLbRo8mf9UqrUQIoSouhmefhauvhgcfhN9+g1attEIhhBAnTAJ30bjZ1Mc0HU9XtDoS5/bj9g9jtOHTzObBjLeH8FnsKXoutK2AWR//wddxVi3DTOK2WNal2bRhIZoJ9bFw9lP3GDf/YcPo+uef7H3kEVInT9ZyhWjefvoJBg+GsLDKx7up97QLIYQ4OSRwF42bvSpAdXaTq7Nko+2Nc9n+/s7KYaue4nK7Eu/6sHJNMPuKKsfLPxDMoo0+5NqqpoOyUh02m5F9W8JZEutO+aF5KslqYt/WcP5dE8j+4ur5lfMvSw1kyWYvKoo82bQihpX73Mgu0GOtPg8lWcvLKbdZyd+fyIod2RSq+bZSJfiOZ83+EqX2h8cty05j9do4Vu7Jp0zLqyjOY+vaWNbuLyKnsEKZfxUbRWlJrNiURqbl8DwkSWq6Sf3n1P5g5dayJT0WLiRXSXH33YetokIrEaJ52bABzj0XVqwA5e3gONNuMGiFQgghTgqdXbrHFY3ZrjvUiBq8ztEyji3n1wtps2gPuZ/uIeeXC+j5l5ne5V4U4cGWooM8d5k7P/1rwpQTQlKvJax6M4Gwgk5cdFlb3Fu5sN9ehnVPMPor57Lo0TQ8slvw9L1D+dWaQzdPL9YlFvPYJ//weDeLNn8rHQs90Eekcb1PFOPn+lEWlEdMq3g+/WQT/V20ilHCt498yG8eEZSlVaDLTqVgwHCuydvMnGIDWbH59Hv6Pj4Z6UnKX79w9U9FtGntSV5sIvnDrmXpA4FMfflbXlqQSVlAMFEx3Xnnrf5sf/wNPqtoiUe5Ha/iZGKDRvDn+4PpaNQWK0RTVJEIxbOh31Yt49RRv0aT3n2X7L/+ovPUqbiopxuFaAYyMmD8+Mr72SdNgu7dtQIhhBAnnZxxF82O+lNV1c9VdnRkp1q47aOZ/PvzP9xr6Mi7u/fyy9S/WfzZFoIWtmN+sWNErNnemK6Yx8opf7Pi41jKfurB77l61n09mO+D17J8+mz+/P43Zl7qzqvvVz5XXp1/5m4jV3wwk7mfrubmV+dzX/sSLnvudzZMrh60a2wlJLv14dsv7uDvNwZgmLWcnSOuY/ZHd/HDdZ7M/SeeIuVtGzbsMub9eBffv3I9v03oScXi7cq72Zdrn7mW29t4Mebx+1j83lD6aHcRVIT35/svb2fGpxfSL24Tf+2XS+eFOFnU+96jHnuM6GeeYev551Owdq1WIkTTZDbDu+/CqFEwenRlz/EStAshxKklgbto9kztkhkVqkTmxkJaR1jp2C+ZGAMYIguJwoX8Um1EYzYXjCxEPVHt1imdXkYfdu13Z+0WL3qcu59Ix7vJSo8hqQQmBKkDDq594rkppr4Xtujp2Kct4cryjZEBtHAJZlA/fwxKfnSkLxSXUaLE3EbXcrbM/JcnXvyFe76OJ7usrs7nlHn2bUeEMk+9dwAxvhXkF0ngLsTJFqBEMV1mzCD+wQdJ++YbLVeIpmXu3MrHuxUVVd7HPnasViCEEOKUksBdiEPs6Kr3GVf12lnMbdNhsdsxGXWot8HbrNUmVMpshuqBsXre/QQoEzmvjpmVH3/DPf/aGXjhIB64tBVh9V6ADr3yrpcbZIQ4Ndxbt6bHokXkzJnDnv/9D5t6alKIJiA+Hi65BL79Fv74A55/Xtnf3bVCIYQQp5wE7qIJUKPQ40lVar6uGq56XSOZg5kxy9fRKV3euijWGrPp1aqY3p1L2Lo0mgNWdTwTK/6NpLyH+nxndbhK1XwsuJmMFBarkXZVXvWkqm1YpfxrK2H77gI6jxrMlX0jaWmsoMQRiavJgKvJTFGJ2i1djemOei1JUlNPZ4bB05NOv/yCa2Sk45FxFeqNwEI0UoWFMG4c3HgjPPEE/PwzREVphUIIIU4bCdxF0+DsmL2WpDfYMBmUFzVeq6ehjcqw8dCw8tqkpKoYW28me+b59Bl7Bf2eaEH3BzZykYeNs+5YxVVpAxl40WWce+nV3LQ+lXcfSnRMc+T81XkUM6h3CfNeu4yz7urDinIt35F0GPUGDOq7Uh1WgnCjMnBo+cprFyXpdV4MH9mKXZO/4dpHvubWvwrxcVNPoyvj6H3o192bhe99wehHFrK6osY87XpMRmW+h4YlSWrC6QxS73uPfvJJopRIZ+uoURSq3W4L0YiovwdPmQJnnQVt28LKlXD22VqhEEKI0056lReNm6NX+RLwrH+v8icktxMXjIjh+mULOOeAH8VBOXQOPvywNWxGkvf6k2ovoUPbYrzr/EnMyMFd/uR459Et0nyCv57ZKM7KIqHAjTatffDQciuVk7QnkzyvYDqHu8qvc6J5UnuVL5lzWnqVP5bS+Hh2XncdLR56iFD1tKUQDdyaNfDoo8rbpx9MmAB+flqBEEKIM0YCd9G4ne7AfcVcbpJ7+oRo+BpQ4K6yFBay+9ZbcY2Joc2bb6IzyvMYRcOTmgpPPQVpaZWPd+vcWSsQQghxxsnJONFEVF0be4qSZyr3PB5Lf5OTMkmSJDXA1LAYvb3pPG0apoAAtl5wAeasLK1EiDOvvBxefx0uvBCuuAL++UeCdiGEaGgkcBeiPlxyuez6RDrISTIhxAnS6fXEPPus45L5LSNHUrRli1YixJnz55+Vj3dTqY93u/TSytdCCCEaFgnchRBCiNMo8KKL6PzLL+y+/XYypk7VcoU4vWJjYfRomD4d/v678hJ5V1etUAghRIMjgbsQQghxmnl06ECPhQvJ+PlnEp58Eru1WmeXQpxC+fnwyCNw552VHc999x1ERGiFQgghGiwJ3IUQQogzwOjrS5cZM9C7u7NtzBjMOTlaiRAnn80GX35Z+Ui37t1h+fLDl8gLIYRo+CRwF02As46pak+W9CAW7VS7hnde3rSShdiZM3nmHzUgcFYuSVJTTg2fet97ywkTiLj3XraMGEHRtm1aiRAnjxqkDx4McXGVr2+7Tdn3dFqhEP/P3lkAVnF0bfiJe0JCjODuDgWKlNJCjVJvqVF3t79f3d1LC3WjRimlpcWKu7s7MeLuyZX/7L0bSMIN0BZLcp7lkN2Z2ZnZ2dm98+7MziqKUiNQ4a7UMdzYN70vN49uZm6fYGz+THrnDD7ZeqJaTHbStu9mwe4Cc1tRlFOR8Isvpv0PP7D9hhtIM146VpRjQEICXH01vPEGjBsHb70FwcGmp6IoilKjUOGu1DHstLpuKpve3+LctHpQUCp6OjeEJSsi2ZvvdM6Ji2LumhCybM5tQ/AXF7ljs3mxd31D5m/1p8T0cWD1Zu+GhsxaHkFsRY1sxl+cFMH8dUGU5gexdnEzluz1IyPXg6pvtVpLSimxlZGwdS+rEp0pFGeksGzFLpbszKPY4WJgk/xYJD8l7Nu4h6V78rGYPg6Kslm3JpYtGYe+N2vNz2LNqt0s2ppN/oHjK0/bJscex+LNWeQZjrZiR/zL44okRUVRjicBHTo43ntP/vpr9j71lL73rvxriuXH4qWXYMQIGDUK/vwTWrc2PRVFUZQaiZtdMNcVpeax7RYRqaKUAwaaDkcm85fhtJy/g6yPd8j6BXT7q4wexYHkuwWwPi+OZy7248fZ3nhlRpDQfR5LX99NdG4Hhl/aGr/mPsTairDuisT90qnMfSgJ/4zGPHHXEH6xZdA5IIiVewt45OOpPNrZYsZvo12eH+4NkrgmuAlPzgiluH4WTZvvZOzHazjN28wYhXz78MdM9IogN9ONxn0H8lrUSq78KZ+WLQLI3rqPnMFXseDe5pCzipHXbyCwXRnxxV7kbksl+pabmXCV5CtlI/fdO4UV4Q2IyCvEas+moP/1LLo7hrRlM7n2lU1YW0URmJTI7sj+jHtzAN19zbQDYihOLsUtPZncPoO5KmcD0wrcSd+aS+//3c6Ys4L0aZ9SMyiNlXvDdOi9wXSoORiCfd+zzzo+F9f+++/xrFfP9FGUIzNxIrz4olOw338/eHmZHoqiKEqNRtvgSi2h6rut1Zvjf+M/x7obGUll3DT6N2b9MJU7Pdvz7vZdjP/xD+aNWUf4nDbMLJDAsoM1IxivS6ay5OvJLP5oM8U/deO3LDdWfi3iN2IZi375k8nfjuePi/x49UOja8MZf9p2Dy794Demj1nCqFdmcFfrQi5+ZgKrP18tov1gvhxmK2RzaXu+/mQU425pTvTgC/l73M2Me+kqJj7bldL5mw+Etebk4Hv+SKZ+eAOT72/Mhumb2Wm1sG7iPOa0OpcpH49i6tjzGOht9JXLPmUJjPlwHVF33srM967lj2+v4crM+bw+I9dMu4hEn+58+8mNTHm9Nx5TFrPlzCsl/pv5fqQ/02fsIt9MW02tZljNxM3Dg+avvEL0jTeyfsgQCraYI4QU5TAY0yOcfTZMnQp//w2PPKKiXVEUpTahwl2p83i1TmRolDTyPXNp0cBKu97xNPUAj4a5NMabnCIzoGc6552Vh6es+rZLprtnMNti/VmxIYiuZ+yjoeNqstK1/37q74kwNhz49NzB9U2OVkR40HdoN5pL+gaePqWsnzyHx16awB3f7CajuMzpYeAZycC+wbKHOyGNQqlfVEyOrZTNu3Jo3b054UZ+ghoyqIM/xhv1tqxEVidHc/aAYOeF7xPNmd382bEjzdgS3GnXsyUNJG3PhqE08oqgX+96jvibxIRAQTGFOl5eUU4YEZdfTttvv2XrtdeS/vvvpquiVMb4GMG998I998Drr8OXX0JUlOmpKIqi1BpUuCvKAeyVZ9ktX3eluW3uWGx2vLzckD/YrBV2tImbZ+V3U//RVHQHApexZMy33DHbTt/z+3LPiGZEVxeRZNzdMYzALvmRv67yLO7GUvG1WSOsp6eL24DEVzGp8nJxFa2iKMePwM6d6Tp7Nvs/+YR9zz+P3fiml6IIxr18zBgYPNj5Wbf586FXL9NTURRFqXWocFeUo6UskklT6jkmpcte2ZgVXhl0b1ZAj/YFbFjYjDiHIPZm8eyGlHTZb2y4wIKvlyd5+Udx6dmK2LQ9jw5n9+Oyng1p5lFG4RGVszdtmwWzc91e0qV9b8vYw1/r8h0Ty7mHNaBz/RRmL852ToqXF8fU1RZ6dNOuGUU5lfEKC6PzlClySyhi8yWXYMk1Xm9R6jJz50K/fpCYCEuXwnXXHXzAqiiKotROVLgrdQ53Dxte7k4FXHHdwNPDKla+bcPTS7bLrxL3MjImn0fPK6+g9+NN6HLPaoYH2Oh/yxKuSO5H3xGXcsYlV3P9qiTefWCvc5cq8eNRQL8eBfz9+mX0v703i0tNdwdukrYHHgfSC2TI0GZs+/I7Rj7yLTdOySPY1/R0c8fD0w1zRL3E6+7oOZf/6X35QE7fPpWhN3/OmQ8spaRJfbwlXryacN99Hdk/9jMG3vElg6+byNKu5/HUIOOb9lXSlviN+A4cu3h4O+JXFOVkYLz33uKNN4i8+mrWn3kmhdu3mz5KXSI2Fi6/HD78EH7+GV55BQICTM9/Q7HEuQeyKn0m5diTnwYn9KOk8tuammmunwBs+ZKe+VWao8YKaRnmekVs4l7+Bpsr5FylZJnriqLUKXRWeaVm45hVXn4tAwaYDseJrI6cd3YzrlnwN4Pi61FQP5MOERXHnHuRuDuUJHshbVvlE3RYhetF/LZQMoOy6Nyw7Ahi2EZBejp78vxo2TwIf9P1iJTksW1vAYGNI2kUUDkFW2Eu22PzsIeF0y7KR8W4UjtxzCr/d42cVf5I5K9bx7Ybb6T5yy9Tf/hw01WpzRQWOt9fNyaeM/4ak9D9J0QczhbRf/fbEC8/ZVYvuPBp+PwhCD3WPwrFcH1j8PkGPvaTS/JR+GgZDDrwRZUjkzkZrp4CX4yFxkeRv00vQp+JULDedDgGTJaymXIajL2ayr+bcm6elvPh9wj8fgOsk+Mtb1gboyCa3w07PjAdKpD/EzR5A2augp7G5DkmxZPkGO+Fb3bDBb6mYwVsIuqvPRcul7pwmQ6YU5Q6hbbZFeWf4F5G03ZplUW7gbg3bJ1KrzZHEu0GZTRul0rXI4p2A3cCwiPp/E9Eu4FPEO3aRR8i2g3c/YNp374hHVS0K0qNJLBbN7rOmkXCBx8QK+Jd33uv3Rg968Y77OHhsEwE738W7UK8iOiRr8GQ7yArH9a/AyuegOcWmAFKIXY7JFXoRS4VwZgsItWSDXv2OzqMKc2C3bLuqIEWSEySdfkbtwuy5a8D8cwvgDwxHzmO0SJi+5SLdmMfEajJVXqrC1Jg6zbIEBFskLoJFi6UsBXmZ7VI2tslnfwqP8cGOTnib75RYoRLk3hKM0VA73McmoPMRElH8pYdJ/mVYyrHKusp5cMDJO79yc6/m5ZKHtYav+CV2fsVfB0KN10Cc2Mlrh0wVIR43xelDONh9VvOcFWPqUzSKCmCohIJJ/tkmKMebOJeIOVh5M2BUZ4VzoV7BIzqAS9JOVYatKcoSq1H2+2KcjQE7OeORzZzmn5aR1GUUwAvUXFdpk0TUZLFliuuwJKXZ/ootYW1IhKNieeMSefmzHF+k92zQs/sv0YE4R8/iDAcKEL9QhHT4tTuRvhchPzAGBG5s+CMFpL25dCjKVw+Bopln6+vh56yz5lnQ+/mIkzPh9Nlu6+EPedDEeY/Q4fT4IIz4dyzoElHGCeivCLF0+Gyq2CmiNecJRKupYj4ERKfpDNM0jcE8jhJp2l3uF7Sby7ub0+Fx0SkFotIv/xSEesSZvGr4tda4rpA/naRfcSvOn6QY+speRokZTm0K3S+Uxzlcrm1g+Rb9h90LnRpAteNcz6MMML3+59jRDpZ30P7/rDnM/hAzseusXCpHKsRzoGs/Cxh2p4D0dKiDqwPDSKN2WbEAsQtGoI8Dj2md82BQPZ0eHgAnCdl2awNfFLly485i6VcpKwHXibnQv7eIHk0nocMkPSSpLwXHedXHBRFObVQ4a4oR4N3Fhdfs4+2x6LRpCiKcgxwExXX8p13CL/kEsf33ot2HUa9KDUG4/3m2293fof9AxGsY0UsGr3txwyjlzsF6jUSK28Fyt9zJL0rRIR//LiIwkuc34Vf8RbMewp+SoUiEduZ9eDHZfDM6bA+QwTpOnhxkAjpORKt+JdIvL3ehy3b4QF/eE7WK2pLWyEUFoiVwVdPSjgR1OslnfW/ieg1hrVL4K05MGa5pL1QhLkX/L4ZXn8QfFvBxEnQKhaeEuF+9lewSYTuUyKUn3ijcjoHsDnznSbxfC/Ce4ocY+w0cZcyKJYdinpJOhLHrAfg1+dgQZHkzegFl3waw91L5W+pbLeQ8/GgCO9Wd8Ok+40Pt5qI38pt0K7jYRrULo7ptxlO8W/LgyFyfrfIMT4s5/iVDyschwT4Ssp+69lSPptgiaxPfAJmSgD/zpInOSer4s2wiqLUCVS4K7UA4+dVTU1NrarVDaKuu442n37K5ssvJ3P6dNNVqWlYREy+L0LXGApvmNHL3rWr6XksEdVZPxRyRWQfGKchIvHrW+E1EZY794oQFUEbKM4NekMzEb47RSwbBDeBCE/x8wOvhtBU1oMCRICaXdBuIux7iYjFF3p0gqR9IpCdXpWRY90pfi1FDBvv1IedAeO+FHcf6C9pf3E1nHGZiGLZuVis4tVs2QN7RbzOex76nA7fiYBt0cD0rIaQltBIjjsiQvJYPtbdDTpJWsZr5J16QEAS7DMzWz77U8XPp7rCGNaeL/EFGYVVHYc5JrcQ6NvNGaZbB0hPqFBeRhnJucidB+f0gZHfQeMWkk/xcguWvxJBToUh/oqi1H5UuCu1A+MXUE1NTa3c6hhBPXrQ5e+/iX/rLeJef12ERx0shBqMnDr6iDjLFiFmvMd+5ZWmx/FABOzwS+SPCMI3Zjv0IdvHwfNiGeLXRsThtlVOUZ+0QsSsKNu2zRx74l6h1ejq83N2yf8KYxi4qM9VGyGmuVMYH4IXdGwNG2fAnlKx76GzCNeSBXDvqzDgE5g/AbpIOIsIY0e6Nmcvtafkr7kI3SEvwPLl8Ne7MFjiOtAL7gI3V61duUQ2yPEVyuomOd6CGInXH/wkwzkimJNLYIn4l2t3Iw/lDyjKcRfBHibhsw4zy3t1x2Rgz4E1m2VFysv427ClpO/0kgOF1lJ+9YbAdDnOJX/BzYMhXA7ULunlSvmHR5hhFUWpE6hwVxRFUZRagHdkJJ2nT6dk/362jhyJtaB8hi3lVGX3brjoIvjiC/jtNxHPz4twO6Dcjh/t7oWx18K4C0QYBotolu3OkvaTA+C+t6HRJOgkQrrXYyKKX4ORIhADA8SCnA3HQBGsAeXr8tff/CSde4iI03tE6LeB0UVyPA+CjwQyPlln7O8uFmDsK6L0lvfh4kw4LQr6PCVCXNL3kv1Ol+33LoTuYm7tIXGXCNROELEPRvWBNzLgVQk/c5Qch7h3vQnKois3aIPlmDyMXnBxNNI10jf8feSvYQ4Mh/nQsy2cPRoul/QH+sDQG6D9JklfRPQvEqahIY5FLHfqCPu+lryeByvLZ4WTczWwO6xffVDgG4I7WMokUPJgJFHdMdlkX99ImHcbdGgH7+fBs/eLW3kZicC/WQR/u5lO/1Zd4XcR/BESae5a2COifkBDZ5KKotQN9HNwSs3G8Tk4+bXzP86fg1MUpWZRZnwOTlq8tfBzcEdD8jffsH/sWNr/9BN+LVqYrsqpQn6+8xvss2fDm286J6E7pSgRkboXvEUYxogINbBmQ7o3RPmL6MyBVBGQ0eJnvKedKv4+40XwvwUz1kDjZKgvwjLQUK5Cnmy7ibgOtEndTJP9DvcZs0LYHS/7i3CuJ5uZRRAm6eTtF8FrEQHbxKGNHbPb70qScFK9I0RwV0Lyvz9X8i6i2/jGeoabhDEEu6jrpHRoIMdxfiMRxTPg6cZQXF/CGkL/cEje9++UdCXvTYyMmaTJcff6WM7lXMmb2e2fL8drkbTrlQ8DcHVMUo5GXqJCIX4fBDUTN2NWu6plJMccL0K/TPLYwuxhn3AtjOkJsx4+/EgDRVFqFyrclZqNCndFUVxRx4W7Qe6KFey47TbHBHahx+IbYsp/xmhxjRsHb78Nd98NcnrwqCXKq/AP6P4B/C6XXftT/ZhESN/aXYT77/Boe9Pt32KFT68SAf80PG28r36cse2HUTfBXb9B//LRA4qi1AlUuCs1mwPCvb/poCiKIpTF1XnhblCanMyWkSOpP3w4jR55BDdXLyYrJ4SVK+Hhh0XcimB84QUIDTU9FEVRFOUoMAcxKYqiKIpS2/COjnZMWle0Zw/brrsOa6ExFZdyIklOhptugqeegk8+gQ8/VNGuKIqi/HNUuCuKoihKLcbd25s2Y8ZQb/Bgx/fei2PNb3spx5XSUnjrLTj3XBgxwjlzfEfjU2mKoiiK8i9Q4a4oiqIodYAGxvvu773HJlGRWXPnmq7K8WDKFOjb1ynejc+7XXKJ6aEoiqIo/xIV7oqiKIpSRwjp14/O06ax79lnSfjgA/3e+zFm+3a44AL48Uf480/n8Hhflx8yVxRFUZR/hk5Op9RsHJPT5erkdIqiVMYxOd2sOj85XXXYSkrYee+92EtLaf3JJ3iciI+H12Jy5WfImHBuyRJ45x04/XTTQ1EURVGOEdrjrtR8jEdPampqalVNqRZ3Hx/afPYZwf36seGssyiOjzd9lH+CzQZffgkDBkCHDrB4sYp2RVEU5figwl1RFEVR6iDGp+Fi7ryT5m+8waYLLiB7wQLTRzkajN51Q7Bv2QILF8Itt0ijSltViqIoynFCf2IURVEUpQ5Tb+BAOk+dyt4nniDx44/1vfcjkJgI114Lr7wCX3/tHBofEmJ6KoqiKMpxQoW7UkuoOkZWTU1NTTlafBo1ouvs2eStXMmOW291vAOvVMYoEkOsDx8O11zjnDm+bVvTU1EURVGOMyrcFUVRFEXB3deXtl9/TWC3bqw/+2xKjK5lxcGkSdCnD3h7w/LlzpnjFUVRFOVEosJdURRFURQHxnvvDe+7j+YvvcTG888nx3iRuw6zeTMMGwaTJ8P06fDYY07xriiKoignGhXuiqIoiqJUot7gwXQStbr7kUfY/9lnpmvdISsL7rsP7rzz4Lvs0dGmp6IoiqKcBFS4K7UAV++2HsGsxeRZrY710rJCCh2TMR3ZClJmcN3WXZS48KsrZslZyt1rV7PX5tr/P5ktm1Up8SQdj7iPhVm289KyWSywuvCrgWazFJJzHI/liHXFXkJ2adkh7pbiJBYmbWVeds5/vNaU/4Jv06Z0nTOHnIUL2SEK1lZaavrUXoyfhbFj4Ywz4LTTwJhov3dv01NRFEVRTiIq3JU6iJV1W8ZwzrZUrLYkXp33GW/lGCL+yBTn7+Ov9CyJoe5iLU5kZmoS6eb2scRasIGnV/zNn8U208U1tqKNPLlqCesPH+zYY81kyf5YYv+RJrSRlDCFu3btx2K6nHxK2LTvN/r/9Txnbjl++TpcXcnPXs29s1+mwdxZbDhwHm2k7P+d02Z8xVO7FvG/hW/Te/VmUlSDnzQ8/Pxo9913+Ldty4ahQylJSjJ9ah/z5zu/wR4X5/zU2/XXG68OmJ6KoiiKcpJR4a7UQWzsKyggOqAeHvZM4oqDaOrvYfpVxEJGXhzzUuOJLausEG1lWaxO3cPm4soS3lqawcqUHczLzCS/itiozs9WlskKcV+SW1BBQFnJzN3L7JRYdpVWr06Li5NZnLydBdm5FJtulbCVUWC1UVwYz/yMDKebNY/NaTtEUO0n6UD2JYzFgs1ezJ70nSzMyasi5kqIy9zN4uw8DulzsxWxN2MXs6qUk9VaQondRnbeXkfaeYajvUji38WSvEJJ8VA8gvrz+3nXc6u/cWuqLk8WcgtFEO7fx/aSArLl+JxUV2bGeYxlflqSnOt8MkpLDhybpSSVJVL2y/KKDj6McVVmVZHj2C3HYZR75bm3XeRByiEuawd/paeSWlJEsU3iLis9WL52CwWWCvXIVupI37leyPb0HcxOTye7SoEdLu+2sgyWpRxaP51YWb/1S66J9aJXPR8Oq0tc1hVxNs9tXn4sc9KSSa2Ut8PUFRNL1mxGLFuNX2gMQZKBA5eDNZ73Nqyndbf7mDfwVhafeTbhsTP57CgfrCnHB+O990YPPUTTZ55h47nnkmvMzlaLMIT6lVfCe+/Bjz/Ca69BYKDpqSiKoiinCG52/WCrUpPZdgsUZoP/6abDEbDnM37VZzwSl0KxTzjR7sUkFJQS0WAYOwcMNAMJ9hwmrvqcB1L96R5Yxub8GEafcwV9Yz+n6Q4LAz3LsHmWsDonmGfPvJX7Q9xITZrKRSvXYw1pQJCIvh1+ZzBpwGB6edqq9etesopr5s0ms35zwovzaN/pBp6tX8S09V/zYGoQ/UJsrEkv5co+N/N0uI+ZOQMb8Xt/4Lzt+bQJCSArcw/Zja5jbddWpr+TzN1f0i3Og3Zlebj7t2Vqj1CumT+flKBowkvjWVjWmZ+HDGewbRnDZ6wlKKyMWIs3OVnJxHS8k2ltovG0Z/PLik+4Lz2YHr5FpMstI9bSgSnDzqdn6XaeWDSeX+wxdPbMYmVeMI8MuIlHwyx8vuAdfvJqRFFBCW7F+8mJHsqokrX8UeZOWmYO/XrfxzeNgys/PSxZzvlTtnDNiJu4zuo6T1MaJXDHgqn8mmchKiiUtk0uY0r70GrKzM6CDZ9yY1IwA4PymZ2YBCGnMfbMEfRJn8KINbuJDo8SIbmPgsZX82fHZpRWKbPpA4aZmRNKlnHenwsoDveigACsOYl4triR2Z2bE2jPc5GHG7kp7w/O37iBbdYg2gVEMLJ7f2KXTca/7yO8G+FO6p6vabMpiB/Pv5LzpV5NX/kmT/reyKrWufzfwj+Y59uMjvYElli68t3AofTzMurT4fLuQ09LFoWexRXqZ+UHU3lFueDnx5zlr/Ki/20s7xyDp+lXjq1wpeu64lV44NwWFpQRUJbAJr+hzB00kA5u1deV3hVPdFkuyQRTL/UnWmwOY9rZ59BV/K15cxk0M5Y7h9/I9cYEYLZUXp39IctaPcXk5n7OfY+WMlFjxXOh9wbTQTkWFO3dy9aRI4m5806ib7rJdK2ZFBXB6687P+v26qvOSegURVEU5VRFe9yVuoVbIFf1uIQr/Zvz7JBHWNOnB83CzmTa6RVEu1CasYCnk2L44Oy7+fOMB9h05lD6mtrHbgvj9v73MmPwnbxdP5HvE9IcPYXvrl9Ng873suyMm5k97CauL5nNc7EikA7jV5K+mVkBA/m+z5X8NPgWng33xJK9mKcTY/jwzJv4ps9N/NXGnY+3bSTTmbyJOw0aXsayc+7it36jmNGnJyUJG02/g9hF4KdlW7j09HscAtTdtxNjz36YuQOuY8IZV4s43sTELGffr7U0G79mN7Bw8O3M7daUtbEb2W4DS+YSXk6O4d2zRMifdTfvR3phvJUsPqzc/ifjfM9j0dm3MvnMB/mjWT6vblorfnb5V0i8R28mDrmTBf1Px3PvAjY0uk7iv5vf2wbwZ+wOZy98JeyO3tfyp4mu8rTTtxdfnH46neRYPhz6EFM6NKm+zKy7+GKvJ3f3v4FvT7+F1xr40KPVUC70SGL0xs1063EXv/e5mskDB+G5ax6/lRxaZodioVGLG1gieVo84DQKd81nkuznOg+b8Wt+JT+3iia64cUsH3YrT0S04PzIEmYnGUPUS1mQmiQ772ZappwHaxzTUr05q0E463dOZ3LoJcwbOJJvB97Cg+5LeCuhUMTs4fOeUejFqP73VK6fVQjyCybIXK+O6utK+bntJef2dmaeeSH9stYwMc92mLpSBa9gor3M9QpYi/PI8PSnfvlzBvdAonzsZJYUmA7KycaveXPHe++ZM2aw8957sZW5PMOnPOPHQ9++EBYGy5apaFcURVFOfVS4K3UMG6Vl6eyzBBLtUUZeXgYZvvUIN32diHDLTCAxpCVDzE5uf/961DfHFHsFt+QcYyi3mx8tAwPILy3CVhLPioIYzosJcV5UHjEMDfdnW3bKYf18I7pwfv7fDF08ha/Tcx3Dp7My49hmSWDsiu+4YvH3PBSfSWFhJvurDJX29Chl9Z4Z3Lv8B67bsoN0q+sGtE94N64PNC91dy/ys1bw3OqfuXb5LGaVllJkMWWyezRnRofgIbmsFxhGeFkR2eKVl7Of2OAWDPYx4vCjV1Rjwo2ysBewIjOLrg060NBRNl50jWpB/dzybz970DGyDTGym2dAGE3cIxgUFeaIv1lAPSgrprBcoVdHNXmqSvVl5kOQRzGpxVI21lwSiuUIPCRDpfGszC1h9a7xEv47rlq7QepENvuKnEOyK5VZVdwbMCwmzNFD7VuvCd3c0tmabz3q8yaxc0ZMC9KSt0n4OOZkN+LuZj7MT0qkIHs789xac2FoGSszU8kXIXyT5O+KJZP5taCUuMKcI+bdVf38VxyurjjObVsaSjLuXvVp7mNMMmervq4cNc4HNwd3cXOsux9+QL9ygvEICKD9Tz/h06QJG885h9LUVNPn1GfdOjjzTJgzB2bNggcekPtT1eEmiqIoinIKUk3LVFFqGkZz/8hmK17P/fOnMaN0Ly/PH8MZG7aRnTGXu/akVApnrXaW+XKc24agcEoNm+Nvxf0MF0934xKr3s/dvxvfDruTV8LzGbv4I+5IyJdwcmEGtOW+9oN5XOyJbtexsP8AOrgf3F/UGws2fMZ18TYGNOvPIy1aEHPAr6I5MXJpbBenTuWcZeuxhffkvranMcjPEEQVw5avu8mxGbmWRfJtLAf9ys2GMVm4zW4o0wpubkZ3qbFuYLpLMk7p5dwul2Gu4zVwtX4wTwfdnGYUresy8yPct5g/Vr1Ph+nf8HvQOTzTyFf2kTPgFso5bZzhH+9wAT+fdT33hxy8JZaX2aFmcHDbJrnyknNTfR4O3Scksj2nF+7gz/3bWeHbilsbtaAsZSvTknZSGNmBPh4Sr92NptH9nflrfyZv9bubX1tHyv5Hznt5OgfrZ3Vm4Mr9n9QV44fEeV6qryvVmcHBbQ+fAEIt+aSUz3RvyyaxxINov4BK4Y7OlOOJ8d57k//7Pxo//rhj0rq81atNn1OT9HTnp90eegjefRc+/RQiIkxPRVEURakBqHBX6hTuvt14v3NboiPPYf6we/mwYTCnt7+VH1oZgqgcd6JCo4nM2cnfjtnNLcSl7GD9YebHcvdpSDffJKbvN2ecL93HHykWTotocFi/kuJ88ryiuLDdpbzWyI1VmZkEh8bQtDCNFL+G9AprLNaIjn4+lS9WeyHrs3Po3HggI6Ma08KtlCMPJraRmZ1IYkhXHmzaitMCPCg80INaPYHBUTTM3cO8EikLex5zEvaSbOzmFkiP0CA2JG0lztGrXMTixN2U1G9ubBxf3L3wtpaQZ/Zm16umzCjezcLCaG7ucjlf9b2ecV260d54ruAl58Q/mx3FIfRwhG9Mz+B6BJc/UTgctkT+Skh3TLyWk7aDlW4N6B7oUW0ejPPm6+5BkaXk4LBx7zZcUD+VbzZvwSuiJU3qt2VAyTqeic3njJim+OBL99BQ4vPzaBjqzF+vsGgae0ls/yXvR80xritHiUdAM07ziefP/bmSAzl9ORv4s6AxZ0e4GFevnBKEnXMOHSdOdHwuLvm770zXUweLBT74AM46y9nTPncudO9ueiqKoihKDUKFu1ILEGVgdHcepRUU5uPtH4q/vZT4QjtNAvxwrxLGp/4gXojczz1/v8+Ame9y5sa95Im7u5s7Xsb3gcxwRq+5Y9u9KY917UzChtF0nT2GnjN+YmHEhbzUwPcwft4kJUyg9/QxnD9vDLcnhTKqUTT+oQN5o3EW/zfzQ4Yu+JKz/n6TwZvjKTXTdBiBnNO4JZs3f87wBZ9xxd5cQowh4BXDiFXOrxtR0V0ZnDuTcxZ8xdlLVrLfyxsPh+Bzx1PCeZTva+wnx2Zse4f1438RiTwg+en/9+e8Z42gjfh52j3o3/YCriiaSt8ZH3PGjHe5Pq0Z73bqIHEg8cn+B86NhDf2Kd8WP29Jr2q5V8rHYfLk4duE/r47eGT2RwzftBfvasrM4tOCQb7xfLt9Pq9smsx1s1+n84r17HdryENduhK7/kN6z/2K4XPfp93cmawUcVr1HFc2N7x8Qynd8zU9JK3ey7bRvsNghntKOVV73tyIqd+MBsl/MnDWl7yYZsh3P84VgZ6a78bAyPpSNk05L6KY3dZWXGyIVCnb3q3P56qCKfT5+1NGLPiEXlPH8mKG7Ot+9Hk/UD8rHYOF9ZvH0vD3V7gxLp+NOz4h5o9PeCNbFM6BMIepK+Jd9dx6uXs4zm31daU8rNMsWbMY/MfzNFm+ntTsBQyZ/BJDtiTJsTXj0U7t2L7uA3rO/pAuC9bQqOP5jDJ6+6vEcVSmnBD8WrWimyjijMmT2fXQQ1LFjJd+Tj4zZzrfY8/MhKVL4aqrTA9FURRFqYHorPJKzcYxq3yWtBz7mQ7HEuMzYinstQXSPjiEAEO0HAFbWQ5b83Kx+0bQwd+30pMx13428gpS2FbiRqPgaBpUeNeysCiFLYWl+PlF0E7CV54X3MBGQVEaO0v9aBMSjL/peiRslly25RURGhRVKb3DU0ZyTgqpnuF0Cqh8XNhLSMxNJYkg2gbXc3ze64RQls2GvEJCgqJpavREC1XLrCxxPK22RTL7zDNpK0GsObM5fV4Kj11wDZcbxy5lsTU3mwKPYNoGSd4rHdhhsBexLyedAp8oOvoZ058fpLrzll+YxNZSX9qFhP6DMiolKTeFOIsXMUGRzh73cv5t3v8Bx7yuHCXW0kw25RcTGBBJS59/+QJyWTyUzNNZ5U8gRnMi7tVXyZ43jw4//YRXeOXZQ04Ue/bAww+Dlxe8/TY0bWp6KIqiKEoNRoW7UrM5rsJdqelYMmdy+qJNtGjWjT4+FnYlrWVuwHnM7dWZqBP1gEE5OahwP2lkTJnC3qeeou3XXxN0AselFxTAK684J5174w3n0HhFURRFqS0chz4aRTkZGM+f1NQqm2fY2cw+80IuCvDEeCd/QIcbWd67k4h21+HVaqMpJ5r6F1xAh19+Ycdtt5H600+m6/HD6H74/nvo1w8aNXIOi1fRriiKotQ2tMddqdkc6HHvazooiqIIB3rcN5oOyonGkpvLtlGj8GvdmhavvYbbcfju2qpVzpniu3aFF190fpddURRFUWoj2uOuKIqiKMoxxzM4mI6//YZHYCAbhw+nzJgl7hiRkgI33wxPPAFjx8JHH6loVxRFUWo3KtyVWkDFYbFqampq5aacbNzc3Wn23HPE3H036886i/yN/20ERFmZc8K5c86B4cOdM8d36mR6KoqiKEotRoW7opwy2Ng6+W+e+jvb3K4BWNL47u3Z/LrfJut5rF2dQvJhvndfLcVxvHjfVH7Nqii27BTmlVBibh0VtjJy8g/9FJUlK52ly/ewaHe+GZ+Nfb9N4qrvUzk1PlylKLWb8BEjaP/jj2y/4QbSJkwwXf8ZU6dCnz5yuyiGZcvg0ktND0VRFEWpA6hwV5RTBhtpO/ayYE+RuV0DsBWyYUUsW3LAmrydV15dxPT0w/d02tJ38OJba9l0QDHbSZ+/hkkBjRgUYk71XpjGL+98T9cRP/LuLpvT7Qjk79nMY3eOpd29S9lcIe7UJbM468aJvDRxDS889hVnvbOLVJs7jU+LIf/PNcwTEaAoyvEnoH17us6dS/J337HnySexW4/uKd+OHc7edWMCusmT4emnwdfX9FQURVGUOoIKd6UWUHFo7JHMRklhCaUHtq0UFJVV8P8HZi2joNRGcUoSizdnOdyKM9NYtnIvS3blUXwgrJViScNmK2bfpn0s3ZOP5YCfWFEO69bGsyWzXG1W8LMWE7t1H/PWJBFfaAhYp7u1pIQSm42cuAQWb8kiz3A3418eVyRHWSGOA2bmo8RIL5HYQsOtjNQ98cxbEcfm9IPlUB5/XmIiC9alkWapGI+dgmQ55g2ppJYZ2wZ2PBp1l4b1CEZFGdvVHbOFvJRk5i1OZGdWITklRsO9iFnzEmndrznh7hLGksL7j09mgk8UnfxFyDvmzzy8WXYu5ZrnNuPXLpJAY5dyv7L9jB2znZb3Xstfb17G9A/7Efb3Yr7dZ8WjQUvOqreXP9eUHhKfWm0x5VTDMySETn/8gZuHB5tGjKAsy7h3uiY3Fx59FEaNgv/9D3780TlrvKIoiqLURXRWeaVm45hVPuPoZ5W3ZvDxAz/zR6/L+evGCPb8OJ5rNnZizWudzQBQmrCPX9fkcECTCh5hDRgxMJJgc9sg649fGTTLg9b5BbhHN+P9AZlc+XMBLZv7kb0tgZzBI1hwdxNpfa5n5A1bCWxbRnyJF7nb0om+eSQTrgjHPWUb9z0wixX1o4jIL8Jqy6Gg/+UsurMBtqy9vPj4NCZZI+jgn8va+EDuee1S7mtv4dtHv2GifxTFKWW4ZaSSe9rpXJWzhWkF7qRvy6P3/13HmCGBlZ/MmfnwalpCmlswQ64bTKM/fmNMZhjtQopZu76EC1+8hud7WM34oymS+P3zk9ka3p/J7/SknaedhNnTuOTdRKLaBpCTY8OeXMqwt2/k2YYbufKKPVz+xyVcWer6mMcPTuahRxYwOdZCRNMQWp89jPEji3hg5EKiX7+eJ9oYOS4hRU5pVGAcd12xhCbviHvrIzxjLMgnhUBCVk+h+9chTPh8AJ085XQnLOeCW/dz06+XcFWghJPz/+6d41h58Z38dIEn89/+kif8hrPknobOeJTag2NW+QU6q/wpTNpvvxH38su0GzeOgI4dTVccz+q+/hrefx/uuw9ukdu8u3YzKIqiKHUc/SlU6hYe9bn13m7YfpvL58vX8cwkd+6862CD0cCY+Xj99uQKlsL6fXk4OrwrYPTqpu+yMPyla/j1tQFEnzGMv7+9mnEvXszEZzpSOn97eUCsObn4nncxU9+7isn3xrBh+g52Wm2sm7SEOS3PZMroK5j60RAGepcnYmXNT3MZX38Q0z6/gp9G38AP5xby7pdbnN62IhJ9O/PtmKuY8mo3PKauZMuZI5j6/tV8f5U/0//eR74z5EGMfGSnUnLGCKa8dwn/1zOE4Y9ez4KPLuGLV65kzDkW/pqX7AxrxO/TUeK/kkkfnUnvHZv5M854jz2Zr77ZS8f7r2Hyu9fw1wNN8KkwUMB4Duh43lHNMe8O68SHL3anff3WvP75DYwf1QBbRgY784No1rD8duRDVH0fc/0oCQgkKsBcr4A1o4BMX19CvUwHjwAiQiA723gdwV3SDGJ/XPU9foqiHD8iLr2Udt99x9brriNt0iSHm/EN9v79YdMmWLgQbrtNRbuiKIqiGGiPu1KzOdDj3sd0OBpKWTbmB66ckEfHm6/mz+sj+DdfF87841d6LG3H5tc74dCMZbksnrqB3zdlk56VzqKd0ez841zIWc8VRk/05Eu4yldSXzeHAW+68eG3/dj5xKdM6HMzv18RJDLSwoK3v+apwOEsvD2Qzx74ipln386Ei/wc6ZWsnsXpr9tZPWEA3z78GX8Pu1vEvCjS/I2MvGQb5/xyBTeFQsH03+k4pQnLPuhBdMUGr5mPy/64hJHOKClNieenP7ezIqGQ9L1xbGp3PpufaFA5/rIEnhw1A/cnbuTlZpu56rItnPXjVdwe4SYRxPLodXMJfmEUz8ZsPHicJdUd85n0TlzKeQ/n8OhP5zJM9LllxyLOeiibR38bzoUV9XrJzqPvcTcpXjCV7l8HH+hxN9Lt/0Ipr44/l6HeRogSvn90LD/2vJGpV9dzjJroOqs5caN7OvZXahFSb0+FHve84iyWx/5NWn4ipRadUMEV7rlFhD/3CzPdrmWW7VqufnAWMc3kvq5Uws3NDV/PAJrX70D3RoPw9HDc1E4ZUnLjWBk3m5yidCw249UrRTl2uLt7EORTT+r+GTQNa2e6KkrdQp9jK3UPaVCkZ1oIDPIgPSWfAtO5nJy5Mxh09RecdsC+pP9Ta9njch4lN1kMLCz5ZAJ3zLHT99we3HNh48qiuSLubrib723bqn1u5vSz2Sp08xvbHh7mRgUkA848OJG2nYPqYi73pySeFx/6i99tDRl5eS+u71ZlaH0FJMvOV80lVmfO/yEHjvlQ3Hw88bFYKPnHkR4Zj1B/6hUWklaul6x5JGV5EBXhLxt2ikotSOvX6acox5DisgK+W/E6L/99Mxv2LxUBn0eZXM9qh1pJoA+Jb15Lowd8uP/dn4hokuYyXF23UquVzKIMZu+YwLNTr2Hmtp/N2nZySc2L58P5j/DB/IfZk7GVwrIil/lXU/svVlxWSkL2Pr5Y+gJvzrqLvRnmCERFqUNoj7tSs/nHPe52spb8zbCPPXnr5Qg+f3A1zV+4lpe7Vei5KCshLbcMa4Urw93Hl8igyv3yzh739mx5vSP+tnw+e+BLZg29nV9G+JK+aAbnvAWrXfW4b5jLoNfsvP/dGfDJN9yU3I/5L3UgPHsP/3tgMov7X8XiOyNZ+sHX3JTUh1mvdKaRRzEL3vuBu/IGsvnZxpV7xAs2cvXF2xhm9rgXzvidDn81kf17EJkax4SNHowc2vCQfNjSVnPxNXu5/NfLGRVUyPQ3fuARznLZ4/70DTOwP34jr3RI4ulRk0m48Qa+Osef9KWzufSZeIaNvuHwPe4HjnkIvdNWMuK2JG75ZQSXGkMV8jZx7eUbOO3LkTzQqMKjg0N63OXcbd3OtIIGXNUrBFdyu2qPO6XxPH7dnyTdPIpvzg2kdMdiLngoieu/uowbo2ysGvMtt+SdyfrHmzsjUGoPJ7HH3RDtHy/8H25SS1tEdMfrFOsZVWo+haW5bElaQueYvlza9S7T9cRjiPbR8x8lpl5bGoW2xd1N+4OU44shW1LzYtklbZhb+j1Hy/CDcxQpSm1H77BKLcBQ2EdpJQm8OyaOvnf0ZVDzjjx3jR8TP15VOYyXNxH1A4gOP2iRQYZMrBBGzN3TDU+jK9rYdvdjyFmN2fb1BEY+Np4bp+YT7Gv6uUnzXcJ6lO/r4Y6np7tcfO70vvQ0Tt8xm6G3/sCZD62ipEko3o443elzzRlclLqAoTf8yAU3fcOd6xvy8m0txc/oJPaQaMz4pKFkxOfpUR6/G96SnrusF2xay9NjN5nhKufDPawZl/RI562HJjLygT/4Md0HP/OOUCl+kR9eRvzGtlcDbr2+Eevf/56z7viOy8ZbaNVYwhppV4y/2mO24xHegD719/HM3T8w8isRV/5R9GiSzead5qz2lhTevWcMbS6dxu9Z6Yy5bwwd7lvGFouFzdMX8OxfyZSVx2uaMav88Is+pvMr20jbvYoRF41hxPep4B3DfXe0YNfocQy+63sGPLqFmFsGMdKY+d5WxObdhbRtF1EpLrXaZCeHL5e+KALGk7ZRffByF9HuKmtqav/B/L2C6dpwCBv3L2POjl/F8cRTYilm9ILHaBrWmSah7R2/aa7yqqZ2LM0Y5xgV1Iz2UafzxdLnySww5+ZRlDqA9rgrNRtHj3v6P3zH/XghQjk9gz15vrRsHogxGPuoKClg295CAhuH0yigfBy7ia2U/fsySZHYWjULJuhYP2qT+JNjs8kOCqVdePkMbkemOCOdbVnetGzxL/NUmMvm2GKCm0TQOMDOli9/4LqMgSz5v2b4mkEOoSyJl+74m5L7rubl7v+sB9Oal83WhFICYurTPMTsq8/dyk3Xb+T0T6/gtugq5a7UfBw97gtPeI97YvYexiz6H32bjcBNex+V40x+SRabkxby/Hk/4OF+Yl/7WbT7T5bsnUaHBgNMF0U5sexKW0OzsDZc3OV200VRajfaqlCUY4YbAeHhdP4not3AJ4B27SIOFe0G7t7EtIim+78VyEdC4o9uHvmPRLuBb/1wurX6D3nyD6Zj+0gR7c7RBe0u6EzLNVuZc8hU+Acp3ryXxAFDePwfinYDj6B6dJL0Doh27KQs2MbGLp25OFJFu3LsWLD7dxoEtxTRbtSrKl1FamrH2AJ96jkmrNuUtFS2Tyzzd0ldDzFGgbnOm5ra8baGIa1YETuDMmupbCtK7cfjecFcV5SaR/pkKCsEL/0Od03GLTCcgT1CiaznT3A1U/x7RjdmePdg/uGH4qrFHhDKsEFNaOKvwr1WYssFaxw0vNt0ODFM3fKtYxinj+c/enynKP+awrJ8PN3daRPZ3XQ5/lhtFiZv+px2Uf1MF0U58RhfVkjO3UOXmP4E+ASbropSe9Eed0VRTgE8adAigkbHSpUfBUENo2gbqrdA5dhSainCw/2fjWBRlP+Cp7snRWVVv49yfCmReu5pzN+gKCcZQ7wb9VFR6gLaalUURVGUY4RjAKfdrqZ2As2oc876d6IoT851ftTUTpw56uGBGqkotRsV7kotwLhhq6mpqVW1k4WrvBy0kows8soOblsLssgusFYKU1OtYM9WtsQVu/Q7NmYhYfKXPH3ti7z+3R6sLsMcY8tLZNOaZIpd+R0wKykzfuGneTmyXkD8qu0kFboKJ2ZNZdEHv7Ei41ie85OFq7yUWzHZaXkVvgJipTA9m0LHt1b/u/2bumZNXMZ3Y9aQbXPtf1LNlsXyjyewOPko64UlkTkvvMZj13/I71sspnuFeniEevvPy+II9fqkmaLUHVS4KzUfV/fx/2wW9m2IZ1uObBzip6amViPsJOEqKwfMlsPsp17m2+XlcsbKvm/e48VvEiqHqylWtpNfHvuN9aXGtpXkRbOZuSLj0HDHysr2MvPbBDq/+AQPX93E0YhxGa6iVcrjPzdLwgamTdpCmugpV/5Os5O7YxMb9hTJz0caa8bPZ32KrUoY0+z57F26lbiCKu7/Mp8nE1f5KTdrxiLev+EXNpQfjyWeSfe+y6Rdx+Jxy9HWNQtbPv+YH8qvt+x41q1MxNCelcOdAmYvJHbZJvZJu8OlfxUr3byA33e2576v7uL8NuUfXz1YD49Yb6sri+rq4ZHq9UkyRalL6OR0Ss3mv0xOZysjp8COr/ehz69sWVu574H1eJ7bnu6BFhZ98htvZTXn/JbH4d3VojjeenU7bqc3pPGJ/ZqPg8I1C7n8myKuHhhuulTBms2Xz0xjQZO29K1/HCZys5SSU+yGr1fluEuzMlm1MZk9eZ5EhPtglLw1cR03vRhH6yENifwHjx1LEvfw6TfL+fj3rczeWUL9lpE08tNJ6Wo1jsnp4k/45HTGTNth/jF4eVQzYYO9mJ1TF5Dd+Sx6NzEqsY3sFQtY6dadYb1DpOKns2nyHGbN3EJcYRAxzYIgfisr93nSIMoXt6IkNixJx7dxPXzcSklcvon0wAjq+Tjrsy1XGuObCnBLXM30P3dQGNWI0ExpwP+0jN3WcJo29MfdmsuumfOZNXUdm/fZCG8dQYBbAbFL9pDvns7KXxeyLsmXRi18SF6yiczgSGf81gy2zEvEvXEYzsuniNj5c5nywxZy63mCd5TEH0hww0ZEBRc743NLY/mExWwtCKVpeK40/GeycKuViDaSpnH4JamsnzSb2fP2kOUfTeMIb9xs+eyZPotp07aS5BZOsxg/nEdXTNyC+cyeloK7HEdQRAO8Ylcx67dlrFydhE2ONSrYHVtOLIt+ms3CFSm4NYygaPW8CnmMoEGojeRlC5n2+1p2ZPgQ00LK0u48/tyiPcz+ZRfubZtS33yF283HB7/QCJo2DsKtUtxNiAwsv4/YyFy+gHVevRjSMxRf/0CiWkcS7FlG6gpJ64917IpNJXFPAf7NPdkzaSPuXcNJnLqIdSm+NJayTlpQsSyNfMrfoyC3OINAnyA6NjjNdDn+GLN4z981iUb12pkuh2Iv3Mv833JoM7IbDYzfNls2G39bh9vgQXSS35Ky/duY88t8li5PpCg0moahbiStXMd+ryjq+7tRsm8La/f7EB3hg1tJstT7DPwbheDtKHI3vP19nXWtnht5W5czZfxyNsRCVNtwyuccLdq5jhk//s3G7EA83byI9E1g3mI32sQks2CyXDtyrTaO8HLUr9KEzcwev4AVG3LwbRZDmG/5uTWwVUkjDPuuzewscCP571nMXpKGZ9NGhDsujNJD65fh7KquS7wFO1Yy9ZfV7Cnxlt/jbTDQWT4HkTq0ahHTf1vFht3FBDeNJtiSyKrfFrAw1p3IoEDCWtY3j/lgPTy7r1ynZr31kPvKxj/mMHvBXvbH7yc+z48mXrHMOqQsLMRVuqYr1EN3rwP1OrDQuM8U4p60lr9/30hqhXIsx5qxlyW/zWfBvO0k2sJo2kjuPabfsSQldy/dGg0ixK++6aIotZfjcQ0pyilP/p4tPHbXF7S7bwWbjRFmlbCTPH87a9u25YII+VnN2sUXc7zp29PP9P8vGHEv4pHfUzmQbGk2K5YkEW8zt48bLtK2FTLltx0EdWlsOrjAI5gzO5by/aRYCk2nY4akP/HFr2h9+V/8lF7+7NxOypwZDL5zKm9OXMPT//cNA17cRoJVshLdlF5Fm/hyVZkZ9miwkbQ5ibSYFlw3ojUt4ldy9XNr2GmMRlSU40LVPqEqZreQF7+H7Rt2ie0mPq3U6W7LZMEzb/PNWg9imvsR+9n7vP1zkjSA1/Hjm/NJtNopWTGV9x/7mUUpUoELNzHplXnstRyM2x6/nO/+9wGfTRGBaFnPp3e/zuvvbYawIhY98wXT461Yd61m8XYPGnZujMfib3nnqzisthQWvT+WV19eRHagN/s+G82X8wpJnfkjX01Ow+gjLVs3nU9/2HVw6LPNSkleIWU2C0VZeRSWlJI0/VfGz80SP2d8r726hPxAC6tfeYenH/qF9W5BFE7/ktHjUxzHO/+Z0fy2P4IOnTxZ9cJoft9poWDW97w/xULr0xrilp4lMqj8+CS9/CJKJb3i3HyKihNYMSMOj+bNaeaxkU8en8I+SwFLX/+U+ZZmdG4FWclFVfJYRsaUL3jjq3SiejbHa95XvPlNnDO/H4zl9fc3491QRJ7j3VmnWeOW88Mna8i0Vok7tZph2pZkFo3+gxVpVsrWTuTND/ZRv0sDcqdO5K+VOZQacVvimfHREvJCfOQ8S1nPya+ST+MGVSXeI9rJwFU+KlhZPkmbjHoutimRrBKnuy1lCR/e+RNbvUSwB8Ux4b4xTN1nJWfBRL6ctF/OdDEbvv6Mt95dTobNTvHSKXw6UerpgbgtB+ta7iq+eGoJ1o7taOqeQ0ZxeRip68WFFJZK3S3MIy+vVH4N7Fh2zeXHKXkE+cUz4eEfWJln5uehKaQ2akNrn7V8/PBUYitcV4emIb8r08fz9j1fMS8/lNCMebz7v5lyjVqrqV+u67pt/0I+eHAaSaGhlMyYxIxdRkOgQrpyDBlTP+eFt3fgKYLdf8dkXvm/WSSWFlOYV4atrIT8HKk3lfZx2sF6W8rWj0Yzbms92rTIY8FHM9mU4bznHFIWOVWv6Qr1sEK9dt5n3mfsHzn4VyjHA2Hl/MTNXc4+zwa0aevO2pfH8NuO8uH8x9oUpe6gwl2pBbi6kVdvlp3Lueb5rfi1iyDQzRhYViWMLYc/56TR66wWRLnbyV62gxVNmnF2PfE2mhNF8mNpK2LXxnhW7y9x7GPLz2LlmkR25Vb80S0jdU8C81bEszndEJriVlZMws5YZmzMJC2niGLHu34mthIStsWzdE+B/OSVx1HZbIXZrF4dy/LYwgphSmW/OBZtyxFhbaWw2PxxtJZRUGqjOCWZxZuzXaedt5fJG0M5u6/xUMJGSWFppUZygRyr0bPR9PSm1F+xk0UHGkSVzRq3jbf/TKLEhV/18cp+CZv5ZmcT7jgtjS//TDOPCQLa9uDHb65l4huXMu25DjBvPb8bQsUjmGF9/JgzL16OtTy+I5kbzYadzvOXt2Zov7Y8eH9XOmyPZWmBq7BqtctOBs57yuEWo9c9ds4s/vrhb7GZzN+U53C3pq5i1sbWjHziHM4YPpRb7ukg4mA1mW270ilvC6v2l7Jr5X7qt8xj/dJcijdsZHvTLnQLdTNjdsSOe2Qfrn/qXM699Sw6l3jT88mRDL9qBGd1SGXPbgvubc9g1J29aREdSpvOEWTGJjuuPbt7KAMfHsUlVwzj0nNDiN+WR+fzO5E1eyVJ0vjfPmsrYWf3JMLDTMvdn9bndKVhQCTdrx3GgA5+jvQPlIHEN+Ch67noquGcd1oZvoOu46Zrh3DVJU1J3paANX01czdE0LtfKN6BDenSJoc1SzKwifixyH3Ms3EHzj6vBb7l8eFHq2FdaRwQTperhtCjWROGPjyC/u3DCO/Sgui0ZPZbbVitFkpKvYjqN4gB3cIq57FdKcsm7yZqcAfCfXxp2q8xWYs3OeN386fXbVdz/ohuNA8uT9NYymtUlbi7HMyZc6lw7I41K3k75Dh79qP/gB4M6lsf70YNaeAp/h7RnP3UDQfKOmFHgYuyPLrlZFIxHy6XogSW/2TUc7Efl7Iz23AVMTp7ITt7XMJto/pxxrXXcnXfFBbOyaTpoHYULNtAask+Nu4JpUnWZtZmFbNt8W4aDOxEkPwmH1zKcyACvUx+Y3wi6HrpabQJKPd3I6Bzb3o29yW6/9lceF5TjI80ejQdxO3Pns+w6y9gQPh+dst1lTV3ETsad6NrlBf+rTvQLH0ja5ONxwTli6s03Ag79yruurE/59x/Lh32rWddepbL+uW6rqeRvWgF+3oO54aR/bno+esZ2qTitSyLLYulk/bS/p5rGXFhP4b/7xK6xC5nWW5TTj8jBv+G7Tl3ZBeiy69Jx1JeLsb/YrYC9u6y0WH4afQY0ocuMVJ/W0c5/A4pi2SfI9TD8nPuvM/c8EzFcnTcRczFnWaXX8kV5zShfnQLWjfOZn9sxfI8doui1CVUuCt1Ds+GHfn8k0t5slcArgYiWhN28kdCIy7tZ4hZC6vXpxLZLpr6xtWSu5kbr53E7U9O4t4vFnHLbT/x8ISV3PTwdF77YjpDb57B7xnyQ2LL48dnf+TS91bz/eSljLrpZ55fU8L+WfN58C8RzksXc8VD0xi73ez2tWbxwzO/cvOny3j43u+4YkKGpFwZa/IWbr1lEi9P3cbn78/g3U2yr6Qz6dXvGfLCUj748HcueHQiZ965jLWyc9aUv+j7yJ9c88Rc3vthi8u0S7Yksr5+FD1D3Bx5+OLxrxj+TaqIbBvbfpzIwJe2O9L2iGlAZ/ckFu8y81uFssRYxi1Mx+h/OoRq47Ww8vfNZA3sxuNXtKZ42jrmmF36gQ3DaWYOcPAJ8iHA3Q1vx1B6aQx0iMB9czybqnS6lybE8uOfG/l28kH7flEauaZ/Oba8EvJ8fQnVL3YpxwNny/bw5hZIxxtu5eHX7xS7nWsHh+Em7vasXAoCgwkxbkyy7VE/hMDCIgo8W9KrVzbr529j/dYwzrmpNalLN7F54S4i+nfBuHwrxe/thXOUtxde3t74GK8D2d3xkmvIJveGsu0zeeWa9/luwgpWbM7GZpPmr7GfmxFeIpN1H19v7CKgvbv1pVf+Ghbv2MHSVeH0GxKKaKfK6Rm4Wq8Qn7eX5MnHy7Gvu7cnbjYb9uw88sqy2TVvLcvnrCc+tAcDOvsTOPQa7hmSxx/3PM8zozeTV6HTz2EGxt/SeP669yVeeW8ei+buJdMqx2EN4PTHbqZv5jRevvINfliaX3kfawG5ORayNq2TNNeyclcQfc9p6fST8xIc5uFcr2oG9mrirhTGNAMp88DWMZRNG8/YN77l8xlenDYgCtFYh5S18bDikDj+iZ0sXOWlgrkFt+Wil416LvbKZZwWZdRFO7mZhfiHBeHpCOdOvfoBlOQX4tW5Gx3TNrFq5Rb2RA/mkm7prF+8nTXrw+jRP6hy3TMw/gb15ubne5L7zfs8fMtvrM+yHQzjysqvD7tcG752bGV28jILsKTuZaXUieXz9hNyVh/aBBl5NfdxlYYIdx8fH6e/hz8BfmUU5+e7rF/V1fX8rCIph2BnnZBcyeV6ME3DrHnk5PlRzxiubmy7B1MvpISiXMcOTiqGL3euuO4WQLPmFha+8w1fvvgDi72707OxeWyHlIWxbjiYf6uaQfl6dfs6zMK+Hz7g8XsnMGP6Wnal2rDZj3Be/q0pSh3CkCKKUrfwDyDKeOzuEhs7Zu8goVdbzgoyNgvYEVdCTEw9p8iXHwlrTh5+F1zIlA+u5LuL3fnx5zRGvHglv40ewd0he/h1ZalcWQEMf3QkC8Tti5cvZcw5Vv6an0rMeUP58pL6RA06k1lfXcJDHcyX2u1WmowYwbT3LmPyvTFsmLHzkKHcJRt2My+6O58+NYwv3ruY/+vkgWX7et5ZHsErH1/BhDFX8lqbMlKMRriEN3qH0ndbGf7Slfz6aj8XabuTEptFbkQIzYyD8wjj1nu6YJu0gM+Xb+CZ39258872jrTxkDDheeyMq/w4oTQnh+1709mZVoqlqIBde9LZllBApS8KVxdvzm4+n+fD5edHEdiuMyMj9/DF37mS64qUserv3SR2bMXQMEOdgKeciwapWew2BjtUoCwzi/XbUli/vdxSWb83n0IzQltuAp++N41Ln99Bg+t6MvRYvPmgKC5w9gMdfqkcyiQynLCsRPZlGT1TVmn87yO/aSOiPT1pO6g1KX/9zhrv1nTp15FmO+Ywfnkg3QYEi3yoGFfluA0qb1nZP2856f2v5sGnr+TSQREYd6Fy34OhzXWvZgw808bS96ayqXFPetevmpobHm5Wyizl2+Z+5lrF+MrXnFtym4yMIMIrhM43Xc4Nj1zJDQ9fxrDu/pLDQNpffR3PfnMhgZPns66k4p4H47XErmVhSidufv16brilK1EOFShlF9qa8556hFduD2Dub5slZIU8eoYQ1cCTen3O5XojTbFrr2hVKV5Xi9PdVdwVl4P7O7GQsGwXoRdfxJAzB3LHlw9zcTtjErGqaZWvVy3Lo19OFhXzcOhSzqFuYQ1DydkVT47xe2XLYefWfGLaROLu05KePdKZN3YDXt070LVfY2LHT2ZDvU70iDi0pjviljiCegzh9k/+xxXBi5m53BjfdXBx93TDWnawN/jQ/LgT2rg+nhHtufghZ50Ydf8ZtKs46sJlGjYydsc5jsGSGkdccX2io0Nd1i/XdT2QkOgQcncnkCdxWDMTiE+rkj/3ekRG5hG7M9eofVgz9rA7J4omIrzLy7JCaHM56Or4a9nP+vUhnHXnAE679HpeHHsezbwq+B9Yyvervh46KV8vd3VuVdq2JrNiWgbd/u927njkfHo1Kr/LHPtFUeoSKtyVWoLzR+SfWTkV3Cxp/LawmKFnN5amo2zbiskt8iDQMeuLGcazPgN6B0hj141mMUH4NG3IGdHi7xFM0yjIyy+Tn3M3fItSGPfFbO55YRrvriqiqOQwj7IlzoF9jDghpGEw9YtKHI2BimF8u4p4TVzGpc8s5IdN+Y6hrfm70ohv0pD+jmH8PnTvGeUcGeDYR1y6tOGqhhXy7qB83UZOfine/l54mW4+7Xry8jmFvPHEEvIvHMTNTcx9PbwJ8pP08p2vBjjNyo7pC7j/1b958OdEMnZt5rHX/ua+N9exurQ8jNNcxWtJs9D08j5cbaQhZXfNzb1oZ8+r8OkaG5krF/PYLD8evq8TzR1dEnY8Ar0IsJWSU2Ao8oNpBHTpyhuPncW7B2wIb13fjGizi8aekcCERXDz6Ov4+coIx/Dbivur1TY7mbjKT7nJD6+nBx5mfTbMzUO2RVy4h/Xi4suL+O22t3n9wTd56SdPLr69OwESxrdXV9qlJuDeox2hAa3p1iqV2ODO9DLuPQfiFvNww83dXe5AxrbE6W5sO/3c3T0c25G92uE55xc+fuZTPpmbi5+kLSFxczPCO8O6yX3EzfhP3Juc2wOfdfE0GtaFkEpdnmJeDWnTKpbfHhrNN9MzZR/ZT/Jg7FcpPnGTbDn3kXg9jPWQHlx8RTGT7vqA95/5jDfu+Jg/tpQQ9+2H/O/eT3nv8Rmk9O5GW58K6Um87o5jlHtBwzZ09lzDt89+ybsvryEnQI7PlsAfD77CK/+T/cel0Xlwiyp5LOW0m86g+Kt3eeWJL3n/obd589u9jngr5reSlZepxUXcFcIZh1352N2J6BhD2uSJ/PLZREbf9hxPvL6GTFs1ZV2lLI9+7u6Tiav8mGYco5xop8Q0TErGU869lFHI0HMYVjiV524fzeu3vstU73O5fIjxNNWbjme0InOnGx1OC8GvV0caxyUQMKCL/LZViFusvLytO6fx+vXv856cl8mJbendxRyy4jCpv10asufLj3j97eVkOK4HKX/DT/Jn/I67ybUYdNa5DCuYyov3fsboJ0fzwsPT2V3hHXfXaciv4I4ZvHrTu7x43xzcrj6bnv4B9HVVv1zWdQtBg4cwMP1PXrznQ154cjVF9SRHFY/TPYjTbxxE8Zdv8fyDo3nu7tl43zicPsHiJ8cul3SF8nVaebkcqLeeYbRsmcHcDycz4cMvee7KV/hiTlble0WFsqi+Hlaot9XtWx7Woz4de3uw4t2vGP34dyzP9JVr3rg2KoQ5pqYodQM3u2CuK0rNY9stUJAKfr1Nh6OneOEMun8dzITP+tHJ+RtM6aaFnPmKlbe+Hczpxhgwaybv3T2etZfdynfDvCBnI1dcuZfL/xjBVb4i0qf+QadZzVn9bhfCKWPCk1/wfY/rmXRhNs/ePJ3NgwfycL9gcmbO5omS/mz8X1O2f/sLVyT1YcX/mot4FKrEWbphAYNet/P+t2fQt8pwblt+Bn9PXsNb4+Pp8MjVPJ8txzCzKcs+6E6MtPtKVs/h9NE+fP5Ff5pNnUSPJe3Y8np7x3t9hhCunLaNnd/9wtDt3djySjtnGFshf702nv9bUUbAwGHMerQZIQ73fD574FtmnHUTEy8+dLhC8dKZ9JnUgAVvdnKGr0p18R6G/C0rufaZHbR95GJePz1AmgxObGnruPiaPVzyy6XcFGo6CjlzZ3Hh54k4XsM38WrRjXEvdqWFNG6siau55Okinv5sAKfpMPnaT1miXExLoPdG0+HE8OK0UTSv3w1/72DT5Z9TmplKcpYHYU3rE2jem4411twMUgsDiIyWBrXpVh229EW8efM2zvjhVvoZI5GqUppHUlwBvo2jCa1mMv3DUSbHm5RhJSAmivqOqeYt5CWkkO1ej+iYAMcXJarFUkDa/hICG4bhV34gZfmkxOXiFhFJZHD5zb1KHmU7OS4Ha3A40ZFHLoMDuIq7WopZ9H8vs+68Z7j3TEk0dzFvXLmVwX/cSp/qyulflGVizk4aBDfiiu73mS7HnwLJ54vTrue0psNNl39DGTlxqeR61iNGzvNRnwMXlGWnSR1yI6xJOIGHVBhnOvn+kTQMP1xtknDxqWRb/IlsEnqwPplUTsPKro9e49uAW3n8XBs5HmE0kHpU/jtVXf06tK4LUodTE4oJaFyfgOoKoSSXpPh8PCOjiAj+hyVVuIJ3r97EgJ9v5jQ/+W2d/DGPLO/Hp6/0MAO44F/Uw0Oxkr8/g+KQcMLLj/U4sClpATf1fZomoW1MF0WpvRy/K0lRTgRuxg/YsXr2ZGHlrN0wsC29HC9uCR7+RIs4TEsrkJ+go8eWl86GtHAuubItAzuE4Fli9MI78fX2oKiwVJoIR8aaHM/PM/c71kuyCqXhUZ9zrzmTZwe5sXZrDn7NpLEQl8iSbCkDWwELFiSSepiMVk7bnchwEeGZ0hB17GMna9kSXtjajDHvn06bRQt5a50x86xgzWN/th9NGpQXzD/hMPFWQ/Ge9dz2/Faa3HMhr1UQ7QaW1DzSQ4JpEmA6mIQMGMjE0ZczuYJN+l9Hh2g38Ihqz9tPdaGDivY6glwTjvvDice4I/0X8wqLpHFLacSLLnTlfyzMPdgY1usUGq78D5qN9FkriO3cg84i2l2G8Q4iulU09aSB79L/COZpHG/rBoRJ497p5klgo4Y0EjFnSOOq4SuZZwDhTcLwlVN9wM0rkMiWMSJwPA+6Vc2jbEe1akSMKbYOhDuSuYq7WvOiSY8odn8yhvee/Yo3H5hL6aWD6Hi4cvoXZXkycZWfozcvgps4z/M/OgcuzLNehFwz4QTI/f1Qf2c6MSLaD/WraBKucUOaNA+tXJ9Mq5qGAzd3fBvEOOpRpf7kaurXoXVdTOpwRLP6+LtI84D5BEu9iCFcRLtL/8OZd0PaNYvll4c/46NnxvD6z2WcfVk712HL7T9e007zICAm0vGAwrX/sTFFqUtUbA8rSs3D3U/u3JVmRDmiGbPKD7/oUzq/soO03WsYcfHnjPg+TdRiAhOXeDN8aCTeB8J70b19PfbtSqXI2DaGhHkaw8Kc/m4e7nh6HNz2kG0vaWm6hzbhku4ZvPXw74x8YAo/pvvg5xgm5kZ0pwZErVjA+Xf+zpsbLIfEaQxB8zSGzcp6waYNPP3JFnG3kjJ/JkNu+IUrH57Ag8uCGXmm/NB37MKDXVP5v9t/4tybf+PDRC8CzWF2xhBFT4duMeN1kXZg+yha709jo/GJnpJE3h2bQN/bT2NQ8/Y8d7UfE8esdexrPIjYkhlKt9aum1e+3frwy4OtCHLhd7h4XVsZi39dyUwR6FPf/Yl2wz+l9fDPuXx8pvjZyN6dTmqzKDo7ZzU6aF7eRNT3Jzr8oEUGGQXg9C9Zt4zL75jFBMekQlX2Vat9ZjfmmnCMaTkJuMhPjTU36p07ipef7OoYsu86jJprc6fxyHt56+ubGHnzBdz60RM8fXvr41SOJwtXeakL5k6zUXfz4GX1D/52n6rmGcN5HzzLiy9dxMW3X82T4x7g8h7GawkuwtZIU5S6gw6VV2o2+56HtLkQMMR0+PfkL5rJ6eNC+GXMabRzCF4nlt3LGPZEAc+MOwtjtONRYysjOTab7KB6tKsyPC8/JY0duT60bhmMMXHt0WEjLzmTnVluxDSvT/QBTSLp7M0k3bceLfYvYeBob8dQ+R7VjOKslLYtnTfu+IuUO67j3dOqH/aZPWsq/f+KYfq73TAmoz15FDPxme/5vuuVTLw8+J89ebQUOibXa9AimEDTSanFlGwBjxzoMt10ODEYQ+WbhnXF39vVmHJFOfbsz9lFTEjjkzJUvleT800XRTk5bElepEPllTqD9rgrNZvA7qJnM8yN/4KVrbuKOH14W1pXEO0Gns07cF3jBH5dUWUa8yPh7kV084hDRLtBYFQEPVr/E9Fu4E5QdDg92lcU7QZGOlF0auBDlay7pFLanvW5Zng9Fs6MdXq6wlbAX7PS6HNBGxqe5DuGLWM3v+2M4dqzgv75zcvTn9Yq2usOlhTHJ5xODlV7hNTUjredLFzlRU3tRJqi1B1UuCs1G6NhXhYvK65u5v/E3Ol944V8cmHwocPe3IO49okLuLuNcblU8TvFzKtpKx65pjnNqsy+W71B4wvO4turIiq4VTF3TwbcPJw3hvhJKbnwP4Hm7teQx18/g0sck9K5DqOm5jBbmtwfTpP1k4OLHKmpHRc7mbjKj5raiTRFqUuocFdqNj4x4OYN1mzT4fjgE16fjlHVDyU/VXAPb8Q1wxoQ9k+ubO9AOrQ63LBeb5q1CSPiaLrzjzf+IXRp5n9UIwuUOk5pvAj3XubGicVutx21Wfev4ufP1pNtde1/apqFjDmT+WVuVmX3/CS2rU+luKJbLTFrbiyLv/iZMU99w9ffrCOp2HW4k2InUb64zI/aMTVr6hp++WStS79/Y0eMz5rJirGTWZFqce1vWFkSC155n6dv+pS/1iQeg+u+wj3Fms/e6VP4+rmvGPPmdFbFlbgIf9AUpS6hwl2p+QT3gTLjO7yKoiiCMUzeIwB8GpgOJxZDSFW/lLH966+YsLLUsWXLimfd8v0U2g+GOPUXG3k7trB+Z34FNzuWuA1M/WULadaKrrVjsaWkkBXeniFXdCN07QTe/mS3nMmKIU7ecjKpmA9djs9iy05g/dKECi7/bTlifLZ89i3dQlyuCONqlrKti/lzRytu+/RGhnhuOgbXfYV7ii2L/enBdLlkIKdF7uKbR/5ke1nFsJUX7XdX6hIezwvmuqLUTDyCIPUb8O1qOiiKUqcpXARRV0LomabDiWP+rkmE+EXi5eF6Jsui3ZuZ89McNuUG4ePhRbhPIguXutOmYSqL/9pGVlADx7em3ax57Ju3nLnT1rM1zk54q3ACPIqIXxFPsXsGqyYuZWOqH42ah+BtfLCiHFsB+2YuYObfO0n1CKdpA+MzVWWkrV7OrD/WsmVvGSHNIwnyspG/cxu7CusREeIhZZbMprX5RDb0qD6NvESWT1jIyu0WvPN2ss2jC0N6Hhyt4+7rS0BEBI0beZB0pHy6PD7TDznOZTvJCa5PiI/sZM1ix+Jk3GI8SZnvYp+CZNZMXsSiRQkU1Ysipl4Zccv3URTh/A5+8d7tbMsOJNwjhY2bigl1fDO8mMQVu8kLDSe4eD+bthVDwjpmTdtHWXQMIembmDF+DbG2cJo19MMjLIbW7SKpHx1Fi8BEpsyxc/r5zfCreEwnifySLIJ969GxQR/T5fhTZi111PUGIS1Nl6ocn3MYGVLq2t0z9YjnsGJPVeGubewtgJQ5C1m0yUJ46yCyF85nxt+J2Bs2IjLQCF1G6oolzPh9I7uz/Yhx1GEbudvXM/+PlaxakwqSjuPrJVWvuygb8a7yGVom11cc+YX7mDdxHx5tGhOYvo25vyxh9eZ8/JtFE+prVKoi4mZLfHMTsPgUsXWtO0Mubu3IuxPX+XAelxtp8xcxb1k2/i2NT7odTXxSJjvX8vev64kt86Zw9S48zuhH+zB3ShOr5M+WzLo/lrIkzoMG9YII69CAiEjjug+ktNr0XZWlOLu6p/SOoXGXxjSIDqVBBz/ixq3Hfk5vWgUYOxxKRkEC3RudIffd+qaLotRetMddqfnUv0D+K5N/ic5tRVHqLjZpvJdshoZ3mw4nHmc/kNFbVdUsWArzRWjZKMvLJTu32Om6ayHj/8rBzzuOXx/5lTUFNnFbx8ItViLbNYCFPzF6XCIWSwpL3vuSN19ZQpa/B3s+/YxxCwsrpZE/+xc++quUpl0jsKRkiDy1kDl9HK+/txO3huF4b/mT159YQLLVQtLUSUycl4VV9rMkruLnMauxV5eGLZ05z37GX/F+BGQt49dJybJf5eO0xK/kp0/WkVly5Hy6PL4D/iKopo/nuymZjryVrpvJZ9/vomini32sqcx++hN+2+5JeFg+q6duIbssmYXvT2FVukXiKiPl7z8YPysDa+wKfvhsPVnGawmWdJZ+PJllSWWOfH//v7F8PTUPn+L1fHbfh7w3ehv24DwWPjeOmYlGPGbeyrLYujwB3zYxBLqX5/fk28nCVV6cdnzOod3q2v0fnUPZL2nGb3zw4HgWZntTMu8HXr/zc35abiMgezljX1wgYSxkTBvHu19lENUtBtvM73jvexH1lgRWTN2HTcR9I7dNfPHULOItLq67avLpvL6+4p0Pt+IZ7Yc9bQWfPDqDtEbNaWJbzdj/m028XJupv3/Du+NSCZD8L/h0MYmWKvcUl/koP66fmJvmjefWKbzzzkbHsRwpPmvSIj5+dBbJwX7k/PUXc/YZV7cxrN5F/kqLyc8rxVZWRE5mAcVx5nVvrT59l2V5xHtKKZlrtxEbEEPTetXXNUWpS6hwV2o+blKNG94vjXXj2+CKotRppNFO2DngHW06nHiMpqfrxY2Azt3p1syHyNPP4LxhjTE+EOHRuC83PjOModcPo2/YfvaIyHBvezrX3tGTFg3DaNM5jMzYVGn+ShzuwfR9YCQXXTmEi4YFErc1/UDsxmKzWLCUWPFp3p6zzmuGry2b5X/E0vbuKxk+og/nP34BHXevZmWys4l8ML9OHOsu0rBmbmbZzhZc9OAZnH37ddx0UX1pQDj3PLgciOGI+az2+ByLNx2HtSFj/jrSrKXsmL2DsCHdiOpw6D6lqRtYsq8tVz12Jmdcfh633deNYMfknBXPw8Gtg2sVt+RnJKIHVz05lGG3DqR9gRc9nryU8685n8Ft04jd48yZNXMxb1z4KfODz+a+u1ri6XA9FZaTR8VcVF5OzXN4cHGj3rAR3HzTIC6+shVFvp24+bEhnHtXX5rGJYiozGXln3uIHNyOMP9AWp4eQ+aSbdg9GzLkofPo1zGMiK5NiUhNIcnq4rqTFMpz5lwqbLn50v2Wyzh3REfCVi5jR8POdI7yIbhTe5qkbmZjSg7rZu2n7c0Xc84V53Ln//oS6VExLlmqyYfzuC7i1lsGcsEt3QneFSfHkneE+KzkLF5LXPehXHP1AC598UrOiDHkgZXsuS7yV9yIPoOi8Ytpy9CrOjjiOhibq/Rdl+Vh7ymyz+z7n+ftP/248LXzaetturtcFKXuoMJdqR00uA3K9ontlw3jNq6mplbnzFYgwn0FNHlCtk8yLrJ3wMoxt918vETmGMhfWbGVgWXHfN6+biw/TljDqi252A7sK2GMoad2NwnrJW1r64F4DAscejm3D85l8j1v8MrYHRSU5ZOb60e9MEdLHTyDCAkpoShPNtzcnFE6/jP/OtZdpJFTQFFgMMFGI13cvbw9pYluhq9oBtXFUSFctcdnmk/PHnRO28Sq2D2sWB3GaWfWw+ZiH3u25CsokCAjMxX2d3MzPM3tA7hhOFdyN9fd5Hic58ADT8mvt480j+yeeHmKKJOsO8PZoH57zruxO42MJy7l8ZwKdrJwlRfTjss5PJz7UZ1D06QuGPXSiMrN0wMv4xo00vf0xNM4z9YC8nKsZG3eyKp5G1izL5jThjaB0kSmP/A2b76/iKVz48ky4z3kuhP36vKJWwDBjuvRTl5WIda0ONZIGqsWpFBvSA9a+BeRl+dLSKiRfwkuefMs37fcqslHpeMyjsk4FrkvHim+/Kxi/MOC8DC25dr1MgqjuvwFOONxUB6HgeOvi/SrK8sj3FNsBNPl6qH0aeFzwM2lKUodQq4+RakFeIVCq9FQMFVu5BbTUVGUOkXBTIi+AYJ6mg4nHmdb0vWQznJz93TDWmZMbWZsly/l/kYMFpLmryKj/2Xc+9QILuwfJj/WTn9nGuVhD03Lij9tR17Jk1+eje9fS9hkDSY8Mo/Y7bmOIcvWzDhi8yNp1NADHz9P8tKzxd1CxtYEskRFGXG4SsOtfgghOckk5FgcvWEJ+0R0HQhTbuXLkfJZ/fEdMO9m9O2fz/KP57OtcVd61Le53IfIMOqlJ7I32+hRLSUzIYNid298vAvIzhA3ayZ7d+RISDkGfxEkOTlk24whwLHEpTmHA1fMt/Ov67y7hXTkyidOI8az3O/UMCOHJwtX+Tlgx+Ec2qtzP7CUr7s+hwetPKxhhn/5trHItmcQkQ08qXfaWYx88CKueXAEV17aDGvcBpamtOeG167kmhvbESFK19jv0OuuunxWvDbcCG0Uimd4a4bfb6RxEVff24/WIYGEhReQuCffcW3m7E4m2zF5ZXl+Jb1q8uHMf3k4c/E4UnwQEh1E/t4k8oxrI2s/+9MN92ryF+jcxxl7hXQOrBt/K7hXU5aHvae4+9Hj7is4o4XxcLE8PtemKHUJFe5K7SHqGufnnwoXmg6KotQZijfLfwXQ4jXn9knlQJPVxeJOo84N2Pf1F7z7/hoy3dxwcxdz+OFYx8ON+j1a4T73Dz57/lu+XlBAgIh9Y1+jS8royTMWNw8jfMUB6xbixn3BCw9+y0dPzyejVyda+QRy2qi+FH31Ma8++gWv3LsI7xuH0iPQjagBnfD/+wdee2AsXyyxEux1mDRCOjF0WDa/3fsp79w9jhWFAUY2HWEOLOLgPJYj5bO646u4eNByWEeKF++j4dAOBEu8rvZxC+vCeefnMPGOj3nr7g94f1w8xW716TrYj6XPjeGte8az3hLoyKtb4w5y3Gv45O5Pef3lrVhCPSWPcgwH8m2kK7k3tg/k3UPMuW7Zu4TPH5jKuhLn9qm0nCwq5uHQ5difQ7tHde5Hdw7LF3cjrNHpbSwS1sPRGja2ZF9PY82fnjf0o+ibsbz99I+MefRjyVccbjEtaeexgR9f+IGPXt9MfrC77OHiuvOtJp9Vro2AIUMYUjiLNx4cx2fPfMmrj81mj8WfHlf2IOOzsbz50BjGzCkhqMr14TofVY7LvLcYx3Kk+ALOGEDf1Gm8fv/nvPbMeorqSZlJPl3nT/aoWGYVyr669F2V5WHvKZYk5rz0KRMWO7++cbhFUeoSbnbBXFeUmk9ZOqxoD35ngk9b01FRlFqNJRXyfoEuf0Nwb9Px5PDCtFHEhLbB1yvQdHGFhdz4NAr8w2lQ38t0OxRLbiYZhf5ERPsazf2jxEJeQhq57iFExfg7h8QalOSREl+AR2QE4Y6xqU6skkZqoR9R0ZVn3XaNlYL9aeSLKIkKqz7fR8u/OT7X+9goTE4l0xpEdMMA85iNvGZQFBxOuGOGcBNLIWkJJQQ0DsX/YDEcHbYi0vdbCG4UZA7JPjVIzd1Hk3otuaL7fabL8aegNI8Xp11Pp0aDTZej5z+fw2rdjwOl+aTE5WINDiM60sxvWSHpyVKHYkLxO1CHXF13R5tPuR/IvjkWP8Ib1zsQp3FtJud4EdG4mvrmMh/Vc8T4jGsjrgCfhhEEV/oohuv8/WNclWW19xQbBUmZWMLCCXH9gY4D7E5dzc19n6GJ3HcVpbajwl2pfeSthQ1ni3g/S8W7otR2HKJ9ArQZC5FXmY4njxenjyK6XmsR7gGmi6IcX1JzY2lWrxWXn0DhXijC/flp14lwP8N0UZSTw57UNdzS9zkah1b+vJ2i1EaO86NKRTkJBHWHLrOgaDaUbDcdFUWpdZxiot3A28MXq9VijPdUUzshZrNZjjDC49jj7emLxZhF0UV+1NROpFmsZfhIfVSUuoAKd6V2ckC8z4HCBXJzNyasc3HHV1NTq5lWvE5E+/hTSrQbNK7XmvySTMmhLrqcmKWoLJ+G9VqYNfDE4OnuRahfBHnFWtd1OXlLiaUQi62Uev6RZs1UlNqNDpVXajelKbDtRsjfBAHnSmsjyvRQFKVGYsuDglmOCdxo/xMEdjY9Tg3is3YydtGTtI7ujZsxu5OiHEeKRbTHZ2zlxfN/xMOYVe0EsmDX7yzY8yeNwtqZLopyYknO3kPr8M5c1u1u00VRajfa467UbrxFqHeZBi1egrxfpcH/t3N4raIoNQtrrnP0TM63EHUp9Fp3yol2A+M9y6igxqTk7DFdFOX4YLVZSMraxeBWl55w0W5wWtNhFJXmkl2QYrooyokjvziL7MIUzmh1semiKLUf7XFX6g6lItj3j4FEMfcQ8JFGv1czWfczAyiKckphL4OyBLl2N8vfvRB5LTR6CPxP7dmDi0rz+XDBI1jl5zUypNlJEVVK7abUUsT+zJ10iO7Fld0fOGmjO5Jy9vHRgscIDYohLCBGR5koJ4ScwjRSsndzU99naRPZzXRVlNqPCnel7mG87572mwj4jyF/tQj3APBsIH/DxPzlqjAa2dr4UJQTjnFt2kvAlgWWZLF0EentIPpmsRvlOg0yA576GOL9h9VvszN1HSH+kfh4+Ymo+bffUVIUJ8ZEdEWleRSUZDOo5cWc12HUSRfLhnj/cfU7pBckEeIXjpenr+RJB3QqxxiRK2XWEvKKM/DzCuSq7vfTKqKr6akodQMV7krdxqj+RTsgbyXkihlCwVos7mVmAKUm8eOUQVxzwQJzS6lRGA19Y/SLRwgE9RDrBQGdxe2/fy/8ZJJdmMayfdNJyYunVBqdcnNxeiiHsGJWJ5ZO7U698DzqReQ6/jZtl0iz9vvNEHUdN4dgaVG/A72anOWY2f1UIjF7NytiZ5JdlOaccV6pxLoF7UjcE0VuVgC5mYHkyd+L75hFq87xZgjlcLi7eRDsG0aPxoNpGX7qvSalKCcCFe6KotQKdu+Gtm1h4ULo1890VBSlxlBcDJ06Oa/lchYtgv79zQ1FqcGMHw8jR5obwrnnwrRp5oaiKMpRoGOZFEWpFbz6Klit8NxzpoOiKDUKX1/48ENzw6RlS3NFUWo4TZqYK4KfH4wZY24oiqIcJSrcFUWp8ezZA99951yfORMWL3auK4pSszj/fLjoIoiJgXHj4Jxz4MsvnW81KUpNJDMTbrvN+VD5r7+cD6iefRaaNzcDKIqiHCUq3BVFqfEYve0Wi7khPP+8uaIoSo3j/ffh00/huuucr76sWwdnnw07dpgBFKUGYDxs+uYbGDwYhgyBv/+GCy6AL76ARx4xAymKovwD9B13RVFqPMa7sQY9ejgb+cYky141e04zRVEqsHQp3H8/XHwxPPYYeHubHopyCrJ5M9x7r3POhpdfhpAQ00NRFOU/oD3uiqLUeIyhh4b5+Dgb9CraFaV2YUw4Wf4KjDFZ3bJlznVFOZUoKIDHH4fbb4e334bRo1W0K4py7FDhriiKoijKKY/xUO6pp+CHH5x/77sP8vJMT0U5yfzxB5x+OjRt6nzFo2dP00NRFOUYocJdURRFUZQaQ5s2MGsWdOsGAwbAn3+aHopyEoiNdU6oOGGC8z32u++WxrW2rhVFOQ7oO+6KotQauneHtWvNDUVRaj3JyfDAA86JwD74ABo0MD0U5ThTVgbvvOMU7G+95ZyATlEU5XiizwQVRVEURamRREfD+PEwahScey58/jnYbKanohwn5s93zrtgtTonTlTRrijKiUB73BVFqTVoj7ui1F2M992ffho2bIBPPoG2bU0PRTlGpKXBo49Cejp89JF+i11RlBOL9rgriqIoilLjCQpyDpd//XW4/np46SUoLTU9FeU/YHRxffopnHUWjBgBU6aoaFcU5cSjwl1RFEVRlFpDnz7OT8d5ejo/HWcMZVaUf8u6dTBoEOzYAUuWwGWXmR6KoignGB0qryhKrUGHyiuKUpGdO+Guu5zD5l97DYKDTQ9FOQLGqxfPPgtr1ji/x96li+mhKIpyktAed0VRFEVRaiWtW8PMmdCrl/PTcca3thXlSBgzxRujNTp2hHnzVLQrinJqoD3uiqLUGrTHXVGU6khJgQcfdH7G68MPISbG9FAUk9274d57nZ8VfPNNCA83PRRFUU4BtMddURRFUZRaT1QU/PQT3HwznHeec7Ix/XScYlBSAi++CCNHwlNPwVdfqWhXFOXUQ4W7oiiKoih1hvPPd05et22b8/vbxl+l7jJrlvOb7H5+zokMjVcqFEVRTkV0qLyiKLUGHSqvKMo/YeVK59BoQ8z/73/g42N6KLWepCR45BEoKnJ+RrBJE9NDURTlFEV73BVFURRFqZP07g2LFoGvr3MyMqMnXqndGK9HGLPEG69LXHMNTJqkol1RlJqBCndFURRFUeosXl7w+OPw88/w/PPOz8fl5JieSq1i1SrnUHijt934Jvvw4aaHoihKDUCFu6IoiqIodZ5WreDvv6FPHxg40NkTq9QOjAcx99zjfEDz5Zfw6qvg7296Koqi1BBUuCuKoiiKoghubnDjjc4Jy379FS69FBITTU+lRvLDD84HMX37wuzZ0L696aEoilLDUOGuKIqiKIpSgchIp+C77TbnxHVjx+qn42oa27fD0KHOOQzmz4frrzc9FEVRaigq3BVFURRFUVxgTGBmvAu9axeceSZs2WJ6KKcsxizxTz8NN9wAL7/sfOgSGmp6Koqi1GBUuCuKoiiKolRDQAC8847Tbr7ZOYFdSYnpqZxSTJ0Kp58OERHOLwQY8xUoiqLUFlS4K4pSq7DbzRVFUZRjSK9esHChU8gb4tBYV04NEhLg8svhu+9gyhR44AHw8DA9FUVRagkq3BVFqTUYE0sdNcUQuweyjnPPWX4aFJjrJ4RSSM00108AtnxJT6wiGbEQn2Vu/ANKZZ8syX91ZKQ4Dq/OkZVaN4/7VMT4dNxjj8EvvziHYd9xB2Rnm57KCcdicY6EGDECbr/d+Um/mBjTU1EUpZahwl1RlFrFEXvcbTD7JWgbBe27QHQ0XC4Nv6zjMfFUMdzVAR6YAiVzoEsPWPBPFZiI8IfOgZ/ize0jsOl1aH6muXGMyJwM54hAia9aRoXw7DD4Ks65mTJbGtBtpeHcHtpIuXa8HBYfrYCXuMdeCpd94lg9FHH8+0FpnE+sxr+WYtkEQ5vDi6tMh1OctSJmQ73B01NErvwNbggjR0OVZzsnhH99zR0FLVvC9OnQvz8MGgQTpV7qaJ8TizH3gDHyIS/PuT5M7kX/FssGGBgqddast6GN4Yo3IONk3WxK5L4vv0//t8DcVhRFEVS4K4pSaziaHvf4b0RIvAZDvhOxLmpivYj2FU/AcxUaSJmxsCPpoEAsTYNkEamWbNizH6yGmwjS3bJeHiYzEQpkI1tEbFx5D5xs5xdIw1LMpy+M/gD6SKPQgQUSd0u8VRRNQQps3SYNRhH9BtZUWLpQBFGFT1JZJO3tuyRuIyNVML5XbMl1rhvh0iSeUhH/O/Yd7LW1yHaS5Mk4nl2SX8mKA6tsp5QPD5C49yc7V1NFPBrDghPLnNvl7P0KvpbG7qh2cqjxcMdIKZ8hkpakm7EeOqwQv+ccbVAHVcvVgSQeu0PyWSTHI2VcJFauf7Ikb7skvOMw5ddqxCjJx0uwqg51P9vkfOZJGWUZ51T+JktdNE6kUWaZVcohR+rIHjln5dXC2NeoX1ninlV+kuVv3HY5/0eodwY2qQu7tko9EGFUkcPVvySpZwWtRNTulTzuhLFDRdQ+CROMfBscg/SN+rxdjj+/vCJVUy4Vr7nqrgWDAqlj+zIkPfGPl3wcLcb9ZpTUSeMTY7//Dpdc4hyyrRxfMuUcGrP9v/iic+Z/Y84BX1/T819iNeqA1Le7/pK/Ug9/uAsWPwMP/2EGEKqr95XuU0J191cHLup/llyzRrU37o/7ZF8HPnDnaMmP8Y5+NfXbwLhG9kh9LpFrIUXuwRUuH0VRaiN2RVGUWkKPHna71WpuuEL8Rg+x2/2G2e1J5eHk7/S37fZftstqqt3+1CC7PbyZ3d422m5vfZndvr7Abv/kHLs9RuIe0NNuD/O223udZ7f37CjhfOz2sz+QOHLt9kuC7fb+59rtndvb7SFBdvu139ntFtn3Yj+7/crxdnvRRLu9fgO7/c8iuz17sd1+ThO7vWEHu71RmN0+9FWJw2K3f3edM4wRd1Ck3f7OGrt9zHC73dvNbg9saLd/sM1uX/SK7FPfbu/YRtKX/b/b6TiKAyx6WMJL/g2+GWG3N+5rt/fpbLc3kfy1ucPpPu4SiaO/HI/hHiLu19rtuyT9by+y25vfa7cXS5jMb+z24BaSrd12+3DJi5uX5Pd8u32bhHMgf1/tY7efKcdvFGXCaLvdV451bJLT2yBput3+wi92e6mrcpVysOyz22+Q4wiIkTx0stu7yd++r4l7tt3+ylApCymjNhK+wyi7fWeZRCjlfI3k5e7ZzvjrAiWLpAykzhnHnGWck8Z2+1lS7h2kbPyl7P6QsrVLeb0qdTRM6kiHRnLOpewWS1n9MtJuj5Q60lTqY9DpEkziGir+TaR+RYfb7aOkjpa5qnfrJaykd5qcr3Mvl3Mmbld/6zjlR6x/U26R+if1aqVxvmSHeQ/Z7V717PYfMo9B+lLRZj4l9VD27dRWjre13f6xhK2uXCpecy6vBUn7B6lbQXINdOxit593htTFM+32uPJ7wz9kutT3rl3t9o8+OsJ9SPlX2Gx2+1df2e1d5Fz9/LPpeIwolnPXSK6z/1tmOpTIutzLw6+XeiSbLut9Nfep6u6vLut/lt0+Qupj37Pkt0PiDfa32+/4Q+KWRK+R9G76s/r6vfcHiVuubSO+vvKb1CpAfiPijMwrilJb0R53RVFqFYcdrmqBxBSo10is/O4nf895BK5oA5s+hneS4JeNsGUFtJ8Hz/wEBcWQWQ9+XCbbp8P6DBi3Dl4cBIvnSBwSb3EJFPWCFVtg1gPw63OwoML787ZCKCwQK4OvnpT4z5R4JJ31v0HgegkgYbfmwJjlEsdCuMwLfpsFt7wF3X3h7olwj7g99Sqc/ZXkVdJ5KhKeeONgj3YlbJIfyXea7PP9Wpgixxg7zelVLO4pRfC+HON2ScP/V1mXYy0Ut/Ie71L5WyrbHi3grQfBtxVMnARtyyd8Er+V26BdR+fQrcREsEoZNRYrJ/ocePYKOa5qynXVp/CzlN1EOZbNEyDIHKmwR47v1a1STlIuW5ZApBz7GzPFwx86S37W1ZBh48ca43yUpMG530u9mSLlGAvTpIyM8npFyvBLWd8odksgrBa/AqlvmVIPvk+WeiDl99VTci7Oln03wRJZn/gEzMx1Ue9mwM65Es5T0roBJvwMQ5tIldpzdPXPKufurPpyuuR8XSxxPf4NXBn839O3yn6PvwOX/CLHKem/1V7y8IzUPTlOV+Vy4JqTOubqWihdLfVM4r5W6t6mNXCBN5RJGRf+yyHv50h9N2Yy37cPBg+WOr3Z9FD+M5vk3A8ZIte+3HeN0T9XXWV6HC+k7sVEQV4qZFdT77dWc59yeX+V+uyq/s/Ic/52eJ0LayWeR6ROTzPu03LdFkr9LTDvw4fUb7kHfip5slzrLJsfL4BU+TImdboAAPTFSURBVG0x9lEUpfaiwl1RlFrDEYfKi+isHwq5It4PjL61wte3wmvS8Nq5U+JoB71E+Lg3gB7NRBTtcgrZYBEOEdKYC/STRlZDaCrrQQHSviofHylpdxLhbozY7NQDAoyhl9KAOwQRETulYd+yO4TKHTjsDBj3pbj7QH/Z/4ur4YzLRBTLvkYDsKKGsEgDcq808uY9D31Oh++kUdlC8nk4QlpCIzlu4/NIbhWGutfrBB0ls77yt5MchyE2DMoffFhdDIOuiDFEM1/iC5KyMggXoeYmIiy5wrDm3V+LEHtNGrWuylXcjGHFhvtpIdJOFkHe05xUyvArkbieFyF0+khpkDaGBpJHo4yNMs8ToVdXcZOyattIylHOZ6iUR1mp1AkpL6uc5x5St93D4OlxcJucVwPfDtBdBLSP1IGde6XuzxOB2QdGfgeNpcwDqql3XR6CD86DH+6F3peKUBDBUniU9c9DxMfsRPhGREVJNkRJ3jyNev9f05fj3CvHbMzubrReest1Vix5SpA666pcqlL1WrAZDzQknq5dxVPce8hf+fOfMGacf+stEWrvw61yX3n2WefxKP8O4+HT//0f3HknvPuu1IkP5F4cbHoeT6S+Jkr98Jfryaeaem9cdy7vU8Ih91eJw2X9NwJLfW3ZVuqe1MUIuYbLKtynyzmkfkt+kkTMt5I6a8TRUK6FBv+18iqKcsqjwl1RlFrFYXvcpWEz/BL5I42nN2Y72mZsF5HzvFiGrLdpI/9tE/Eg4tMmwnu1iNlW4ibtJNwr3C1dPiCQdDesEHEhq5tWSYNTRGhzV+9dekmDrjVsnCECVcTFnu+hs4irkgVw76sw4BOYP0GEi4SzGA04SddI2hDShrhtLkJnyAuwfDn8JQ3ZwRLX4dprbtXc5bM3SH4ls8WbJC/SOG4uosZP8psjjctkaRQukWMp1+6OY7cd3DZwFxEeJuGzspzbTYdDP8nI2DdkfynYwu3wpDR0N0vBuixXaai2auV0XyXu1jhYJ34GLeSYfOrBC9PlOJdIg/1maB0uHlLGxrveocZ6XUXqXtVT2qqjVKuNUh9EHJSKXdcZ7peyM/CSc+SoH55Shs1FUAyB6VJ3lvwFNw8WESTl66rebfwG5jSDuRLfFBHgk7+A3U3+Qf2TdK98D24SVfGEiC6j8/k/py/1X/6xaqX8J/VxxWpJRupQY+N6dFEuVal6LXjJdWeMIJk7U9KUOjhdrkHjnnAs6CFCyugZDhHBZUygtkAnGfvHGPMGGGXXQk66UX7du5sexwu5v5RIPUhLkbr4AXy/W0T2RRBYzX23VXX3KcHV/dVV/Q83L56Kvy8uqVq/Zb9Ocg/dPBcSpdKulzzEHavKqyjKKcuRbhWKoig1hqOZnK7dvSIuRQiMu0AaUcEimmW7swjMJ/uKoL4P/q+RCI5OEq6XaEppWL04UsSFiI/AIOcNM1AEa0D5uvz1d3SZCIbDfOgpjamzR8PlEudAP2cPXKCYu1iAsa8IqFveh4sz4bQo6POUNAglrJeI29Nl+70LpYEq5tZeGmS7RNDGSL4i4OtRMPxnaSRK+Jmy3k7y2PUmKIuufCM3eqM8jF5wcTTSNdI3/H3kr2HliJ7gnp4iqs+GosvhwYEw9AZoLw3N7tLI/EV2aijpGsRIWhEitkf1gVcN0WQgxzZQGtLrRTwZgt6jHXw2VtIaJyJeGrPhIh5XiX3+JHSrplw73w63Sl4vk307XSmiU47FT+JtKQ3gp8RtlAirTiLMbpIGfLSRFxHt60TI9R/gyEGdwF3OZ5A00kOkrnlLWfnKOQyUc+MuQiLQMHFregu8fzG8dhpEyTnaJ+LgASnjAH9nnXNcFhLHzSKQ24lI7SBla/TU/S4CuYHUV1f1LlLO3b7XJayEu/EnqdNS1zpJHX31KOqfp+Q12EhUKtmzr8ifVTBhx39Pv7Osv/1/MEnqihHHY9vkmF+U+ilpuiqXitecq2vBQ+rWG8/CWrkHNOgNWww3CWBqqf+MMbP+I4/gmHH+VTl243Nl+um4I2OM/jE+7/bbb1LXpL4Yve1HFLb/EY8G0MgbPhwq15Csn/8O9H1G6uUVcm8W4e6q3req7j4lHHJ/levRVf2P8pV6aZjUU6NyOupr+brUR6PeurzuJYHb3pBrZq2kLfl9eguEScV1P1aVV1GUUxI340V3c11RFKVG01sa38ZngYxvLR8JY1b4PUki3ptKY0saRRXJlIZjujTiWopoNtpBVmlsG9tRIoSMmbpTpQEVLeLElifr4h9tkYaeCNN2M6QB1RiK64uYMBpfQl6y3GilkRdoc84MHC0ipVoKYXc81BfhbLwqnlkkjTEznZ2Jkr40DuuJGHDMVix5ry8NyghpxFWiBPaLwI2RBqTxjfUMEVARxvGJuk5KF4Ei6X9xPrwljcc1T0ueiqG5HOeR2sV5+509O62aODpvHaSNh14fw+y54l7eYDRmPhZxXSYH0KKKqKtarg6McokTISVu/nKc+VJu9c1jypaySJLGrdHjZjhlTYCeY2DarArv2tcB0qTsg6V8fKSs0jKcQ70NsqUOeEmjvUr1PYBRV9OknKLMuuhAzmG8COMyqaMtzHiqq3fGFNV79jrTqDh3wWHrn8S1X/aLCTO3hQwJGyBxiD45JumXZMJeqcsNJbzxUMOoQy7LpcI15+paiJLte68XgfahiK/m8LGIxWclnX0/S7zOqI4ZRkvLmAH9zTfhGRGEl4uYO5oHjXUJY4i48U32X3+Ft992zhNwKlFdva96nzrs/dVF/c+XOuom646qafzWyO9XlGxU/O04pH5LnZ56L8zsCx+Oknuz3Id7PQufyj32ymNdeRVFOWVQ4a4oSq3htNOck0MdjXA/pojwuLW7CPff4dH2ptspzB+3wgfSsJz56H/sXRQB9OlV0qiUBurT3Uy344U0Xo1RB/vughf6m26K8l+Q+vv7kyKkf4QUEVhBreHJz+CWTqb/cSA93dkLb/S8f/QRNG5setRx5s+Xe6fcjy691Pn3hN/DjyHH7P56BGLl9+auZ2B1ijTmRayfL3V5zC3mAzJFUWolKtwVRak1nDThriiK8g8whoA/9hjcIkLr7rtF4NWhESQVSUtzPsgw5soYPRqaNTM9FEVRlEM40uhIRVGUGoU+ilQU5VRn6FDnaz3x8c4h4Rs3mh51BOM+/emnznK45BL4808V7YqiKEdChbuiKLUGfWdUUZSagvGde+Od9w8/hDvugKefpk58Os74FvugQbB7t3OElCHcFUVRlCOjwl1RlFqF9rgrilKTMD5zZnzuLCzM+fmzefNMj1pGXh48+KDTxoxxPrQwZk5XFEVRjg4V7oqi1Bq0x11RlJqI8em4hx92fgLNELS33up877u28MsvMGAAdOkCc+dC586mh6IoinLUqHBXFKVWoT3uiqLUVIz3vKdMgSFD4IwzYPz4mn1P27ULzjsP/v4b5syBm2/WB6yKoij/Fp1VXlGUWkO/fs7eHF/9Ho6iKDWcjAznp9GMT8h9/DE0aWJ61ABKSuD1150PId5/3/kKgKIoivLf0B53RVFqFfooUlGU2kD9+vD11853wi+6CD74AKxW0/MUZtYsp1APDHTOnK+iXVEU5digwl1RlFqDDsFUFKW2YQybN95///JLmDTp1H44uXo1PPec8zNvd93lfHdfURRFOTboUHlFUWoNRs+O0dtjfGZJURSlNmEMmTcEfE4OfPQRNG5sepwC5ObCU0/B5s3OvHXoYHooiqIoxwztcVcUpdagPe6KotRWwsPhu+/g3nvhwgudAvlUGDr/008wcCD07u2cgE5Fu6IoyvFBhbuiKLUKHUOkKEptxhiGbrw7HhcHgwfDxo2mxwlmxw445xyYP9/57flRo0wPRVEU5bigQ+UVRak1GN8JnjEDAgJMB0VRlFrM2rVwzz3O9+CffvrEfFGjuBhefdX5iTdjwrw+fUwPRVEU5biiPe6KotQq9FGkoih1he7dYcECCAtzzvFh9HwfT6ZPd6ZjzHi/eLGKdkVRlBOJ9rgrilJrMN6znDbN+RkiRVGUusS+fXD33RATA2++6RTzx4rEROdn6dzd4b33nGkoiqIoJxbtcVcUpVahjyIVRamLNGsGU6bAWWc5330fP/6/3w+Nye8MoW5Mhnfrrc44VbQriqKcHFS4K4pSa9BZ5RVFqcsY98Crr4a5c53D2g3BbUxi929YuhT693d+fs6YDM+YiE5RFEU5eehQeUVRag2DBsFff0FwsOmgKIpShzE+z/bII3Djjc7PyHl4mB6HITMT/vc/p+AfPRpatzY9FEVRlJOK9rgrilJr0B53RVGUgxizzRu95Skpzgeb69ebHi4wunG++ca5jzHc3uixV9GuKIpy6qDCXVGUWoWOIVIURTmIn5/z821jxzo/HWf0phcVmZ4mmzc7BbvxeTljlvqrrjI9FEVRlFMGFe6KotQatMddURTFNV26wPz5zsnljE+6zZoFBQXw+ONw553w7rvO77Lrq0aKoiinJvqOu6IokLscEsdA0XawlZqONY8nP76Xp27+ggC/YtOlhuHmAV6RED0KIi6TbU/TQ1FqJwUluSzdN42tyasosRRil0U5/mSlhPL76KsoK/GmyxlrOO38xbi7a9mfCNzlPh/iW58+zYbRsUFf2dY+NEVRjg4V7opSl7EWwaaLpPW8CfwHgHczFYsnFRtYMqBwmaxmQZeZENDe9FOU2sWKfX/z24axRAQ2ITywMV4e3qaPciIob/3pSKUTi9HsLirNJSl3j6Ps7xn4BqH+kaavoihK9ahwV5S6itGzvmGYCEULhI6Su4E+9T+lKBDxnvcXdFsI/jpDlFK7WBk7k983fEbXRmcR4BNiuipK3SI+cxspebt5YPD71PMLN10VRVFco8JdUeoqKeNg32tQ/wEV7acqudPBS/52mujcVpRaQKm1hOenXkvXhmcS6BNquipK3WRn2hpigptwZY/7TRdFURTXaGtdUeoq8e9BwJnmOEnj+Z3aKWeBgyB7FpQkybai1A7Wxs8n2Lc+AT71pJbrokvdXhqHtmVNwjyKywrNK0RRFMU1KtwVpS5iDLQp2AC+HY0NtVPV3H3BuwXkr5VtRakd7M3YTIhfpONdXzW1um7eHn74eweTkhdvXiGKoiiuUeGuKHURewmOGcwRc6EX1U4hc/MBm/bEKLUHY6i8h06CqSgH8HT3pMxaQ7+GoijKCUOFu6LUReyGInSsqJ3yZlD+V1FqA3Zn7a7S86imVlfNeVUoiqIcHhXuilKXMRoMaqe2KUqtRASLLrroYi6KoihHRoW7otRpjOaC2qlvilJ7cNRqu4gVNTU1h+ltXlGUo0GFu6LUacqFodqpa4pSW3FV39XU6qopiqIcHhXuilKXcTzpVzulTVFqIXZddNHlwKIoinI0qHBXFOVfUkZyfI65riiK8g8wtIqamprTFEVRjgIV7opSp3HVgqhspXm5ZJUe6m7dO5+RD8x3rFt2zuPGNzeRVyXMfzMLm8eN4//mFTm2rTkpLFm4mfk7c8XH8C9j1eff8exS4xM6Vfc9WisjJy27yvGVkpleIP9XcLMWsGPNFqat2E+qxelWunEmoz7YTn7FcEdjtgLWT5nOA098y00vz+TPuFLX4Q6YotRGKvY3Vl5Kc7PJlWuyfLEW5ZJdYD2wbbcVkZ1ZjNWazpKPJ7Mqs4Lfv1kKktiyPpXiim5HWo5V2sdlsZIx53d+nptVwe1wi4XEqeN48YZXefuHWMf91YgjdeZv/LIgR9YLSVy7k6Sig3tUWv5FWRTG7mBbwj8q8RqzWHPjWPj5D4x+6ku++HotSSUVfV0viqIoR4MKd0Wpy7gaml1u1nyWjfuOXoNf4JZpJVX8LWydup6SM3vIehmLxq+gqG1TgiqF+WdWumYm147eQUm5W8luPptUStcuPli2zOSi2yby6YyVPHPb6wz9PIFSuwedOvsx9Ye1pFgrx3V0Jo3bWePpNeRFLhqXjtV0z5z2I13PeoeHFhc7w5XF8+ZdY3nw53X88P4ndL1pFuulIebdugmh8xcwMc1aIc6jMGsW21KDOefyAVwWsZv775nKUonPZdhyU5TahFGtjT9Stw+1UrZ99DqvfJOIxbFdzKpXn+We/y0iW65zI0zhrG/538urybflsmfRZmLzKu5fvZWum8p7Y7fKvaOyu2XfOv4av8nxUK6ie1WrtP8/TPvEmo3c7RtZuyPfhZ8LK93HrK9jafvMI9x3eQPcHe42srdtZP2uQrnFJ7Pih7ms2y/CvOq+hlVbFmVs++ozxq8oreJuIXHuTKYvSa/iXjvMlrKfzPCOnHV5D0LX/MgbY3cdUueqmqIoytHg8bxgriuKUleQhhPxr0PgUNPhUPLnTOWxnc0Y6ruTpDZncFVbD9NHsCTw4Vvb6XL3EAYE7OHdd5Ppf39vevjbydq2nk9+Xsv8ODdatA0lyL2ITTMXi+iOo6C+D6nb82jSKJCcHTtYnVPKqklLWFnmyf65i3hvWSFRvu74Na5P0Pq5PLGrBS9c2oigeg256PI+XHl2Vy4J3ctTk8u4/JIWREXaWTV2DZbh3enqa+atnNJY3n5+FZ4DmtOwQtYPULCLp1/YQbPukB7enRt6+ONuTeezN5bT9IrGzJ1RzEXnSdoe/nQ7qy83nd+ZS4cGsOS9VRSdcxoDwoORA+Mnaw+uaudlRnoUuAfRqVsjWjeoR5tOfmz6ej22C3rSJ9DNDFCFko0Q2h8COpoOilKzWZ+4iDJrKYE+9UyXirgTbIvjjxml9L2gOQGW3cz8dCVx+6HxJT1p4lPGlp//ILnrCIa0L2bTpM14dI0g+e+lbErzp1HLYLyxkbN9LfN+X8GqdakQFUOkexJrJ87mrxUFhPi449MogmDzsnX39SUwIsJxX3LPjWfZhHksXpWGe8NGRASY12VBYuX9Y7yI/ctV2kJJOpv+nM+cBfvID4oiJtyLile3rWoatv1s2lYMCav5+88tpPlG0TjS27FP6f5tzJuwmNVb8gloFkU9H8O1jNSVi/l78nr25PgR00zSNZzzElj26wJW7rLinbuNLR5dObtnkJHkAcqSd7Bw4mKWrUqiNCyaBvUsJCxZxJxpKXg2CSQ4MoZwxzHbyFyxiPXePRnSMxT/4Ho0aBVOkFcZaUbaf21ib0I6+/cV4t/Ugz1/HFoW1t0bmfnjTDbmBuPj4UVU40A8HblwwyfIn9DGDYmsV0Lc8liKPTJZPWkpG1P9DpZjOdY89s5bzJzp69kebydc8hFQfk+X87JhVQ4BDZ1lYE3exdp97kR5prJy8iIWLdxFMqE0buiHY5fCJNb8Ke6L4ykMiaSBZwobNhYTFhMg/sUkrNhJbmg4gUUJLt09Yreyp8CN1PkLWLihhPqtg8lZPI/pMxOgkRyPlJ17WEPatosiPDqKloGJTJ5tY4DUZX+jWKshvSCBjg36UD8g2nRRFEU5FO1xV5S6jPGkvxoLHDKCiY92pYWjBVXZr3TDGqYGduGqJm5Y4/exxjOKLsHSKslZz/2PLaegbVNalWayr8hK7IQfuOSLFELqFTDuqbFc8vY6icPCzim/c/XdfzDDLYhAWzEZuWVYS4pISS+gwGZl79oEvFo1IMxN0vTyloaakbaVrIxCPEQ0h7vLtmdDujVIYtnWskr5c1oBO7ekkW6r6m5YGau+msGWs89nZLjRmnK6l2xYwjhrV+645nSGJy/hs+0WcfcgwE9uleJvzcknU4R3w3qyj92d7u3qsWldwsFRApK/+CkTueCWMQy72Wnn3P4bE1Jc9cqXkbRqO+v8Y+jqiK+qv2mKUkuxV7P49OhI6/htIvjsWOK2syt8MOe3imXD+lK5dcSzcVM9OvULEvkn14clkRkfLyZLrtGdYz7im3lFEiaB5VP2YW3YmIa2dXzy5Az2lRSTl1uKraSQ7Mx8iuS+UL5Y4lbw/di1ZFgLWPbGF8wpakSbxiJQ95ccCGO1Hrq/y7RtWSx8/mN+TQijdcsyFjwzlr/2VBxCfmgaRvrfPPY+YybnEhiSztRHP2d6vBVr6nI+fmgKyQ2a06h0GR8+Oot4q5WMaV/z5hdphHdqQOnUL3n7h/2SbjqznhnDH7G++KUt4ueJychdp0K6cgwS30d3jWejPYxI7738dM9nzEgooyinkBKbhcLMXAoqDOs29nbEYElh0Yd/sDzNSum633nrg1jqdahPxuTfmLI8x3n/O6QsCrAU5pNfbKMsL4fs3BJsZrzG0PykaRMZPyfbGfe7n/LqywtI93E7WI4VFsuuNSzYbCOybTTW+d/x3reJ5nB+WdzSWPjaeOYnG2VcytbvvmPymkLi5i5jly2cZs2trHzpcybvlj2sacx66iN+2exOaHAuK6dsJnPvMr77dC2ZxmgOSxqLR09iaZIFS6wr9xKSpv/Cuw98z7x0T4rmfMfLt4/luyUW/DIW88Fz88pz5VzKsti6PA7f1o0Ikt+rIy2KoihHQoW7otRpDjbOqjeDitulLJ6yjehhXWgqYtqSnElKSBDRhpCWxl9Jyf+zdxcAUlVtA8f/s7PdvSxLd0qpgBgYgCAgCHZid74mtn52NxYqEiqKgpigmHR3L7HdXTOz33Nm7sKCSynoxvPD486cc3vuvXOfueeeU0FFQCxDzu/FcQEFfPtdEsdfM5ybzx/Ih/f0JMF91jHTsRHafwCvXNabs3q35dyTYglp2p5bLutOryAnO1MKiIwOlpPU7nm7slbz+NRSLru0K5Emz8uf+IhyUtIkwK4aTi7axz30AWf/bzY/7dzEM3eO59wH/9hdLsmx5XceWNCKxy6I8dyFcSvlx6lraTmiJy39ErhiRABffLpJ8q3xXPl8/eZc8keexMhwk2cjPCaIoow8KnZN20aCrNNbj53Lu1Xp0QEMqfpxoNq03rnmcYZNC+CeF07nRN9qZX9JStU/NVUX3pUC29Ot3U5WLiohd+FmKrt357je4WyYn0jpznWs921HtzgJ22VY7DGccs/FjDxnAGcNDGHbmnQq7U047bahHN85ithuLYlJSyUtsCV9T2iEf9PODLnwaFoF7jlP97FW6cJRXkF5hS8J/U7ihG5+u8ptIX8dv6Z5OzOW8PPyGI7pE0FAZEu6t8lhydycavOqeR626GO45IHBnHruWQzvnsKiublk/fQH65t046g4f8K6dqFZ2gqWp+Yw/6vNxJ7UkaigUNr2SyDrt9U4s1Yyd0MbRt56CgOvvowrz4xynzt3z9c8GvQ7m3ucyZWXHkf/i8/n3GOS+OOnEloO6ErToCi6ntOfHk0829WdPB+U+7XnpZPCDUk4e/Wh3/G9OKlPJH5NmxBvflT9y7bIJKjL0fRs4U/ccadyxsBm+FdNd+9pe4XR95a9PsNqw3q1O4GLrzmG1o2jad8liuzENOsxCkkBHeh7bDYLf8rCWbaZeQsi6H1qLM3PGs3Zp7cgtnFr2sbnkLTdiTNtGb9v6cj5d53GKWcP49qbehFqfhjetSxVL+XF7jd75MvSEDnwLK4aczKjzmlHqf9RXH2nnOOv60fLbTs8w0hyZv3KE2e8xs+hp3Pb9W3xtvL3lZRS6mBo4K5Ug2YuGA6UjGrvizcyeX4UZw8I8QTVThcuKXG/Du/OK//XhdS3x9H90m/5ObeQzEK5cIv0BK5e/t74uS+UTLIRFWmqTla9N8nwvHa4ZKq2agFv8Xaev2smyeeex6NHm2oAnnyblwT0Ztiq4byjGHbpadx/dQ96xjTmvKsGMPayTrvLKearN38lo6kP8z77gy/XF5GybAkzNlQy9PH/8dmZ5scCG60uupoVD7a1xill0fiJjE3vywc3tyS4alpm+WTecullDeckZ80K3v10Lm/vSitYmu+591U9OQnh9EtPYXTb3euy76RU/WKOmX3+8wrkqL6xbJ6/lhXLCmjdqxGxfdrht2QN6+dvoqxnJ+K9zZAyHZsPvn6eo8THT84mLieVFTv45pYneOKlOfzx8zZynHKOcE95X3P2jF9JIH3vuoRjsr7l8fOe55OFpunJ6v+qjy+vapi3K6+AgopcNv2ylAU/Lyc5uid9O/vvGqvmeYgAX/e5sRI7IRF+lBUWU5BThCMjkYU/y7R+SSX81KNpFVBMfr5DzjPLZfpLWZQYRu+BzanML6Q4OIRQa7uY5TE1Enb/c5GfU0xAdKjMwbz3Iiw6iBKZz+6z597/DM9fz/9tBLWNx/HtZ7z17Me8N8uPo4+Pklwpr+lzsMaqacp7THuf43r+VWyYzVMXvcqEzxawYG2enDurl/rQaVAncmR7Jy1dwprGPTimkZPEya9xz01T+f77ZWzOlE9fgmPz2RSFBBO6x91vswB7va/6u498H19T4V9e+djx9vfBx0zP2y7bdXedArO9ie7MkDE9aRKwO3df/5RS6mBo4K5Ug2YuGA6UjN3vC/5Yyu9tjmK4dRfZVFuPKCgk3VQdlRRz9PGM+/BG7gtZyLuLAmgaXcz6Lebi0En6xnRSzVViDdPFbsfL6bDuXkOjmEByswvcl0KUp/L23Z/wbc/RTL4kHnMZ7BmvlIxcb6IjzX3zqjxfGreKp1u7MML9/GnWLp6jWoVWK7fTftBJXNTWC4fDaX53kGxZOvddj5pSBWs/ncQVv7Zg3PMncJTf7rKC7CL8IoJkjlV5Nvwjo+jcJq5aiiTG/QDq7vGQwOTMW8/i8tbmFFwtv8akVH3j2a+rBy57/rMR1rcDYUt+ZPaWxnTsJOeGFh3pWLGKL37Ipd1xCVbwufd0PO+c25fxe2pnxjx1IRdd3pkY94PVUm73wuZw7K5mXe2fZyoSEka04fT7b+PRKwKYM22dVWr922t8a6p7vPOKjSbGJ5SuY0Zy0e2juOi2Mzm1W/XAveZ5uNKT2GpaZXfmkri5nOimEUQ1icQnuoOcK2Q6Zlo3HU+7iDBi470J7z2QC0ze7Wdx3qhW2KLCCctLZWeeTMOVz47E/D3CSLN8EY3Dyd+wnTzzmIAMs3l9CY3beu7Me+we2vNvd46n1MHOeZsJGzGE/if15fJxN3KGnEd3l+85tPnn5W3DWbHvLe55VfO4nn9Okn9ZSGa/c7nl/lGc2S9q12df9c+7ey+65y5mypSNNDrtKMIq01j4XTbd776Cq24fRPfG1nk2JpKIjJ1syTWhfwVZO7MoD/LDJy+PHNkmzvRtbMvwbDXbPvKrL/ee74yq1zJ+2FGce19fEtw/pBz4n1JKHQwN3JVqyCRg3Vcq++NrThj5CvfNK+Hnl17h6LvmSX4hM7/dwdGntyfKGs67eTyd81NYWeDCsf5nRpz/LhfcMZFXklszvFsQZ57fjW2vjmPwdeM4/9MM910g93gSy3qZ6vXWdHzbNqXLmtmMuGE6n6RV0q5DLLkbksmXssIfv+OuX/LZ+cMX9B/xPD1GT+ajVAeUJbMiKZpeHWpYF3sTbrynH8d475VvWqM/9ThuvfQEbrv0OM7pHERCrx6MbOez13BWKlzBg8+uJSVtBTdc8jzdR77EmC9zpKycVeuzadepET7Vhg9q2ZpzhnTj/DM86bzTW9M+oNr0TKpIYdz97/HAr6a1/r3K9k56UafqJXPs7zt5NepEV/9t7GjSjg7+kufdhO49Clmf1JzunSQSdw9nk/OJDS9Ti0fe27zknU3ex7els/cyPn74Q155YgWFIV7ultK9W7ek6brveO62qfyZXq3dCbtnPFtFEjNuf5an732PVydn0eWklruH2Xv8DPMz3V/nTWh3ho0q46vrX+fVh8bz/DXjmLHGtJVhTaemeRiOJL6+9XmeuPY1vrP1Z+jxfgSfMoBTi77niZvf582xb/H4HT+wpSKQYy85gZL3X+WZsR/x2h0v8cKH22S+RzFoUA6fXf8az1w7nvlFwWa1ds9XtlXYaQM4peg7Hr/mLZ676hV+CBjEyBP9pUy2j3sbVA3rSWZ8L1mv3dvZi5iO8WTNmM7n733FW1c/xgNPLyXHWVXuGW/XtpDpNuvamK3vv8lzLyx0Py++72nvPW7VsDZierbF/tPnvPnQe7z/axFBZuRd5ZK8W3DciWUsXdGIPieEyHQj6dTLzsIXP+LNeyezJC8Qu3zXeEX24IyheXx61Us8fe2z7u1W0bgLR4cs4g3Z7v/36GqckXZZGlm2JjXn715uma/dS/6T5XUvh+RXWy7n5l8Zd9N0lpV63h8wKaXUQZDzjZ4xlGpwnCXwRzjEPGZlHBxX5iJGj0nk8imjGRpkZVLCp3e+wdcDb+SjAX6U52axMdNG42aRRFhNA5fnZrMxx4dmFfMY8KCNeVNO8xTspSw7k435frRpEYJ//nIuvHAto6acx1m75rUnx8rvOO6lYD59+3ha1NRy/JHk2MF9F3xPoxcv52bPg/uHwEVuUg5l0VHE+VlZ+1LwKbS8Wz6rs60Mpeq2D+c/QX5ZPjHBzaycI6CimIzUMoIbRxBQ7dxQkZNOar4/cc33arm8SkUhadsL8IqJISbU0wZ6dQcc31KRk0FqppOgxrFEBu11fthrHs4103ngBX9ufOFoXFleRDcPx3/XKBXk78gg1xFITLPw3etSXiDTyMcRGkV8rL91F8ZJYXI6hf7RNIrcV08XFeTJ9Aq8w4mPl4DWyj04pfx5z9OsGHIP154oJ668P3n2gs2c/MXFHL3P85hn+YsCY4iPOoTeN/biyM8isziI2EZV63ogDgpTsikLjSZqj+3vojg1jSxnKPEJQZ5W7h2yr+wsJahpJIHVN8i+8g+GS8ZNdhDWZP/7SZVNGYs4t+cttI3pZuUopdRfHdz5TylVD5nf7A4tubIq6XxJbwYEVc/3Z+g5Hdj56wby5L1veCSd20RI0L57GN/wCDq3DCbA3LJwqz7+7uQXGUWXFsGeqvChHbimfx7fzi2pcVhzQbjk5510Ht2NZqZxpBqHOXKpfM0aFrc5hvPjzUrVPMy+k43whEgJ2msq2zspVf94Kgib6sdHKPn4E900DH/7nvneEdE0aR6MT7W8PZJPILGt44gONVXA/1p+wPGt5B0RRZO2sUQEmXXdq3zveZi7zfLKFhROQstQ/LyqD28npGkjmkr+HuviK0Fsm3gau7uNq8q3EdQ4jrhIU5m82rB7JDuhMr2EeBMA11S+v2SnaY9Ytox7m1ce/oDnb/8Vx4jedPSradiq5Fn+RlH7W6YDJ3toBHGNqq/rgZIXQfHRRP5l+0NAoziauLuHs/K8ZV9pYX4UqT7cfvIPJnnJuE0OvJ/sTnquV0odmN5xV6ohct9xD4OYR6yMf4nMNznLJhebe3e6rvapYCq0vEfvuKt6w9xxzyvLIzq4iZXTwDmKycmxERYTUCfuprhKCsjKKsc3MoKwQL3/czhszljCeT1v1TvuSqn90jOuUg2a507Pv5bs/hK0mzqVNZRp2kdSqv4x9ww0WckeQHi0v/tZ6RrLa1my+QcTnRBJaEC1ruM0/aOkp3ql1MHQwF2pBq16gKipdial6iMJWPSf/tN/7n9KKXUwNHBXqiFz/9KvqVYnvahT9ZBnz9Z/+k//mX96nldKHQwN3JVqiEx3O26muzFNtTuZC7pdrfopVS/U3ECXJk0NNelZXil1YBq4K9UQeZnG4eRSobLM81dT7U2uErCHymul6odA3xCczgrZvWX/1qRJEw5nGX7egdYRopRSNdPAXamGKuwUKF0pL+TCQVPtTM48cCTLZ3WcvFeqfujU6FgKSrNkD9d/+k//FZcX4Kp00jislXWEKKVUzTRwV6qhanoHlC303NGViwdNtTAV/waxF4M9WN4rVT90bHQMNpuN3OI02cv1n/5ruP9clS4yCrZxfKth2L3s1hGilFI1037clWrINt4MGV9B8Aitjl2bVDokaJ8DXiXQXf56h1sFStUP27LX8dYfY4kNa0l4YKyVq1TD4XQ5SMvdQrBvKNed8CS+dtNVqlJK7ZsG7ko1dFsfgKSXwaelBIrRclbQX/3/O3I6dhVA+VoI7QedJmnQruqtbdnr+Xjh05Q6ign0C8fu5W2VKFV/mTvtDmc5+cUZdIg7mguPuVODdqXUQdHAXSkFDgkW0ydD8XoJHEutzLpn1YZ4nn5nIBcMXchpx63Dx8e0yl6HmB9NfBtB7HkQoM87qoZhU8Zy1qcvpaS80B3UqCPM6cJ33jr8v11E0RWDcLaMswrUv8H8QBUeEE3PJv0JD4yxcpVS6sA0cFdK1RsuidObNIGUFIiOhnPOgcsvh169rAGUUqqBKli6lNTx48n45BMq0tPxa9qUPtu3W6VKKaVqO22cTilVb3jJGe3MMz2vMzNhyhTPa6WUaugqKypImzDBHbQbUcOHu/8qpZSqGzRwV0rVKyNHWi9Enz7Qs6f1RimlGrDQY48lrG9f6x1EjxhhvVJKKVUXaOCulKpX+veHTp1g9WpPdfnHHrMKlFKqAdv2+OP4xMZy9KpVBMpJMtycLJVSStUZ+oy7UqreKSqCoCBwOOCiizx33e+6yypUSqkGZscLL1CwYAEdJ07EZrfjlJOk3ZwklVJK1RkauCul6rWKCk8jdSefDDffbGUqpVQDkfzmm2R//z2dp07F5q1d7imlVF2lVeWVUvWaj4+nkbrvvoO337YylVKqAUj94AMyp0+n0yefaNCulFJ1nAbuSql6z88PPv8cPvsMJkywMpVSqh5LnzLF3Yp85y++wMucBJVSStVpGrgrpRqEgAD48kt47z349FMrUyml6qFMOdmZKvJdvvoKuzn5KaWUqvM0cFdKNRimLabp0+GVV0CuZ5VSqt4xz7PveOYZusjJzh4cbOUqpZSq6zRwV0o1KKGhMGMGPPmk57l3pZSqL3J+/pnEBx+ki5zkvMPCrFyllFL1gbYqr5RqkDIyYMgQePppOOUUK1MppeqovD//ZNNNN9H1m2/wjYuzcpVSStUXGrgrpRqs1FRP8G6qzh9/vJWplFJ1TMHixWy46ip39Xi/Jk2sXKWUUvWJBu5KqQZt504YOtTTVdyxx1qZSilVRxSuXMm6iy+my5df4t+ihZWrlFKqvtHAXSnV4CUmwplnwocfQvfuVqZSStVyxevXs+bcc+n02WcEtm1r5SqllKqPtHE6pVSDZ25STZ0Kl14Kq1dbmUopVYuVbNniDto7TpyoQbtSSjUAGrgrpZQw172TJ8P558OGDVamUkrVQqU7drB61Cjajx9PUOfOVq5SSqn6TAN3pZSydOoEEybA2WfD1q1WplJK1SLlqamsHjGCdm++SUiPHlauUkqp+k4Dd6WUqqZbN3j3XRg5EnbssDKVUqoWqMjMZNXw4bR+8UVC+/SxcpVSSjUEGrgrpdRejjkGXn/d02BdSoqVqZRS/yFHbi4rhw2jxeOPE37iiVauUkqphkIDd6WUqkG/fvDCCyDXyWRkWJlKKfUfcBQUuIP2ZvfdR+TAgVauUkqphkQDd6WU2of+/eH//s/Tz3t2tpWplFL/ImdxMavPPJMmN99MtPklUSmlVIOkgbtSSu3HoEEwdqznzntenpWplFL/AldZGavPOotGY8YQY1rNVEop1WBp4K6UUgcwfDjceqvnb2GhlamUUkeQq6KCNRKsR0vgHnfxxVauUkqphkoDd6WUOgjmZtdVV8GIEVBSYmUqpdQRUOl0svaCCwg/9VQaX321lauUUqoh08BdKaUO0kUXwXnnwahRUFZmZSql1GFU6XKx7rLLCOnZkya33GLlKqWUauhslcJ6rZRS6iC89hrMmgWffQY+PlamUkodBuuvvhrfuDhaPvaYlaOUUkpp4K6UUn/Lc8/BggUwaRJ4e1uZSin1D2y65RZsPj60NicYpZRSqhqtKq+UUn/D//4HXbvC5ZeDy2VlKqXU37TlnnvcDdJp0K6UUqomesddKaX+JnP2NF3FZWbCuHFyQrVZBUopdQgSH32U0q1baf/++3Ie0ROJUkqpv9LAXSml/gFzBr3jDnA44OWXNXhXSh2aHc89R8HixXScOBGbl1aEVEopVTP9hlBKqX/ABOrPP+8J3O++2xPIK6XUwUh6/XXy//yTjhMmaNCulFJqv/RbQiml/iETvJuW5k2V+YcftjL/gdIs2LIDjmiPcy7IyLBe/0vKcyC73HrzLyhMhyLr9X+hULbv/uafLcvnsF4fbq6cdCr+xW19sCpzM9w/cu3JhSM9A6f17shx4ZSd/sjP5+CkvP8+2d98Q8cpU7BpC5dKKaUOQAN3pZQ6DMzNsnfegY0b4amnrMxD5EqDx4ZDXGM4qh006gwvzrUKD7PSr6BTd5hZCrNvhZ53WQWHYPptcM1k928ABybB2lMD4ORHrfeHQw7cNggm77DeV1M8DwadD9vK4OFjwdfH0/q/t/wNlvfLjlTEXEW263Wd4JaZ1vu9yUb77ha46ouD3H6HwrGK7QNasvzRRVbGATiWsu24CH718eYXHx9+DYhg3om3kbnjMIe4rm0kndWO1W9spzJnOpsGXUP6Dln7wk9Z3/5YNs/e909VlSueYmm4L7/Ih+hJspwtriP7UH7dkp1+g+z0m8xOX5Oy2Ww6qiebfz3yv3ikT55M+qRJdJo6FS9fXytXKaWU2jcN3JVS6jCx2+HDD2HhQnjpJSvzYEn88tG18OQW+bsB8jPgmQ5w98XwixVHlGfDeikrrBbpZSRJkCp/cyV4TS7w5OVsl9eFntcOGSelSP7mwibJr4pXXZJXJMMUybT6XgcvS6qSJ9PcksqedyZluLTNsG6rOyZ1F66aC78thQr3AEImvn29zM+a9x5k/DxZvnwJto0cmb6ZTvY2SJRldJPxk1JkUDOdTbJO1YLrXMmvunvtlHVJlTfONJj7GyyV5d2DLNv7D0L4edChUqYv8+hwK2yVbbRD0tafoLu5wSnbddtey+vKk2nL+1yZZo6ZvwyTJMtqlm2HfDYFZqNI3nbZFlWfQ03LZta3UP4WWAVme29eK/PO8rw3375nXiSf7aOw6HDHibISzgIHjpx8eeOgIjVDFqecim0bKK2pyoMjhdLEIgJu+o7e27dw9A/3ErjmdRLfWUGljOlIScUpO1DZjhx571EpO1nxphSce+0kTtlJimQnqageGztyKN2wlfKSYpxF5TiLS6hMW0X+b79RkCR7T0UhrtIiXIXlOHZsojTrr9F4ZcpWSotb0vjrrfSRD9Gdlr9EpD2X8ozdM3NmZeCwPhdzwJTKAVNW9UHJh+CUnd4pO31lbhrlu0YrpiKjgEq/vjR+9WUa95ZAWpbZPV0zjQ2Je9ReqCxKoSQxS9a2lPId6eajPiQZ06aR/NZbdPnyS+wBAVauUkoptX8auCul1GHk4wOTJ8Ps2SDX5gfNJcHfx9/BCTfCsOZycg6GK16XQP4SiLfBzw9Bq/Ywejg0l4D+jRUyjgSuF8vrE06B006Fli1hyEB5f7Ln9asSKE65Eo4dBCefCKceBZ0vlqB8j2ALvnsMzpWEBNZPnS7z6S3LcIz8lddzJc8pwfplXaDHUJn/8dDiNPhG1u1lCdo3vQmjXpUA/A8YKPM8YRT0lL+XTnDHujWT4PYyWZdTZVn7D4FuzeD6GTL7KdDpWDhDlv90WZ9mnWWbSLDsHr4j3DPHM/rHl0G/u+CdOyVol9jqzdGyrhs8ZYZzowxj7rjL8ld9yVVKdOWQGNEh625ipeyfZZu0kvnLuD1le49+w/NDwufXyvL0kXWV+TU/CdLGS9DfC06RZTpVtklLKRt4nIwr26ilTH+tBOJ/WbZ7PK+rbJ0IXVrAUNn2x8u2Oe0Fz7YJks+kj3zuH8m2O2JyJ7K+/dEsH3gSy4cMYFGzo9gwo+rXg724HFRWmA1VissVRUD7eIlpP2dDl24sOboHC9s3Z9nT88l7YiDz2p7A6jN6Mu+oS0nbJGsjO0ma7CTzZCdZJzvJfNlJdqyQ6W2bzLrOzVh48iCW9RlDxk6ZvmsHKXe+TGHpJpJHjyJpkwl9i8h75FSWDTqZhWYZv9rHcxwOs4wVVJoP0tsHx+QxLOj/EPkmsC79ha19u7JxugTicsAskwNmmRwwi+WAWS0HzO4AO4/0MR1Y/tA8d57rl3tZ2vUGsnK/Y9uoc9n2YymOiZex4OhTWXFSf1YO6CbreT2ZWRWUTrqUhfEdWT70FJadMZhlHc8j2dQaOEhZ337Lzueeo8v06diD5SBXSimlDpIG7kopdZiZmq+ffQbTpsEHH1iZB+BIglSJRZo03X1i9moEdzwoAbQE4Hc+CyM/hZVr4FkJFMc+AOklEqtIwBJ+FsybBcdJkJ3VH5b9CSfmw0+LpFyi0TQZ7qUFsF6GCZTlevFXawaW4iIJmyRteRcel+m/t1zmI2lMICxMhLJNkCFB7PxV8NvrEi9JoLl6ANzaA9pcD19I+nCsBLES0C+XYf6U15/fCz/uoxqzS5a5VMq8ZBpLZT53dICZ37jjRcrS4OiXYM16uFnm/+CLUCLDl8jwZjlNpGX+mvdXyTbp4S9B/+dwUzvPtI2SxbAuEjrHWhlizSsSgLeFtm0k0J4AL0vQnzRS1nMlLJDpzJFlnmyeiZdpZ8vnMCFV1vknWR7Zdqamw1mTYJZs8wJZ3v4y/p+PQf7vMq5s578sm4xT3SaZx0mvwSr5DF4fBX98AdvMjyeyfke1km2w0DPckVBZXoLLbNQBE+i1fCZNOiSS/c1S94fgKi6WWL0q6HRRMuUmVg05g1WXvEhBeF/COwRhcxbhKsqm8tQJ9M3P4Kiz/mTrE2uJeH85x6z5k+axn7Pl6R9lHpsokp2krewkPWUniZadJPP7zRSMe4L0igvpvGYDx3w2Cu9cWXGvpsQ/eyvB/m1I+PwLEtrIHl/pwPdcWcaVP9CsyzayZsqHuDeXBPpndWBB27butPiaz6k8aSChyZ+T9mcpztkTyCw4mah+m0iSA6ZcDphj5IDpKQdMrhww6elV6xpC2MBjKft8EvmlReRMmIbj5KGE+RbjlA/QVezAVVKKK82LiAlLOXrmHQQmziR7wXySn5hC5YWfcfSqxXQ83U55hWzf4oNrkTLnp5/Y9vDDdJkxA++wMCtXKaWUOjgauCul1BHgLwHlFxKgmarzU6ZYmfthj4YImwTZplq2xbkZrpRA73cJps2N56OPlv/JWfuYnhL4SsY2E4fIOM2aSzAdAgHyOsF6HSzDVTUCFt5FglhZHn/52yUIEiUYr8nWjTLP1tAzQmYjge8DEqBe3RX82kPvQjj/BBj1ggSmMl/zg8AuMp+NWyWQnQODesN5H0FTCUhlVvsmy9pGAna7LGeMzK/Cqm9vC5f17CwvZHl7yfKmyLJWzaqqxX5nVfy1D0USTFdIUBws86jS7T7JlwC7VILqqedJMC3br4NsT3PPM/4YaCEz2bjNM6x/J+gh4/v5ed7bQqF5jIR7MrDNR17LNg6Rbewly2Fu/Br7W7b2st0K34MTToQXJHh3ybxKzfCyfCGykQryPMMdMbJRAzo0weYVg6/sZJXlO0k6PZrfgoL4Lf4iMnLNQHYCr5wsAekqjt22lrbd5rD5xtcpNutn8yeoVw/s3n7Ytm2ktCyf3IcHseS480hLb0pAvKyE7CRhspOkyk6yTHaSAtlJTPX3sp2yQ3c8hhCJU22t+hDc2G5m9le2EPzbNcdmj8U30ixjtbrpVeztafpbASeWlXFiaTF9Pz4bn2bn0GhAAVlTvnUn28griArZSIl8voFywNjlgPGTA8ZfDpjiHVUBthf+51xGZMEM0r+dLsmH6CuGIh/tnsLbENBEljcmBm9bBZVlqZRneBHQrZtM1xu/o3vgu4/V2VveH3+w5a673EG7T6QcXEoppdQh0sBdKaWOEImLmD4dXn/dc/d9f+wSDI7sC3PehNkmeC+Gj8fChNVyom4HEgezyNyZlcBwwWIJLttIsGnO4BL8Ve9FqqZ+5HNXwAqZXukqWFnkqUZfkzYSsPqshK8l6HFIwHzJUXDzd/DrM/DEOnhLAvPPbgTTlJYJtM18XSaw84a2Ms3wU+C7+fDn13B5f4g+QFBTU+9XlRJELpDlNdH6IlmWxjLdQAmg/WXYrZugLF3KN3qGNd9gZhJ7PmctwXi0DC/Be86+boTK8raTDbpukfvpAFIkmE70lwC7hafYR15XX3SbNR832b7VN7GXbIwal62KbKdnZJutO14+21/hxm6S53Bny8rKMspyRsjyHlk29zrsYosl4dtMji8q4oSkj4kJN5mVVJYWUJGRQdmGJRTtlA9g14r64OXn2SK2Vm3x9wsn4pHv6Dn/T7q8cDlhbaOplJ1ko+wkobKTdJedJEi2i6l2H9BGdmzZ0AWyoSt3LKYoxfplQz58m+zMlbs+O3lffRlrUunCVZAtwXOGpCwqCk1wH0XUmDPhy/+x9dtoYsb0x+7djgD5fIvlgHHIPMrkgCmVAyawWbVPLmo4cTJa5v/Gkh19Lo36B1oF1cgC7XE42TsS1N5O0c8/UuYooPC7X+WvVbYfBYsWsemmm+jy1Vf4xlarBqKUUkodggN9TSqllPoHzJ3ZGTMkeJPg95tvrMyaSFx049twoZyVz5BYJ1SCuRskUH/4HTi+Ozx3lwT/50CnDnCnBNFPPgoxEmuYAMnMw9wuDA7w3BU2Z3aTF2Q9Qmsq5d7QS4LV06BkNNx6ggwS5CkPkmHNDwzmcdvmV8JLI2Tax8q0j4EtJ8MtEoC3Ow7iVsOwnpI+hY4xsGkrdOksAe946D0Uuj8CHX70LF8bCU6nSUwVU/0bRl6HyjIFy8KYYDdIgmP38pn5m+WwltVLyn+5QYLodvBqiaz/reAn411yCay6H1rLvLw6um+CYm8MneXveCkb/IS7zTi3gN7QoxAWb5Y3EnmFyrSDQ6vFoRK43/QcNJkm69AJjr4T+j8J58m0gsw2leGrhvWX176SQmQ5feRvgNlW8tq0QRBi7upH1Lxs7vUyw8p8j5Ptt/pF6NkDPpUJxyTJ9jMLK0H7si3QT4L6w8orFHuIHXtYCDZZeLt/kCyvWWg/+WuSLLzdF3tgoHwWku8dh1+CL8UvnMLc2DjmdR1NatFpNH/yagJ8ZVxZabtVfcHW6nJaju1AziWdWNClDYvGTKOyUQw22UnCZCfZKTvJYtlJbLKTlG1KxP/qB4kPnsKaDu1YePYMXI183A2y2Rp3ITAmkdRLerPipRRsfrIsQWYevjI//788/21r1BQ/v40kDYiXZYyVFMOfTc8mNdWF/dSriYtPpqLrZTTqKR+ud2cS5IDxkwNmkeyQS+SACZcDJjYuBLt8uHaz0xNExNUX45ucSdBllxEio5mDwlPuLdtI1ls+QFMjxOYnf00Ka0v80w8SvPRGFsUfQ+KaILzNAPv5gapwxQrWX3klnadNk22cYOUqpZRSh85WKazXSimljpCsLAkuB8MTEmCeJgH0/uRsg5QKCaRNdXMTY1jKsmFrJiS0lqDRChZMi+a+8e7HpcmT115xniCzwNy1j4VPJJh8VoLpJRJYppZCSwl23ZN0yfsMaCTDuwogQ2KmuD1jpT0Up8GOMglOm8mbXCiRYDpExkneCA6ZRjNz19Yhw2yCiihoZYLXvZTJ/PIlkI3xk4BGXttMoCz5Tplepo+sx2QJpp+F75dAU1n+qJaeIHl/zLJvlEA4rg2Em+DLnSnrfSG83hN+lqDc3AkvjYTIqvIqsj6JW2W+Ek81Nj9+CNOqfIZs213bwimfhWzzeFlHM90UmVZcI9mGZvvJ61jz2jPkX5jPwCblZlKmRf4y2S5mO+XK5xgiy5P/GfR6A76dBe33E/z9Ha6MZByhjfH1M32Xy84XE+OOLytlh6nwiUfi8YPkwiE7ik12lOqLWJm7gxLZSb1btZJ5WJmyk5TITuIjO4m37CQVspP4mB3VVUz59kwJ1pthL0jBGRyPj4xTWZBMSZID3zYJVKZn4NW4kWcZcyQI95VlP+hlNOMkUe4dj5/Z+avIAVMqB4xNDhg/9wGz97o4qEhKxxbfGG/roNhV7iqkPMuGb4x7D8UhO4Etzkb2jReT3ecV2l7SkrLXh7P4wXDaJU4h1tp/qitau5a1559P56lTCWgjO6hSSin1D2jgrpRS/5I0CX6HDIEXX4QTT7Qyj7CvroSXJXD/8X/7vTFYKxR/BT1ehi9/hI7/cGGdG+Dc2+H+L62u32obCfxNTYHE6+CRflaequWclH55HxsfmERBWimEtCPq/rdpO6bzX368Kdm8mdWjRtFx0iSCOnWycpVSSqm/TwN3pZT6FyUlwdCh8Oab0KePlamUqjdKt29n1Zln0mH8eIK7d7dylVJKqX/mAJUQlVJKHU7mMdcvv4RrroElS6xMpVS9UJaSwuoRI2j31lsatCullDqsNHBXSql/melO7PPPYcwYWLXKylRK1WmmtftVw4fT+uWXCe3d28pVSimlDg8N3JVS6j9g2qr65BO48EJYt87KVErVSRU5OawaNoxWTz5J+AknWLlKKaXU4aOBu1JK/Uc6dICPP4Zzz4XNpusypVSd48jPdwftze+/n4gDdRmhlFJK/U0auCul1H+oa1d4/30YNQq2b7cylVJ1grO42N0QXZNbbyXKtDqplFJKHSEauCul1H+sVy9PK/Ny/U9yspWplKrVXKWl7obo4q+4gpjRo61cpZRS6sjQwF0ppWqBvn3hpZdg+HBIT7cylVK1kqu8nNUSrMecfTZxF11k5SqllFJHjgbuSilVS5x0Ejz5pKef96wsK1MpVatUOp2sveACIgYOJP6qq6xcpZRS6sjSwF0ppWqRAQPgwQdh2DDIzbUylVK1QqXLxbpLLyXkmGNocvPNVq5SSil15NkqhfVaKaVULWH6eX/5ZZg5E0JCrEyl1H/GXC5tuPpqfOPjafnoo1auUkop9e/QwF0ppWqpSZPgvfdgxgwIDLQylVL/iY0334yXry+tn3vOylFKKaX+PVpVXimlaqkLLoALL4SzzoLSUitTKfWv23L33eB0atCulFLqP6OBu1JK1WKXX+553v3cc6G83MpUSv1rEh95hPKMDNq89pqVo5RSSv37NHBXSqla7oYbPC3Om7vvDoeVqZQ64nY8+yzF69fT/t13sdlsVq5SSin179PAXSml6oDbb4fu3eGyy9w1dpVSR1jSa6+RP3cuHT/6CJuXXi4ppZT6b2njdEopVYfcfz+kpsLbb4PGEkodGSnvvUfmF1/Qedo0d4N09VKlS/5nklK1iU3+s1uvlVLVaeCulFJ1iDlj33mnp7G6V1+Vk7jW3lXqsEqbNInU8ePpOmMGXv7+Vm49UJYCyW/KCn4E5WlyMimTTD2BqFrI5gX2MIgYAE1uhdDeVoFSDZsG7kopVceYs/ZNN4GJKZ59VoN3pQ6XjC++IOnll+n6zTfYg4Ks3DqudBtsuh1yZ0HAMRB0PHjHgpefNYBStUylA5wFULIQin4DX9lfWz4JUYOtAZRqmDRwV0qpOsjlgquvhvh4eOwxK1Mp9bdlSbC+/f/+j67ffot3aKiVW8eVJsJSCdT9e0HIAAnWA6wCpeoI80hH6QrInQxtX4fYc60CpRoeDdyVUqqOMo3UXXIJdO4M991nZSqlDlnO7NlslYPIBO0+kZFWbh1XFbQHniRB+8lWplJ1VHkSZL2qwbtq0DRwV0qpOsx0D3f++dC3r6fleaXUocn7/Xc23Xqru3q8b2yslVvHmUu7hR3ArycEn2JlKlXHVUjwnvkK9PgVgrpYmUo1HNomsVJK1WHe3jBxIsyZA2+8YWUqpQ5K/sKFbLr5ZrpMn15/gnYj50dwOjRoV/WLT4IE7CfCzhetDKUaFr3jrpRS9YBpZX7ECDjnHLj8citTKbVPhcuXs+7SS+ny1Vf4N29u5dYTK0wjXjGehuiUqk+c+ZD+KPTZDt7hVqZSDYMG7qp+K0+HnB+gIlveOD15quGx+YBvHEQOAXs9aSm6BsXFMGwYXHEFXHCBlamU+ouitWtZe/75dJ46lYA2bazceqJ0ByzqCo0el3NfPe2DXjVsOR/K/n0ONLnFylCqYdDAXdVPxRtwbboPW/Y3VORG4CqRPN3TGy7TJWywC++QQoi7BFvrR8An2iqsXwplFYcMgVvkembUKCtTKbVLyebNrJaDo+OkSQR16mTl1iM5s2DjHRB1vZWhVD1T+Av4B0H7d6wMpRoGDdxV/VO0msrFJ1CyKYCynVFUOrytAtXQefmV4986C79mwdiO/hN8Y6yS+iUvDwYP9rQ0P3SolamUonT7dlYNH06HDz4guHt3K7eeyZgKic9BxBgrQ6l6pnihfKFnQ5cvrAylGgZtnE7VL6Xb3UF70YowShPjNGhXe3CV+VK8Jp7STSVULjrOZFgl9UtYGMyYAY8+Cj/+aGUq1cCVJSezesQI2r39dv0N2o3KCrCZyztzX2Y/qayQjAKH+7Vj63xuHPMMJ9w8m2WOGoY9DMmZvJgHX1tBuqvm8vqa3Ov9+pFebyfJP87gkVm5NZTVw2T2b7OfK9XAaOCu6pXKbc9K7O5PeXqElaPUX5VsisWRXUBl+hQrp/6JioKvv4Z774VffrEylWqgyjMy3HfaW7/8MqHHHmvlNmQu0qa+T5+n1slrB4s/+4HFvS5k1rMn0OkI/d5dmbWDb/5MJt/EXg2Ie73/ONLrXUnW2tV8t67Ieq+Uqo/sDwvrtVJ1m7MY1lxE0ap4Kh12K1OpmlWWuvAJmo+t6Q1WTv0TFOSpKn/JJdCtGzRtahUo1YBU5OSw6owzaPXEE0ScfLKVW48VrYK8BeAvB/0+VVK0ciHvZbTkiuYZvP/ZQjb4xBITFUHneH/3XZ2CjeuYkxlAq2hfbBLo71i6mvX2aBKCHOxYuJB3Pl/KnM0VxLaKJdrXRc76dSwoCqdFuHz/FqXw0+JCWjYN8cxOuNLX8+5vXhzXLINPvlpPSmg8naJ95Lu7gGWz5vH+1yv5Y7ucp9oGkzRvPWlh0cT526Q8mz9/ScO7eTg+Sev5cNJcvl5VRHjLOBqZ8urKsvltxu+M/2ED60pD6NAiGF9KWPXndgrtOXz96XxmpwXQqW0o/u7hs/j5i1/54KftZIfG0iHGrOtuTgm6v/riT6b8vJnNRNClSSD2gmR+XlOKbfsy3pq2jm3+sXRp5IdtH/mVZr1/92b0WW2I9Kogcd483vp8JYtzA2nfKpSAajOscX77W/6CJL6Y/DvT17vwz1/Pr/ZuXHlstW2et5PPJ/3KJ/Mz8G7ahObBMrP9bKMCryymf7qQeSURdI0u4LvJvzB1PbRqH0Wo2Sn2sb3KUjYy6ZO5fDE/lZKoONpGeLuXbfbqMrxTVvKubI/kEOvzFqU7D/A5HogjRf5n2qzRVlhVw6J33FX9UbgcV1kArlJtRVcdWEVWKLayjXKlVL/vUDRuDF99BdddB4sXW5lKNRCO/HxWDR1K8/vvJ+K006zcBsBdo1j+t79kVTt2FBWRU+qivKCA9LzyXeW2HQu44fF5bDNV58s28cLYH/m9xEny9I8Y+H/rcDWOwm/5dAbf+itbHE42fPk5j/yYi1PGdexYzH3PL9k1LU+S8+6GX7n/8zyC7Yk8cO1nTC+QYdcv4+MVTlp2aIRz1kQueDeFjdOncNu0bFwyXtmiH7n6vY0Upi7g8uu/ZXPjFnQuW8AlN85mrVm2quk7c5h8zyvc9qeL5gneLHjxNc6blIGzIo0pT73L0Pt/Z4efjQUvvclts0qs4d/i/7ZH0rttBRPvfJuXNjqrLa+DVT/MZ6Eziu6tXEwf+z7PbXDg2LqQ2296jSs/zyc6LJNXb3yfN7Y595nv3sxGpWfbjXwjg+ZHxVM6/QNGj08+4PzY5/Jn8t7/xvHsFn9C0//goSmpOMzMdk2viC8efZ/xxQn0be5g286yA26jYQ/NI9W3lGljX+XUG7/g+3J/UqeOZ4wMs6/t5ZLPZcxlU5ntiqClj3yuV7zHOPf2WMT/bn6Daz7JIcBr9+dtht/v53hQyb1B3ZtVqYZEA3dVfzjzcFXoM+3qYNnk+99PruzzrPf1V7Nm8Pnnnv7dV6ywMpWq55wSkJrq8U1uv52oBtdKowlqDpSMSsKP6sGwtv607HciN/SPxm6VBx93DIPSlzF1p5OypUuYHduN0Y3z5VyyjRNuO4+7RvXhjoeGcsqGhUxLrupude957Jm8mx/H6/83iOuvGMS5UUks3uHAu2M/nrvpaI5tEkm/bpHs3JrLiWe0Z8fsZWxzljP3+/UkDDyKgNlz+bPpUQyM9yOueye6pq7ih3QzX8+0XWlLeX9FGx5/ZABjRp3Ka7e0Y9XXS9nulHJbKOfcdQH3XXgqY4eEsHJVBq6MZYxfEsWZx4cTGtWCwe1ymflH9WfEveh23lk8PKw5LZu0oneTHNabQFzKvKJ78Zysx5UXj+B/R6cw4/d8XPvJd0/Plce0z7fQ6tQONA0Ops+Jjdk5Z+1Bza/G5c9azWfrW3PfPf257sZLeH307s/Ok1yUlzsocfjS8aQTuKin3wG2URjn/u887rl4MDccW0rgKefx8hUn8+jZTdi4NmUf2yubpO//ZOHRQ3nzqr5cdsU5PNonmck/ZuGUZfCK7ckzj1f/vMtJ/XH/n+PBJ6UaHg3cVf1R6ZL/HWJ1K9XAmf3F7Df1X+vW8OmncNFFsNZcKypVj7lKS1k9ciTxV11FjPaL+Pf4tebCk4v58psk5ny3kRan96AJhaTn+RMfbT2O5hNKo/Ay8gskkLLZDhhO2fx9PFXDbfLXrxKnA8rX/cywUW9w5+TFfLk6HxNDBvY+moEZK5i2dTOfL4hi9MBwcrKLKE/bxvRZK/jyp3TiB/XimODdl7GunAJyQmR5PLWx8Y0JJaq4lDyzUDZfAtzVsW3y10cuF5y4cgvJrshj4WyZ3qyVrI/tzrld3RXQLQ5WfPgmx1w1jTdnLmdxuoTg1graAn0xtc7Bm5gIP4oLS93rvq98N1cRGXkOkleulPmtYMbWUEYNaW4VGvueX03LX5lXSF5ICLHuj0Ly/bz3ugIK4twHLmJk5vcMGv4SD80rPsA28sHfqrLu6+Mt8/F1Bwm+vnaZn2sf28uPzOxiwmQ6nrqOdhrFBFFYWOLZHn/5vCvJOsDnqJTaNz1SVMPicJBZuutrVIJ9J9nF5pfehqe8tIJc06Dw3+V0klnyd4PeSnKzCvlpUwHriqp9HlXKSpm/s4xi6606PNq3h0mT4LzzYNMmK1OpesZVXs7q0aOJOfts4i680MptiMy5dX+pStXrvcvtHDvsKMq/+5Jn58cw+rRgvLzCaBlXwPK1Be47ya7MbSwriKNrU29CAr3JyszDKf92rkoi2f31UH16RvXXhpONsxex48SzmfLYSO49MVJCXin3bcm5JxYx9cU5/Nq8O2fGeJPQLBK/2Pbcc9dInrtnJM/e0Y/jQqqmV4lXXBQJWTtZmm2+052krdpJXqvGtPTePUz15B0XTXPfME675kz39J67ezhX9zSBuzWMM52vvs5h8ANjGHfvQAY3MZfMpkyKUpNZliXzceayfGM5zZuHydbad757PO8wWid4E3/cAJ4x85P0xHktPWX7nV/NyR4dTqOcVNbkyfxc+azekmf9DF01jORHtuamx27hj2sD+ODTdYewjYw9X9e8vQJIaBJO+rodZJhW82U5Fq8toUP7KPkcPePtnobhdcDP8eCTUg2PBu6qAakkfVkiA2cVUNUJmCMtnbOnpFvv/ikXC/9I5OnEWn4Ht9LBwoWJnPLKGm5e+3eWtZLsnRlc++4qeszI/RvBdSUr/9zCud9nMX1lCueM28SrqXsuhyM7j7cWFbCjlm/KuqhLFxg/HsxNyG3brEyl6olKh4O1559P5KBB7rvtat9sXl742D1hpbeXHbttz/u1hnf7oxnlt5nlbXswLEouGb1COPuqfuS/+QqnXj+Oky//jaBrTmd4iBdtTj6K8K8nMOCq17jqNyexPntNz27DZvOyLjxt7vl52b1ocUxbvH+cxuX3jOf6n4uJ8DZDeNPnjC4UztlKp8FdiZWsyIEDuKboBwZd/QGX/+8dTrtxFour/fjsFdWDu84t5YlLX2XkdS8zaJIv91zXFRM6e8l8Zfae4WS9vWyy3uHduOu8Up66/C0uuudDzrr0HZ5bZQJaiz2Sk3p7Me2Zjxlz2yd8nRso28sqcyTx/DUvcfqlb/CqV3/u6O+37/xd6x3EWVceT8HbrzH0jo+5+IZXGPXuds94xj7nt6/lP4obh+by8Jg3GH7ph3xeFMwem9yRzHPXPc/Q28dz4UfZnHJqy4PeRnvsD5LvI6nm7VVJ7OmncVXh95x6yduMuPg13ggYwNhTAvbxeR/4c1RK7ZutUlivlarbsr6hYt5VFMyPszL2JoH7os2cnhrL3KGhmK9ZR2oKA7+Bny6Pl3cukrbnMG1rOeXBgQzrGkZb30q2bc8nOzKUHsE2SrML+LMigP5x3nhVlPL7jkq6tgwgTL7fCtLzeP7b7cyNa8xV7YIY3Mof77xCpq0pINHpQ68OEQyoql5oyU8vYL2PL2WJOfxZ4sup3SLoFWRz56/18iZ9Yx5FzWM4L9bJ3NU5/JojX5IJ4Zzd1p/K9HwWVgZ6lkXWLWlHPqnhofQKKOe3lTn8UeBFp3aRDG1kyncrXJ/EDTv8OSojieUSxX3UtXqpxVnEa98W0ndwHL32XGQoz+XBr4ro1KiUB1IiWH5OJIFW0cEqK3di97XLpZmDTz5dw/sJ7fi+X7UqiqUlzEm1cWwLH7ZtLSEgEuavKSQrLIyLOgUQag32T4WfvAmv49aAXxMrp+GYPx+uvdbTZVxCgpWpVB1mqvOuu/higrp1o9ldd1m5DVD6ZNj2CoQdhtoGrnzev+Elfh5xJxMGSTBWpayATdsK8YmLpXnY7i8JR14Wm4sCadM4wLrTfHDK87LZXhxIy3j/A4xXQcb2DFIrAmnRIpyQGgYuzcpgU46dhBaRmMbND6QsO4ONGU4iEmJJ+EuVbQc5STkUhkXR1CpzrJxBn6f8mfhGL5yZdpq3DCNIivaV/xflBWxOLKAiLJK2cXuv71/nt39OcnamkxUQTZsoq/57deVFbNmWj1dsDC3Cdm+MQ91G1dW8vSpI35ZBpnc47RICrbvt+3Pgz3G/SpaBVyp0lS8wpRqQgzkrKFWvVJSUsSK5mKWSlmdVUOb+6aqSlFXbGfVDIa4wX/ySUjjn80wSXZWkrU/m3mVl8vXo4tc/tnHZrBzSZJyiLWncvrgEp/tH6UqcFQ5yHZWUlsoXWIkLR0E2N07cya+VvjSzF/HE5EQ+kMB7t0o2r05izKTtTC7yJiI3g8umZbJV5mnyr/w0mZ9s3oTIF9zn0zcxNhGahNtYMmczVy4uw5Wbw50/ZJNkJuko5LWZ6cwrN8Nu5YUcX3rFVDL1q628lbHnb3PB7RP48LQIWnhX/2l+L5UONqeWkb3nqB6+4Tx6dgLDI2x7PU/n4crL4d7Jmxj1sZUmbmbsmgqr1MPPHbQLl5OsEhtxIXt+zTuyc3j0lzxSHWV88WMi58/MIkmuSRbP2cLY9dXuiKi/rXdveEWu7YcPh7Q0K1OpOsrcg9hw1VUEtGnTsIP2w8yVspQpG1sy+vhqQbvhF0KbdvF7BO2GtwSc7Q8xaDd8JYhtc8Cg3fAhplljurbed7DnHxVDlzYHH5D6Rcrw7RvVELQb8t2cELNnEG198dmDI+nUulpwvq/8vfmG0LpdYzr8JWg3apjfftmJaBJfc9Bu+AbRqm38HkG7cajbqLqat5cPsc0b0+mggnbjwJ+jUuqvDvbMoFS9UZiey5vz0nhd0hsrisg0wWllBTOWFdGnf1Nu7h7FDYPjOTEjh5l5Nrq1DSZvSz47HcX8lulNm4ICfi52sXBTMe3ahBDunqqN8IQIBkZ70bJ1LNd3DqBwbTZL5YvpueOiuKBvU+5tUcLn68rNU2d7iO2cwMvHR3PVabH0ycyTaXui5ZC2cTzVJ5rBQQVMTA5m7JA4Luwex9P9Q1i7Kpfc5hGcmJ/H17mVlO3M5deQcIb65DFppy+DW/kSEhTIabEV/LBlz6B5v1zFfDBzK2OmpfNbTgGvTNvK5V9nWoUHxys0lDuGNOPlYVYa2pQ72tT0VV5JxsZUJpRHcl2H/XzV23wYcWozbj86jjs6e7MmpepBB/VPnXACPPMMDBsGmYf2MStVq2y6+Wa8o6Jo8cgjVk5D5/5i+8fJK+ZoPphyNsOCai5viMm7wylMf7EfrewHl6/pSCWlGh4N3FWDE9E8jjfPasm7ksadHE6COQoqTaN1dhp5moMFuw+xAU4KJEb0axJG38ICftxRwIrQGG5pWsbPmwuYlezLqRKQ7usgyipyEBrsbbW0aiNWXheVmQ5S9hToY/f8UG/3JsrX5Z6nERno4/7l2lVcQa6/LI/1q7SvTCeywkW+TzBntargu/VlzF1bSLOO4cSXOMhxVrB0Qx4z1+ezMTickY0P4edsLz8G9W7EHf0iOCokkLP6SbDcJ8wqPDiukhJmLs3kwyVVKYuvU/96l7woOZ1rf67g0uHx9N1f1/s2G7L6bv7epgs3z2t1eJx6Kjz8sCd4zzU9ISlVx2w2d9jlxNDa/AqlDi/fQBpH++nFYnXesk1iA/66TfaVr5RSh4meX5QybD40C3GwKtXhbpXVVVjMyjJ/OoZLSO0dxCAJ1j/7JR+/ZiGc3CqAVYvS+DUghNOqAn2Lt5cNh+nLRsSH+5CRVrLrjv5yCV7bxvr9pRpZSkYxpja7s6CEdRW+tAzZc5peoX7EF5Wwwt36eiXpKSXkR/nT3MuL3p1DyVqTzLvb/Rje3htfGbap3YeT+jXmsQEJkhpzadNDqYdmJz46gC6xPoR522kSG0jn6H1UwdsHL29vWsQE0CHGf1dqEbjnOpVlZHLdjHx6n9GCa+P0NPRfGzIETOxjgveCAitTqTog8eGHcWRn0+bVV60ctZvnO0OTpvqZlGp49IpZNSg2Cax9JO0iL93vJXA/87goCn7fyIhPtzB8UiaBxzVisLu9NDv92gWxPQX6tPAhtEUo7bNKCGsTRuM94lEbnRL8Wf7HFi76MRdHxzguKUtl5AR5/9Fm3vON4/b2fw2iK9LSueCDTYycnIHXsbEM9AXz+LnE5W5eQeHc3MPJix9v4uJPNjJ6kRe3Hh/mbqDNt0kEp1fkszBG/gbJSAFh3NTLxcsTt3DN9EQukXm/lrLnF1zZliSGvL2ex7Y6+O3n9ZzyZQ11pO1BXDUwhh41xfyOfB75YB2DfiokLzGFQe8mMqH6s/u+/pzUOYJRXSKtFMGJezTK52TmL0n8WFjBjG83ceLb6zh1epZVZpHPxDRoazaBl2zX3a3p2kyROgJGjoQbbvA8815UZGUqVYttf/ppSjZupN3bb8v5Qk8Mf1E9xtGkqT4lpRoobVVe1R8HbFX+IDgq2JLtwCfEn6YBf+dC0EVmdhm5vn60cTfc4iJD3md5+dAm3Huvu+2VLJXA+QHfFnzcpZJ0L1/ahNj3+WtaaVEZW4ttxEf5En6An9zKZNgthZWEhfvR2E8vaPelIbcqvy8ffggTJ8L06eBfraF/pWqTpFdfJXfOHDp98gk27/20kdEQuVuVfxlCz7cyDkFhOn9s9KJHj+hD7i2krnImL+ORL3248drO7m7n/jZnDlNfW0DARQM4w3SdV8sctvWsDUqXg1e6tiqvGpy6fugqdXh5+9AqNuBvBu2GF9GRAVbQ7nkfI+87/CVo93DPxWYjJCyAdvsJ2g3/ID86xhw4aDf8zLBx/hq0q0N26aWePt5Hj4bycitTqVok5d13yf7+ezpOnqxB+2HmSFzFS5PWs61ed97hYO47H/HIPE/n4ZVZSXzzZwr5//Q2VmUBy37dwKpC630tc9jWUyn1n7E/LKzXStVtJRtx7ZxBeVKwlVHb2YiOD+O0eB9C99c1mzpi/FtmY2t6A3gfrp7h64ejj4aMDHj+eTjrLPmiOJRmEpQ6gtImTiR90iS6TJuGl5+flav2ULQK8uaDXxcrYx/Ks/l52p9M+G0Hm5MyWF/gz1FtIoiMiaZrRD6/zM8nomkI5ndsZ8pWvt1qo12cF4nzFvDWF6tZnOtP+1am3EXOuuW8NWUpv2y30ap9BCHWD8wFmzYwJyOAVtE+8o3nYsfStay3R5Hgk8tvM/5k/A+bWFcaTIcWQfi6iln55zYK4iKJ9IbCzRv4PSeYlpG7T0DO7CS+mjaPKT9vYXNlOF2amK7nSlg1dweF9hy+/mwhs9P86dQmBHeFofKcv8ynbONa3v5oDrPzQwi0e9PCL5mPfvfiuKYZfDJ9IymhcXSK9vwgVLpzIx9Omc/Xq4oIbxlDI38beRs2sDivnEXT5rLQuzHd4qwfj1x5/DR1HV7dI1g/YyE/JfvSrm0YQa5Cls1ewPszV/PH9kqato0kXFbJTGdJsRc75szlo7m5hLdpRJyfi4y1K/nw8yV8vUROwo0a0TJUNmZBCrNXl+Kdspp3v9xActUyOmuedk1c6Rt4dx/rWZaymUmfzueLBWmURMbSNgK2LlrDZt8oGgfaKN22Sbarn+dzLElnzoI8wpvINv6vLl0cqXIJVQxxF1gZSjUMB3HvTil1pHj7+7gvBNR/Y2dGY046LYYBA2DECLjwQrjnHrTlenHLLXDssXDJJXJtqF3nq1ogY+pUUt55h84maNfnOA7MnMf2mRz88dJ47lkVQq+EPD54/hdmZVTgSFzCPa+uJNmVxaRHv2RCsss97O/vfcrzi8pJnjGZkW9l0vyoRpTOmMjoD9IkAl3BzXcuoKh9C9pIoJxYsns+tu2LueGJhWwzN7fLtvLCgz/ze1Eek+99i9vmVtK8iTcLXh7HeVMycVZk8PEz3/NVupmnk63fzGTsd9m7pmXyVv24iIXOKLq3qmT6gxN4boOcnGS8KU9/yNAH57LDzybTe5fbZpfKiaum+WRQVlRETmklpfkFpOWWuxukrdj4B/dPyyfYvo0HrvuS6YUS6KYt4fIbf2RzfHM6ly3mkpt/Za3DycaZX3H+9dP53hZCqE0WbNfymQmlMO6lRWRHBrJlwngunpRJ2YYVfLzSRcsOcThnf8oF76fgkHUx0zn3mk95J8UH+4pvOfOJVe7xp321HWdCAh2dq7n6jp9ZXWFqQizhf7e9wzWf5hLgtXsZHTVOu9ryVE9iX+s55vIvme2KoKXvdh646iPGbXeSMutrbpmagbOynNlvf8zoZ5ZhOogp+mMW10xJwmkuXWqaz7+VlGqANHBXSjVYTWKSOaV/KbNmwVdfwaRJ7hsc7obxlOdHjPbt4cor5eLOXN0q9R/JmjmTnS+9RJfp07EHBVm5qlACrxtvhMsvhwsu8DQyeeF1fSkrN3dSa4p2rOQqZsUGFyed2YMzTj+agY19adshWsoMKQ9sy7l9c/lqVjbO8q18Pj+Us06zM21aIq1ObU/T4GD6nBDPzl/WybQclJVVUBEQy5Dze3FctT7fg4/rxaD0lUzd6aRs2TJmx3blLJ+VvL+yFY8/dApjRvbntZvasmrmCra7zDhG1fhVqt570e2c4Tx8RlNaNmlB74Rc1kuA6eYVyjl3nsN9F/Rn7JAQVq7OlIB0eQ3zWUlBl+6c0cqP1iecwG1DmhAio3s3683rj53G9ZefxrlRySzeUU7qj/P5s2kXBsb7EdetA13TVvNDupmfjdD+A3jlst6M6Gx+QKq2vN5RXH7/Odx99gk8e3lLVv28npx2fXnuhp4c2ySSft0i2Lk1E4d7eBvxg4fyzjX9+N+13YndsEPGb8zVdw/igqMiadmzGS3S0tlk9VTjFdOdZ/ZYRgfeHfY17ZpSzeuZ9MM8Fh49mDevPJbLxpzFo31SmDwrn+4ntyHnz7VsL9vBz5tDaJ++nh9yy5j723Y6ntSeiBrn8W8mpRoeDdyVUg3afXcXuKuGV1kn16GZNTS031A99BDExnpanNeaCOq/kDNrFtsee4wuM2bgHaqPtVQn8TNZWTB+PEyeDF9+CWeenoSfb4U1xD54BXBUGweTnv6UWx/6gs8CuzCkafVLQl/6D2lPyk8r2bBoBb8kdOOsuBIy8hwkr1zFl7NWMWNrKKOGNIXwHrzyf11JfXsc3S/9jp/zqv3K59eSC/sX8+V3Kcz5fjMtBnajcV4hOSGhNLJ6GvWNCSGquIw8Ob/YzB3sfXKwYsK7HHPNDN78ZiWLMyp3n5NsPgS423SxyV9vKp0uXDn7ns/ebP4yvnt0Mx1wOirJyimmPH0702Vdv/w5g/iBPTjG3X6NjajI4BrbrcHmS6DV/alvZBDBJSVkrvuVYWe/w51TlvLl6nycuxda5mUeIZBX8tff3PsvT+aV615kyLN/MGXWTlIkaN819F+WUQZfv69p16ym9cw0veTEhMonbthpFB1IYWEpvt06c6IE698s2cCSRv24u0cmP/y+mW9XRHL6CUEaQCj1H9DjTjVglexck8KzGyvcVeX+jtLCEv7clMevyXIxcICJOPNyePK3PHef7dW5CnJ5+pdceVHOV3NS+MHdX/vfcQjr46xg3fZ8Zm8rId3TPs8hcrEzuZB1JX93Wf+pSvJSc3j+u21cO30nr2woo9QqOVQ+clH30UeeFtTNhW+/fnDKKfD00yDXXA2eqX3w1FNyESpXdbffrsG7+nfl/vYbW+65xx20+0REWLmqypYtnlTloovgnDO3W+/MwbqP5Ejjx6UhXHHDsQw/6yx+evskunqbsiqV+PXoxuCc5YyduJk2AzvTyDeM1o29ie97Cs/cPYznJD1xTgv5Oqgk5ujjGffhTdwXsoB355svlap52Tl2WBfKv5/BswuiGX1qEN5xESRkJbE029y9dpK2Oom8lo1oKSeZYL8iUjMk35nL4vUSiO6ajiRnBl/NzGHw/Rcx7u5TGZxgLmGryo09X3vtaz6ynt7eNhwVVctZpfprLxKaRuAX04577vSs67O39eG4kL2H3ys581izvkC+IZ0kr0+juHEkJXOWsOPEkUx5ZBj3nhApAX/V8FV2v3ZuW8nklA68+vzZPH91B1q4fx2oeVizThtn1zRtJzlbt7HGvd7mfVWqUv01JDQJI33dTjJMjQdXAYvXldKhXQTefs0Z2iuLj19bh3+vtgzs15hlk35kdkR7Bkeb6L/6tP/tpFTDpIG7alDKd6Zx9S8FlFnvM9Ly+CXddehfA5UV/DB7IydPSmLixny+nLedoe/vZM5+guDKohJ+3FJKwV4zcxWXMHuziRAdrNpUwNqqhfsbDmZ9yjOzuObdjdw8P5fvViRz0Uc7mXWorYe7HPy+OI3pe/8KsV8uFv6RyNOJf/dnkj0lZ1UQ1zqKyzt4M/e7LTy98+9Pt2NHmDYNzj0XLr4Y5s/35PfuDRMmyJIfnkWus0zw/tJLnv7dx46VfVmvm9S/IH/BAjbfcou7erxvTIyVqwxTK8i0Q2Gqxz/+ONx0EzRrBq+9Zg3gZg7UfSTvcI5uk8sHL/3A/730CacMf4WbZ+WZOFuOd5tcHMowvs047+QyvlkWxzknB0teAGdd0ZeCd95m6J1TuPimNxn1/g4cG35mxPnvcsH/PuaV5DYM7149oJYguV13RvltYXmboxgWJdOOOoq7zi7liTFvMfKGNxk0yZd7ru1EmD2KM04JYMq94zjjik/5zhGMr9fu6WAP56Rj7Ux7dgpj7vicr/MC8LGbMrO8NuzWsF52ee+1n/nI0F27NWLJ2+MZ8fRSkuX8tmudhd28lulGDujPNUWzGXTtx1x+13hOu/lnFjtkfWT1vNwNwFnLtSvJeD6+bJv8Hidc+RZDPnJxw6Wd6HRMa7xnzeDyez/m+jnFRLgbo91rOmZ5Jdue0Ir+3iu5c+xkzn90NdmhXvKRSHn1z0V4ltFGixqnXc7Xz7/NnT8Ve6ZdlfYxjdjT+3NV4SxOvex9Rlw6jjcCTmHsyeYRAF/6n9ycxNVwfJ9Qwo5tT6etyYSf0IEm1T+X/ywp1fBoP+6q/jhQP+5lJXz/205u2u7Pg8eEcWz7EIr+WM/93k24N6SIeaW+DO4egfuRNUcZv63M4Y8CLzq1i2RoI2/5sqtSSdLSrQxZHsAHF8TTw1O/jLLCCoqDfIiQ782yvEKmrSkg0elDrw4RDIi240hOZuCPdt69OI5WXk7WrM3im2wvesWW8+RvNn64LIz/k+Dfb0A8sTsKyQsL5fwuQUTbKslMzeOrTSVk2Hzo1zmSE6w+4Qoz8/hiQzGZvoEM6RJKydx9rE+VynLGT97AjDZt+PRYf3dVP0dRBfkBPkS6ypm7OodfcyqJTQjn7Lb+BONk7dYSAiIlmF1TSFZYGBd1CiBUgvBt2wspiA6hi2lxNreAz1YXkuIdwJCjwujirovnZMOmHL5LdhAUF8bgiHLe/nY7c+Mac1W7IAbFV7Io3Yu+zf3wl2HXb5WLjIQQ2rtK+CVDLiYK8/imPJiruwXhU+P0q7j4ccYa3ohrx7RjrQ/jIB2oH3fTsvpjj3kC+SeegFNPtQoaKPMDxmWXQdu28MADVqZSR0DhsmWsk52ty1df4d+8uZWriuU0+cILMHUq3HUXnH++CcY856r16yXAOl4Gcvfj/hKEnOMZqSZFSzl39AYu+vxchgVC9ufv02NRb7Y92dkaYD/KC9mcWEBFWARt4/xNPEh5ThYbs2w0bhZJxN6nYVc+79/4Bj+PuIUJAwOsTCjNymRTjhcJLWScXfXOneQkZVEQGk2zqqbp9+CQ8lwKwyNpGlRT+V/VPB8HGdsyyAmKpl20VZe+RjLc9gxSHYG0aB5GiDvQPgBXKUlb86FRNAnWMpbnZbO9OJCW8Z7ttV/lxWxLKSeySfhBze8v085ZzqXXrmPkG2cz4qD7k68gfVsmmd5htEsIdF8b1GqlK8Cepf24qwbnYI9opeo8l0Qd2aUunA4nGUVOit0/WVWydnEykwu98E5K4cIf8iSrgs+nb+WFHF96xVQy9autvFX9znKlg+/XFNGjV8yuoN3wC/YE7a6CbG6cuJNfK31pZi/iicmJfCDB8G6V7FiayCVzywjxq2DiL1lsqLqj6yzlw5+zyQn0JnHBVq5dVIZTAtmZK4txhgfQzpXHbdPSWSfDO3MzufaTVJZ6+RAuQe6nWypkyjWsT3XF+RJIBzCqqydoN7yDJGi3mXXexNhEaBJuY8mczVy52My7jC9+TOT8mVkkybXN4jlbGLveKavgZPZvO/k4vdK9vjd9mkpiWCAdHNlcNzWD9a5Kti/dxoW/FOMtVx4ZG7KZk+8g11FJaalcIJS4KM/O5qFfckkz6+4q58ufkpmeW4kjO4cHv9jCQ1skePez4axx+u5FdysvKOSXNDudq7rkOYzMTb5XXoGPP4Y33oAzzoDVq63CBshLvjHefx9WrYJnn7UylTrMitascQftnT//XIN2i8MB48ZBnz4Sj4fAggWeu+0maDfMucodtO9ivnP2k/wacULLnTx88wTG3P0BZ052cOWoljUPu3fyDaJ1u0Z0iPOTQNGT5xsRSec2ERK07zWsJFfKCqZsas7oftUbcqvEPyqKLmYcdxX9quRFREKMBO1mxarnVyW7lEdJ0L6v8r+mmudjJ6Z5IwnazfdG9fy9kwzXrBFdW4VKEF1TeQ3Jy4+E1jEStO9eRt+wCNrE795e+02+ATR3/0hQQ1kNae9pFyUWc8xtQxgedfDbSK4EiJXt0SkhwKpuXxeSUg2PBu6qwfAKCGKkuYscEco1fSLo7u4C2EarHk15+fgYbjw+gpj0YlyFuUza6cvgVr6EBAVyWmwFP0hQvIsE9mnFdhqHyeFTWc6kr9Zx0ttr6P7adr6uqCRlbTZLmzXmueOiuKBvU+5tUcLn68oxT5u5SeA/a00pfY5P4Jqj43ljcBTNrYsvvHy58PRm3NIzhkf6BrNuQwGZtkAuHdCI0Y19adY0iGb5ZWyRwDhlfQ4bWjbmqT7RXN6/GQ92Mo3c/HV9qnMWO8jx9mbvGwyu/FwmJgczdkgcF3aP4+n+IaxdlYu79rnNhxGnNuP2o+O4o7M3a1Kq1+WvJG1dNgsiwjk51E5sk1A65efxc34536wqpf8pTbi+Rwz3DEvgArlwGhjtRcvWsVzfOdDdku++2PzCuGNQLBd3CKCkpum7nzeoJGPJZnp+kk3YcS24t/mRO52ZO8wSQ3DffXDttXD11ZCSYhU2MLL7uH/I+OMPePVVK1Opw6Rk0ybWSkTacfJkAlq3tnIbNvMYj3lsZ/t2+P13TxV50+bEfrlPkfK/fSV7HDe+fgu/PjWEB24aybdTruSBXhJY1zTsP0xe0d35YOJIhgXWXK7p8Kag7r25sXcQXjWU1Z9k7eNKNTAauKsGz9/bPB1n4lMv/OSbwGWCW2cFSzfkMXN9PhuDwxnZuFp9NQlkYwOc7MyVqNbmywVnduCXMfEcU15BvmRlFTkIDfa2Wmi1ESuvi8o8Tey4SeCeVWYnxurRyMvbhrsxXMPmRYB1QeYbZCeowkmBo4RxU9Zz7qxMpq0vJlW+tMy0soudhAV5s3dNur3XpzpbgDehFQ4y92pw2FVcQa6/rJc1MV9Z5sgKF/nmjc2GFLn5y7Ka78zqcmR7VRQU8d162V4byojrGEFPXyfZso7RVuu6+7KvUi9Zzhjr7FTj9Ks2mCxLbOtYbusUwL/RQZRpuO7XX2HgQBg8GB5+GHd3TA2NadDvk0/gu+/gnXesTKX+odJt21g9ejQdPvyQINPwRANngvQTT4Rvv4UZM+D//g8OrVF9c7LeX7IRFBVOq4Rggg/2bvLfSb4BNI72kQvOGso0afrbSamGRwN31bCYBmBcleyvIXXvUD+a2n04qV9jHhuQIKkxlzatHrh7c3rnIJYuSOOPGlpVjw/3ISOthEz3d0sFy1OdtI312/3MmJcPCcEONmQ4Mc3IZWSUklY1GVcF69Mc7vzUtFKKw/yIycnli/xQnhrVjMf6hdLMOmobhfnIMMVkmXGdFSQeqFl74RUYzClxxXy6rGRXA33FOaXsDPQjvqiEFe4W7StJTykhP8qfA9/EthEf4SuBfgi3nGa2VQKPnhLNsQE+NA2uYFWqWRdTnb2MnRWybWX7O6w+ae2+dvxLHKTLW2d+MatrDID3MX33c/s2ItvF81z33dX+/w2maqrEFu6qqqaRa1N11QSvpiprQ+Ln53nO9tNPPQ34KfVPlCUns3rkSNrJwRTcrZuV2zCtXQtnngnPPw9vv+1JjRtbhYfEcz7XpKl+JqUaHg3cVYPiGxtIx9Q0LvokiWkFlZgGWM1zu27mtflfQBg39XLx8sQtXDM9kUsmbOG1lOpfEjYSujflpdYl3P7uekZ9uoVzJ6SwODyAFnYbMZ3iuKQslZEy3kUfbeY93zhuby+BvwStJujzkjBzyDERJP+yiXOmbOLadS6iTHOywstuZ8eizQyZuIlz58OVvUMJCw+hn1ceD03fxpXf5pHjb8MuyxDbKZZzC1IYPmEzZ43fwqspTnertH9Zn+q8/Lni9HgardjMyR9t4dLJGxgyPYutfuHc3MPJix9v4uJPNjJ6kRe3Hh+Gubnjbq3Xmoy7pd69JhnRIY7LytMYPTmRm77cwsjP0lhW6cPwPpGkzdnIiMmbGPxpGsvLoVOCP8v/kO3yYw7pEaEM9svh+o83M+rrfCqCrGnL/zzbyaPG6bt/o6hk/ZLtnDcn/293BfdPmKqqpsqquSu2caOnKus338hSNaDriYAAT7/R773nCeCV+jvK09NZNXw4bV59ldBjjrFyG56kJDnnX+l5HMc0PGeqyHfoYBUqpZRq8LRVeVV/HKhVeUtZURlbSr1oGeVD9QbX9+YerrBSAmc/Gu+qy74nV3kFW3IdOP18aR1mr3bn10VGdhlZXj60Cfeu8Y6wo6SMTSVetIjcazkqnSSbuuyh1ebrdLAjz0V4uC97NLTrcpKUVY4j2I/mAYfyO5yLtKwycmT5WkZ4437cX5TKOm8tthEf5YvVcH3NXGW8/vEW0k5pz6NNzIAuMmV90112mkbuXkZnaTkb8yuJi/Ijwl1pwTNcrq8fbYJlIJeD7dmyXjJO6H4Xv+bpu2T62x3etDDT+hsO1Kr8odi2zdNVWlqapw/4nj2tggYgP9/z6IAJNsydQqUOVkV2Nitl52n5xBNENNBuG/Ly4Kmn4Icf4MEHD8MxZFqVT3wBQkZZGbWEI4NJT87g9fX+nDP2XG7puPeDXjUoyuCPjXZ6dI8k0Mo6NC6SZ/3EO7ZjeejUQ3rO4J9z5jL19cUEXHgyZxx06+4HwVXC8u/m8v4fGeQHNeKsi45jWLP9tYxfD5WuAnsuHKWtyquG5TCeSZSqG/yC/Oh4gKDdcA8X57/PoN3w8pXAPDaA9nsE7YYXMZEBdNhH0G54B/jRYe+g3bDZaRyz13zt3nsErLt42UmICTjEoN3wkmBalq9a0G74m3WOOVDQXsx70xN5rziY/lUPosv0omV9O0XvuYx2f186xFYF7YZnOHfQ7n7rTTMZZ/9Bu1Hz9L1k+n83aN9t35/voTCNX5tG2558Eu6809MfvGlMqiEwz91+LddPZt3Nc+9KHQxHfj6rhg2j+UMPNcigvbwcXnwRTjgBWrXyPH5zeH/4qqpSXDtS+epFPL26OW+/fzbXtjbn7ZqHq54ciWt5afIGtjll/GVzuPD1TZTVMNy+k4us9ev5bsNefZr/G6mygGW/bmJVYQ1l/yS5clmXEcKg0b0ZFbOVm2+axdzyGoar90mphsf+sLBeK1W3le2kMnkqZTv21165+sds3rRJCOWi3pF0OlDLxrVcQKs0bM3vljPh7r6F/ynzLOoll3iq0psqr1u3gqn963+gX4rqOFNt3gQdpqpvmzbQ0vQspdQ+OIuK3EF7k9tuI3r4cCu3YTD1HCdOhMsug/bt4d13PW1l7HrM6Z8qWgW5c8Fv//Xs8zZuZkkRJP60kEnLy2naLpj03xbwxvcp0DSOFsE2nNnJfPXlYqbM2cZmQunSxB97QRqz15ThnbqOd7/aRHJILJ2inayZu5nU0Aji/G3uu81zf8vAu1ko7p7ditL57otFTEq00y4ikIS4UhauKaZ41RLeWeVFt/hifltZRoK7O7Iy1s5LJDNCphXqR2RMFF0jC5j12Z+8OLdEpu9FQJNw7JtX89YnK/hlhxet2ofv+cN2QSpffLKQ6Rtc+Odv4Vd7R648JgjKc/nt64WM/3EL60qD6NAi0GpI1ijb5zr4piYy6bPFfLEgnZKoaNpG2HHlpTKrhmWOqZqgK5+fpm7E3iOSzd8u4+cMfzq1CcYfFxlr1/DhF8v5emkWNIqlpT2DWQsKiGgSTICZdco2vt1qo12cF4nzl/DWtHUszvOnfUsptwfTpXtj2saH0a6LP6s+WIVrSDd6y+fVYDjS5YAphbgLrQylGobD9TWh1H8voDV2v3wJLA/cSJv6J2yEhvgS+W+2CHcEeAWUyar4gHe4lXP4mGf0hw6F+fM9Aaxpjd50nWbusNVnpi9p0/r1//7n6S5OqZq4SktZNWIE8VdfTcxZZ1m5DcP330PfvrB4Mfz0k6eLycC/Vwf8H3Ky8ZtvOff66XyY6U3hrGkMHjOJu353Epq5hIvuW+AeZtWsZSx0RtC9tYvpD33KcxudOLat4H+3f8Q1n+VJELmTB26YyfQi2DJzBrd+levu+rRsyR9cPX4bxVU3Rp3lZOc5cFaUkp5dSqGZxv8+lvnZaBRkozxxGXe+vpYUM7Ijh09f+pGpyZ553fPaanaWlZNlxi8vJS2rmKL8Ndx812KK2jejjQTjidUbOnHl8N49E3k20Y/QjEU89GmGp0FaCaQn3zee2+ZW0ryJNwte+ZDzPsne3VWrqGkdCtOWM+bKmcx2hdPSV9b36k8Yt8OFYx/LvAdHGm+9soSUIC+Z3wRu+0m+dyRv2owknE3i6ehcx9V3/s5qZzaTHpvJhBRz/eLg9/Ff8vzicpJnfsHIcdk0PyqW0hmfMfojCVh3cZCyeBPLAhvRLUIv55VqCPRIV/WHfzMqQ3rhG5djZSi1b/7Nc6HxVRJlH7nToOnz/JprYO5cyMyEY4/19Adfn1sWadQIpk+HG2/0VP1VqjpXeTmrR40i9vzzibvgAiu3/luyxNON5EcfweTJniryUVFW4RFRVZ14f0lOgYMH8tZVfXjggpYU+Hfgrfv6cctNveixLUVKveh2zmAeHppAy4Rm9E7IY/12E5hW4hXThWcePYnrx5zEuVGpLN5h57ShbUietYqtzgrm/rCZxgM607Kqm7nQBM45OZbQJq254YJ2tJZ8W3B7xo49jitOa0yYWZg9lq16kiUJa8K5J0UT0rQtt1zalV7+DsrKK6gIjGbI+d04Lmj38K6sDXy2vjn33dmX664fxetnRWA3+WmreH9VCx5/6ATGjOzHaze3YtXM1Wx393Rikm8N69AJ39mLWdjrNN68sieXjRnKo33SmDwrxwr4d8/3r0nYo7jigRHcd34/xg4OYuXqLPliaMTVd53MBV0jaNmzCS3SMtjk14pz++Tx1WyZbvk2Pp8Xylmn2Zn2xXZandKapsFB9DmxETt/2eiZtquAd659jmFfBnDP86dxou/e867vSamGSQN3Va94tbqPwPZ52Hz36qhcqWrswcX4Nc7F1vRmK+fICgmBRx7xtDpv+mTu398TzNdXTZp4WsS+6ipYtszKVA1epcPB2vPOI3LwYOIvv9zKrd+2bIHzz4d77/U0WmmqyP9rj5GYXwj3m2z4+3qbVoqxeXvh5+9NgE3yve34VLqkvIIVEyZwzDXf8eY3a1mc7pLRzHhg85Nh3QGU/PUFZ0Ul/j26MTR/DZ+u38LUBeGMHhCC1x7zM8NXLZcJxgOJ89qdb5Zj97DuAT1/q/LcrNdhXXjl8U6kvv0h3S+bxc+5EkZbw1XmFpEXEkyse9rI8nnW0ZVTSE5wMI28PcP5RgUTVVxKnsvz3qS/rkMQ2VklhMUE4+sexotGUQEUFpa6F63mZa6WbJ7t414O2WaVTlnOshReue5Nhjw7nymzkkhxyjJX+tB/cBtSflrDhkWr+SWhM2fFlpCR5yB55Tq+nL2WGVuDGXV6wq5pOytDOP3iExjdxmf3/BpK8mxspRocDdxV/RJ5OraWtxHae6dcWNTzesnqb7GHFBF6zE7o9JG57W7l/jvM8+/medbXXoPHHoOzz4ZNm6zCeqZFC08/7+Z5/9WrrUzVYFW6XKyVnSG0b18STHWMes7UsDHdRZpKBeY3ClNFvkcPq7CucGbx1cw8Bt93DuPuOpHBCQe4ZPRN4MJTnEx9/nfmNO/MmYfQkro90Bf/3EJSJa51piWzPKOGwMzuhZfDiftneRfE9OrDuPFXcV/wUt6d77n/bdijw2iUm8GaPBnIVcTqrQVmcLxiI0jITmVpjnnnIm11Cnmt4mhZ/bGvv6yDnYQmoaSvSyHDPVoRi9eV0qFtBH4Hs8w1cG5fy+TUdrz63Jk8f1U7WliNt/r16MrgnNWMnZhIm4EdaOQbSuvG3sT3PYFn7jyd5yQ9cU4zz8BegZx5yzAub30QLfMrpeoNDdxVvWNr9RBebe8ivN9Wgrql4hOZ777Dag8q0dRQk3z+PjG5hBybTOixqdD5I2yx/11XSV27eu6+m2r0F14It94KWVlWYT3Sti1MmeK542j6ulcNk7lLu/7KKwls146mpsuFeqy4GB5/HE47DXr39tSsGTDAKvzXVd2ZrDl5yxWglzvuk/fyxv3eXSbBr+ldzB7OScd6Me25aYz533S+zgvAx9zFlnFsXrbdw5rX7irxXnQd0gn/Jal0HtTec8fbmtdf5rHHNCqxN2vHmSErufTKjxj44EYqIu1SJqoN59u2KV3W/sqIG79l0rzfGHHhBC648zNeSW7J8O5maGs+4e25cXAeD1/1EcOvmMrnRUGy3DLfqM7cNbqMJy4fz8gb32fQFB/uubo9YVXjudPe62AjdlA/rir6hVMvn8iIyz7gjYATGXuy376Xede0ZLltNtk+nvdednkv07M3bkF/+xrufOBzzn9sHdlhXu6q/OZHg/P6l/HN8hjO6R8k0wrgrCuOpuDdDxl69xdcfPN4Ro1P8kzbkc64ByfwwG/mBkXV/BpaUqrhsWk/7qrecuRSmfyOJIkc5DV7NEGjGhTTCJ1vHLamV0nAfp5cm1XvBO+/5XJ5upF77jlPF3I33VT/WqBfvtxz5/3LL7W1+YZo4w03YA8OppWpK15PORzw3nvw+utwxRVw3XVyytndXPm/K12+8xLlhBJ8OFrrd5CTnEdhWARNgzxh6f64MpYw8pKtXPLpKEYdagcvjhISd5QR0SycsH3cSC7LzmJjvh9tWgTjlZvNxkwbjZtFEPGXbe0kJymLLP8I2kTt2cd5aVYWm3LsJLQIJ6KGRlZrXocK0rdlk+kTSrvGphV5y0Esc43KS9iWUk5kkzBCDjReeRGbtxVSERpO2zg/81uGcJGbnEtZVCSS1fCUrQF7ofbjrhocDdyVUqoWKCmBl17yNFx1992eu9SHrXuoWmDhQs8z76bV+aZNrUxV723+3//cDdK1feUVK6f+Me05mLvsp5/uOXZDQ62C/0qWBDOb7oWQ0VbGv8XFtokfc+rqY1n2RAeCrdy6pT6sQwNQsgQC5NPpNNHKUKph0MBdKaVqkfR0ePRRT3dRTzwBJ59sFdQDpos4U6Ng5kyIj7cyVb219cEHKU9Jod3bb2MzfSTWM7//7unOrUMHePhhTxsWtUL+Qlh1FoRfaWX8e8rz8snxCSYusO7+6lgf1qHeK5oDkb2g9XNWhlINgwbuSilVC23YAPfcAxUV8Mwz0LGjVVDH/fwz3HWX5xl/0++7qp+2P/UURatW0eGjj7DVp6ojYu1az7FpVsv8uFbrjk3TIvy85hB4OvgkWJlK1RMmbMl9A476HkJ6WplKNQwauCulVC1m7uqZIKFLF89dPdNPel1nWth+8EFP13iRkVamqjd2vvwyeb/9RqdPPsFmP5QHf2u3pCR46CFPQ4smYO/XzyqojbY/A6mfQPBQK0OpeqJsHTjlIDx6iZWhVMOh9YCUUqoWO/54kBiIU07xPENrqtEXFVmFddSgQTB2LAwbBnl5VqaqF5LffpucWbPoOHlyvQnazT5q+mEfPtyzz/7ySy0P2o34qyTA2SABTo68MfdnNGmqB6nSCaWLoekd8l6phkcDd6WUquXM48HnnAPz53savurTx9OCtbMOd5RggiDTDd6ZZ0JhoZWp6rS0CRPI/PxzOk+dipfPni1510Xl5fDii3DCCdCqFSxY4Nlf6wSfCGj5f5A/RU4U+uuYqgfMIyCFMyGgGcTIF6JSDZBWlVdKqTomJ8dTVdc8L25aszZ3sOtq21+mK7wPPvC0Nh8QYGWqOidDgvWk11+n68yZ2AMDrdy6yVwVTZwIzz4L557r+YGpzq7Sjpdgu5wsQs4De5iVqVQdY4L2Igna/SLhqG/Aq571marUQdLAXSml6qitWz1VzrOywHSR3b27VVDHvPsufPGFp1stv4bYJ3EdlzljBjtkB+z67bd4hxxq5921i2l/wTzHbmq13H8/REdbBXWZCd4TH5CDq7MkOUl414eVUg2CqxTKlktaCcHdoOtXGrSrBk0Dd6WUquNMH+mm/+hmzTx34Js0sQrqkNdeg1mz4LPPoB7Usm4wsn/8UWLCB9xBu09EhJVb9yxZ4mkE0vR0YI6hli2tgvqiLBmSXoeUcRL4yOfkvvtuDrT6102fqg8cUClBe/lWiBwMTW+H0D5WmVINlwbuSilVD5gzualublqeN43YmSDEPA9flzz3nOdHCFNN2dvbylS1Vu6vv7L5jjvo+s03+NbRvv22bPHUWsnOhqeegh49rIL6ylUOObMlIEoBZ76nCrJStYl57ssrUL4EIiC8P/jGWgVKKQ3clVKqHnE4PFXPX38drr0Wrr66bt3BfuwxT3db5rn3etb9d72SP38+G6+7ji4zZ+IXH2/l1h2ZmZ59zTT4aP4OGGAVKKWUUrWUXhYppVQ9Yu5Um4D9zz8hNRWOPRa+/NJzR74uMM8Vm6r+Zh30Z+XaqWDpUjbIB9RZdqy6FrQXF3uqwp92GvTuDXPnatCulFKqbtDAXSml6iHTRpi5k/j11zB9Opx8sufuYm1nakn+3/9BUBDccosG77VN0erVrB8zxt3lm79pVKGOMDVRxo3zNDoXHOzp2u2CCzz7m1JKKVUXaFV5pZRqAFas8DRgZ557f/JJT7/UtZn5ZrrhBk+QZVrM1wDrv1e8cSNrRo+m0yefENihg5Vb+5neCsxddtP2Q9UxoJRSStU1GrgrpVQD8sMPnuroxx/v+RsZaRXUQi4XXHklNG0KjzxiZar/RGliIqtGjKDDRx8RfNRRVm7t9vvvcN990L69Z/9p3NgqUEoppeogDdyVUqqBcTphwgR44QW49FK48cba23+6WdaLLwYTK5qW8tW/rywpiVXDhtHu7bcJOfpoK7f2WrvWs6+Yxg2feAI6drQKlFJKqTpMn3FXSqkGxm6Hyy6DefMkKCvzNGA3ebLnDndtY5b1ww893cS99JKVqf415enprDrzTNq8+mqtD9qTkjw1NEzDhnfd5akir0G7Ukqp+kIDd6WUaqACAz1ViX/80VOt+IQT4NdfrcJaxHRnZ35YmD0b3nrLylRHXEVWlvtOe6tnniGsXz8rt/bJy4N774Xhw2HoUPjlF6jFi6uUUkr9LVpVXimllNu6dZ4qxuZbwTQIV9vaHysthTPPhPPP99QYUEeOQ6LhlYMH0+yBB4iSv7VReTm8/jqMHw833QSXX+6poaGUUkrVR3rHXSmllJsJ1E2f73fcAVdcAddfD+npVmEt4O8PX3zhqTo/ZYqVqQ47Z2Ehq4YPp8mdd9bKoN38sPTxx3DMMZ5+2c0jH1ddpUG7Ukqp+k0Dd6WUUns48UT47TfP3wEDPP2qmwCpNjD9u5t+6c2dVvMMszq8nCUl7tbjG197LTEjR1q5tcf330PfvrBokefRibFjPY98KKWUUvWdBu5KKaX+wrTIfd55sGABBARAnz6eKsmmlff/WkgIzJgBzzwD33xjZap/zFVezppRo4i78EJizfMItciSJTBwIHz0kae9A9NQYXS0VaiUUko1APqMu1JKqQPKzvbceTd34h9/3BNE/deyssDU5DZdfp12mpWp/pZKh4PVZ59NhGzIhBtusHL/e1u2eO6qm/3vqaegRw+rQCmllGpgNHBXSil10EwgZVqiz8313PE2/av/l9LSYMgQePFFT9V+degqXS7WXnCBu7u3pv/7n5X738rMhMceg/nzPX/NIxtKKaVUQ6aBu1JKqUNmqtDffTe0bOkJrBISrIL/gOm/23QD9uabnir96uCZS4D1l1+Ov3yQLR580Mr975i2FF54AaZOhTvvhAsukAsVm1WolFJKNWD6jLtSqn4rg5Qs6/U+5GaAw3pdnSNXymoqEKUyzS073JNvkI49Fn76ydM927BhcP/9UFBgFf7LzI8GpjX8a67xPAutDt7GG27At1Gj/zxod8hxNm6c54eX4GDPD0MXXvg3gvZS2LYFchrqgamUUqre0sBdKVV/STDwzGnQtK0EBVutvL24tsFZ7eCN7VZGFRe8fpaUveF+uYsrDR4bDnGN4SgZr1FneHGuVXgYTL9NAtDJe87zQGbfCj3vst7UJAduGwSTd1jvDxMTVJnA3VRnbizb47jjPHe9TRD2b2veHD7/HMaMgVWrrEy1X5vvuAMvHx9aPfmklfPfML0D9O4N2+UY/P13uFX2Z19fq/BgyQEz+zFoHwcdj5LjshGc/SLkWsX/purH8H6PzTJZV1nWu3613iullFL7oYG7UqreKpOA+r3F0CRQAvcP9ryr7pBgdoME8yXFUFQOxSVVBbBtA2TI+8IiT/mu54nkSvyja+HJLfJXhsnPgGc6wN0Xwy8yDTf5u209pBRa70VOqvtGINnbIDHbk+cm00vdBJtSrEDdKUGnLPNvS6HCKk+Rcc2d/x2yvG6Sl7YZ1smym2kafa+DlyUZNc3LmQZzf4OlSZ73RpEMt1bmXeie8T8jsZ+7z/c//vBUWzdBmOmy7d9+EKtNG/jkE8+d2nXrrExVo63334+joIDWpnn2/4gJ0k27BKZnANNLgGn8MDTUKjxESR/B+U/CKfI3J1/29Wdg3t3w0C/WAMIcExuqjjVDjvVUOYbdx6wcz9lVx7AhZUlynKVWO47zZNxCk7/DXexmziPrzXFU1dvCXsdw9WPTKSOVyzzK5a/TLIQfXPeqJDle9rcsLjkPbUn01O5Jl3lXHfdKKaUaFn3GXSlVb319JVwgF7yT+8JoCei+XymBglwsb5sMA6+Wi+14iIyUi+TlcNMyuNMfrhgIU+ViPUHyAyXw9b9JAox7wC7Tc0lQOlCCQ/uL8K0E8OaXT5cEwC++DcPGQvSvMEqC+MQIubhOhn6PwccXwLnNIVMuzgtk/G0SPFwo839DApb7ZF5fy3ziZBm394K3j4NzbpPAw1fm84QsdyNocSM0DZSAIwsemCpBwq3wg5y1IyU4yewor7+TwP8yuFHGSX4Bztx7Xh/DUe/BLTPBtzE88RN0/kDW82s4Ok7WbTs8LdO4pKV7kx0WO3fKsj7gmf/TT8Mxx1gF/5KV8jlfdBF88QW0bm1lql22PfEExWvX0uHDD7GZfv/+ZTJr7pFjytTYMDf7O8p+/I9IEPy6HEt3ykG65Vto5D4w5XiX4zR/mByT0fDIKDnm5DiLkqjX1U+OcTkumsk5ofmD0FuOiyQ5XrcFyDH3B/SXwPns8yQAD5ZllOO7813wnZwHzm8q+5ak7VLe9SF4RoL08+SYC4uCNG944Ss55mdJsH7L7mP40vly7Mnr9SPg2GsgS8Ypk2O3WMb5crXMT84nvnI8viDHd03L0vV7GCTnmtJm0FiO7axf5FiX7XezLIdSSqmGRe+4K6XqJwm6P5IL6ePPgQHnS/C6A96XANXc2RonF9QVF8IauQD/TC7oc627ZUvGwZQKuahfA6s/g5C96tk6JBhOlWGbyEVz1cnTS4LrO+SCu50E06/eKRfdIz2B44JnYY4E8xNlnNIyGW4ALF0uw3aAmd/ItDbJX3nf8XQJXj6FsafKNK6CW3tAm+sl6JRAgSL5T9bj1Ameu/s3SqCTcRLMXwW/vQ7ecmH/vQTHxWY4Sa7yGuYlF/5XybL08IfrP4ebWsHPEsR7S7B0qQRNk2QZm0nZ4dSkiafPd9PSu3n23TQwlihB07+la1f5rN+XgE0+W1P9Wu2286WXKFq2jA4ffPCvB+2mNsaVV8K1EojeJcGwaZfgHwfthhzTOyXADpf9LnzXgSkB7x0SgLeTAPxVeFbm/akcl2sWyDznwAOT5VgpkSA6Tc4Pcnwtl2Oig+yj3yyCd++V4U6WPBl+uRwzgabdBDnuzTHmlOM0VQLvH8+SY9Z0Qyj72So5X4yNhXufhoS9juEy69gMGQ5rU2DLdOgsQfnJcq44VQL6IlPjR1J5Tcsiy2rOVQ45V5nHPybKuSJVzk+mAT+llFINjwbuSql6KWkqfJcD696Ri2EJFJIl6P3qA0iT4NZc5Hc8BsJkuFZ9oLG5nW7G2Qk2CSR6S4G3BLi9Gnvyq9ijIUKmkybjV3FulmBEAsS5cnG+YYtccB8NwZIfL9NvUQqbZJrIOG0kiLbLGTcmAirk4ttbLu7HvSTBw0S5+Jdhn/wW0qtVj61ik6C6lwzr7ScBRHtZtkI4/wQJSl+AEpeMv3e92RrmtQdvCSzGwWAZ78bT4CwJ3tekW2WHWbdu8P33cOmlcM45YHoay6mq8n+E9erled7ePIOfnGxlNnDJ48aR+9NPdJg4EZvd2un/BXl5EtRKMDxcglfT+v8vv0C/flbh4SCrEiX7er4EvrvaR5RAe/yVclzNhY0b5L0cE0fLgekVDz1bSAC90X1THlu4FEnA7xXjObYr5LjYKEFzaznmIuQYiuwPEyQ4d5PyTrJfBcoxZN8GW8tgzsNyTB4HH8kx1EqmvT8OOVeMOVcC78skCL8Z9v697C/LItNPyZDjWY6jIClvIueWqnOVUkqphkcDd6VU/SMX7ZMnyMX1ifCAXCBfeZX8vRzKf4QpSXIh3FwC+kWei/wdi+Xi2FzBi9Zt5H/rYJEUOHfA8hRPfhW7jDeyr1ysS0A42wTvxfDxWLmwXw2VPtBOgv2q6aYsgES5Mm9nVWnd++amYyU8/zM8KGnHTJnfdPhivWc4l1UDwE2m62ddrP/6DDwhy/fWHPjsRvCVvL8E5uIvN1Llvclymuk64MPnocWDnlbxL5S8d79wD3XEDBoEcyWA6tQJTjrJcye+zDywe4T1lc/q5Zc9rd6nH6EfJ+qK1I8+IvOLL+j02WfuBun+DeZ5bvNZn3CCBLVybJiW4keMsAoPJzk+ho6UP3JcPD3bvYuz4WN4WM4BWZVyDLaTDDluFsqB6ZJjerEE5m3ae44JE4zvcbjItDq1hZXfy/Ehy584GY7qbJUJfz/PX/PDXkt5fcojnsYZv34B+st45lD9yzEsTKOWt58lw0rwPfVZiNljppYalqWLLOdqOUckyUot/w62m5VTSinVINX01aGUUnWbXKD/vkICtptgzMVwsaQrH4DTAyRfAuurJWgNngId5IL+7BnQSOKYACnrfLUMFwyjOsgF89kSXDby5Mv1tIdcSN/4tgS7cuY8Q4L40Gi4YaEECO9An0C46TloMk3GlQD16DvlQv5JuKAxBEkAH2Ruw8t45q9JXk0kmJEAYoAM2/cymddpMLqLjCtBQuJ46D0YlklgEBAky2otQLvjIG61rFdPSZ9CxxjYtEmmZ4Yx05RIvqZ52WUZOsuw4y+BwU/JekvQ8dQA6CaB7WQJoMeM9kz/SDI3eC+/3BPAm6rDpgG7T2UdjnQrK6bxs6dknc2d3qwDdAtYX6XLhk774AM6T5uGl58VeR5B5jP9WAJn07aBqdY9bx5cdZVnHzhSOtwIb14IE86A8FA5jm6Arg/DfX1k35fzwF1yvJ0jx5epEbOuPzx6ngThcmz4m2NHjhUv2SzBJsm4V74EI7Lh2DhZh3vh5IdkBrLsgXIuMMeZYZdj6Imx8KMcUx1kut3GQLmcL7xMsF3tGE6W49GMs+Y9eHeV7IMShB8nx2OcLM+DC6xjV5JvTcsSJtvtaeixVKYZD/evgUiZvpmHUkqphkcbp1NK1UuF6XKCi5ULY+u9UZgheRLAmjyXBBTbM6FxM4nzU+QiWS6M3SGNC1K3y2u5uA4skHHkgjrKXbCnnG2QUgHN5QI+SC62d5FAOHGrXIgnyLRDPFnV5+vMhUwfuXC3FixjC2TL+9ZN3bXY3fNP3ggOCRqaSRBhWppuJK+rFKfBDplHa1lu09dVicwjSNYlQ4L7OFnWfc3LJeuyMUlet5HARmZUKsNtleAkvrXn/b8tTdbjYQmsTHsAJrA+/nir4Aj5+msJtJ7wtGAeHm5lNgCZ06ez49ln6Sor7h1i7ZBHkHk0wnQJb2o7mPYNoqOtgn9JeQ5skeM5vLkcN9YxViU7UbaHrxw7cmy7Y1851jKyIEaOFyNXxvOR88Beo+2SlyrjSXBuxe5upscH0ytElJwHYqrOE9WO4SYyo6pjsyYFMk2bmWZNyyLjf3Mj/NgHXrkEkl6Ho2XbjpP1OOfIf5RKKaVqGQ3clVJK/WdMC+N33w3e3p4A3l2t+Qgx/bybqvMzZ8K/EMP+57J/+IHEhx7iqG+/xfsI/1qxZImnpXgTeD7+OLQ8jL0UNGTbvoTrHoDFaXLBJvvs0Pvh9THWj4xKKaUaFA3clVJK/edMg2WmAbOePUFizV13Hg+3SZPg3Xc9d+ADA63MeihXNujm//3PHbT7HMHb3lu2wNixnscQzA8v5vNTSiml1OGngbtSSqlaweWCTz7xBIDnnQe33uppY+BwM13VmfmY7sj8927aux7InzePjddf764e79uokZV7eGVmwmOPeRpme/RRGDjQKlBKKaXUEVH9yUyllFLqP2Na4z7/fE8waBo+Nw3YffihJ6A/nMaM8XQTZ7qoMy2f1ycFS5aw4brr6PzVV0ckaDeNzZmq8KedBsce62lsUIN2pZRS6sjTwF0ppVStYu6Cmz7ff/4Zli/3NHQ2a5ZVeJhIbMvJJ8MFF4CjnnSxVbR6Nesvv5zOn3+Of1OrH8LDxGyjceOgTx/craSbrt0uvBBsu7pcUEoppdSRpFXllVJK1WqbN8N990FBATzzDHTpYhUcBqaleYl3+eijI9td2ZFWvGEDa845h06ffEJg+/ZW7uExbZrnLvvpp8Ndd0FYmFWglFJKqX+NBu5KKaXqBNMfuGmBvm1bz3PVjRtbBf/QAw9AcjK8846nun5dU7J1K6tHjqTDhAkEd+1q5f5zv//u+cHE/A7wyCOHb3srpZRS6tBp4K6UUqrOMN9YplE50zDasGFw552eqtv/hJmmuZNsnt9+7bW6Vf27bOdOVsqGaP/uu4T06mXl/jOmiz7TtZvZDk8+CR07WgVKKaWU+s/oM+5KKaXqDBNMjhzpacAuNtbz/Pvbb/+z59TNNE0VfHO33TxbX1d+zi5PS2PVmWfS9vXXD0vQnpQEV14J117r+SHD/ECiQbtSSilVO2jgrpRSqs4xrc7fcIOnOndioqfRNNM3+98Nuk3w/vLLkJ/vqTpf21VkZbFq2DBaPfccYccdZ+X+PXl5nj70TQ2GoUM9fer362cVKqWUUqpW0MBdKaVUnWUaSjMNzJkG1D77DAYMgMWLrcJDZO64v/UWbNvmaYyttnJIpG2C9haPPkqEaRr/bzJd4b34IpxwArRsCQsXwogRVqFSSimlahV9xl0ppVS9sXSppwE7U43+//4Pmje3Cg6BqXZvuokz/cjfcYeVWUs4CwtZOWQITW6/nei/GWWbb/2JE+HZZz192d92GwQGWoVKKaWUqpU0cFdKKVWvmG+1776DBx+EU07xVAMPD7cKD1JFBYweDQMHeqrk1wbOkhJWDR1K/FVXEXveeVbuofn+e892MW0D3H8/REdbBUoppZSq1TRwV0opVS85nfDBB55n16+4Aq67Dnx9rcKDUFrqaQjPBPBm/P+Sq6yMVSNGEHvuuTS67DIr9+AtWeJpKT4mxvMYgKkar5RSSqm6QwN3pZRS9VpRETz/vOc5+LFjYdQoT2N0B8N0EWcabRszBi66yMr8l1U6HKwePZrIQYNobH59OARbtnjWOSsLnnoKeva0CpRSSilVp2jgrpRSqkFITYWHH4Y1azxB7ME2xl5YCGecATfd5Ln7/m+qdDpZe8EFhPTuTdPbb7dyDywz09PXvek279FHPVX+lVJKKVV3aeCulFKqQTGBu6k2bqrNmwC+TRurYD9Ml2mDB+/uNu3fYL6e1192GQGygM0Pso86U0PghRc8LeybvthNI3sHW7tAKaWUUrWXdgenlFKqQenUCaZP9zQ6d/HFcMstnjvU+2O6nTP9xJvnw3/4wco8wjZedx2+CQkHFbSblvDHjfP0Zx8c7Ona7cILNWhXSiml6gsN3JVSSjVIpgv0P/6AY4+FU0+Fp5+GkhKrsAaRkZ7g/b77YM4cK/MI2XTbbXj5+9PKdFJ/AObZfdN13fbt8NtvcOuth9YIn1JKKaVqPw3clVJKNVhe8i1o7kybZ8HNa3PH+uOPweWyBtiLaZV9xgxP3+d//mllHmZbx47FVVJCm5desnJq9vvvcOKJ8M03nmUy/dabmgFKKaWUqn/0GXellFLKYlpfr2rUzQTCph/4mpi728OHw7vvwtFHW5mHwTaZacmGDbT/4ANs+6jnvnat5xl9U/zkk9Cxo1WglFJKqXpLA3ellFJqL5s2eRqiM325myr05rn4vZmu1kw/7x99BN26WZn/wI4XXqBg3jw6Tp6MzW63cndLSoKHHgKJ690Be79+VoFSSiml6j0N3JVSSql9mDvXc3e7fXt45BGIj7cKLCaINl3ETZlSc3B/sJLffJPs776j09SpePn4WLkepkV70/r999/Dgw/CiBFWgVJKKaUaDH3GXSmllNqHvn09DdENGgRDhniCd9Ove5V27WDSJDjvPM9d+r8j9cMPyZw+nU6ffrpH0F5eDi++CCecAC1belqK16BdKaWUapj0jrtSSil1EEwgbbpce+cduPlmGDMGqmq0L10Kl10GX30FLVp48g5G+iefkPL223T5+mvsAQHuPPOtPHEiPPssnHOOpyG8wEB3kVL1R8lmqMgAV4WVodRebF5ykg2VE2AH8NqzJpJSDZEG7qp+cpbIFfEkyPsDHHmSobt5rWa+nL0jIHIwRJ8p7//6fK9StYWpum6eMZ8923MHfrDstqahuAUL4OqrPV3GNWliDbwfmRLl73juOY769lvspvN1UVUd3tzpv/9+ORyi3dlK1Q+ucs93844XoTxZzvtmB9fzvdoXuXZzFcqfUoi/BhJuAN84q0yphkcDd1X/JMqV9M6XwK+1pI6yl5u7WDW3zqxqC5f8VwSly+RvLrSUqKjRpVaZUrWTaVneBNepqZ4G7Hr08HTRdsstMHOm7MKNrAFrkC0ReuLDD7uDdu/wcJYs8TxLbwJ105q9qRqvVL3ikuBrxRlQlgbBp4F/F88vXkodSEUyFM6RfWcNdP8FAttZBUo1LBq4q/plww1yRfwjRI4B7xgrU9Up5YmQ9Q60eAgSrrcylaq9TNB9992ehusefxw2bvQE4RKT13jHPHfOHLbcdRddv/mGHfnRjB3r6YbONEDXs6c1kFL1SaUDlg8ChwTvEZfK1ac2saT+hqI/oUBOrD1+h4DWVqZSDYcG7qr+2PEcJL0NUTeClz4QWqc5MiDzJej4IUSebmUqVXuZb1ITqJtq7gMGQK9e8JyckkxeRIQ1kMibO5dNN95I449m8tTbjZg3z9Nv/MCB1gBK1Ufpn8CWhyD6Ng3a1T+TPxP8/KHTFCtDqYZDA3dVP5hf8+c2kSvkq8G3qZWp6rTi+RLAb4Aev1oZStV+DjkVjR8Pr74KvXvD6tXw3XcQGgoFixez9vIrmTNwBhN/aMJdd8EFF8gXsdYWVvXdYjkYfHtCoFYpUf+Qeawu9UE5wW6SfSrWylSqYdCfPVX9kDkd7JFyEjctQpnfojTV+RTQS4J3iXqK18t7peoGb2+46ir4809PA3UpKXDccfL3j5X8eebl3F32Bb4JTdxdu114oQbtqgEoT5fz+Fo5p3eTNzWc6zVpOpRkalQGdIWsGfJeqYZF77ir+mHrg5C7FEKHWhmqXsgeD81vh9hzrAyl9s/lcrFz5042btxIcXEx//VXXHa2H88/34uhSY+RccxgTr3MRVCQwyr9b3h5eREZGUmHDh3cf5U6oorWwIrTIWaslaHUP5Q3TfanU6DZXVaGUg2DBu6qfth0GxTsgJABVoaqF3InQcKlEH+5laHUvjmdTubMmUNhYaE7IPXz88Omt7T/wnztm22UnZ1N586d6dixo1Wi1BFQuAJWnimB1t1WhlL/UN50iO4HzfXHINWwaOCu6odNt2rgXh/lTpbA/RIJ3K+wMpTatz///JPc3FwSEhI0YD8IFRUVJCYm0rt3b5ocTMfzSv0dGrirw00Dd9VA6TPuqp4xv0PVnEpz88lz1Fx2qMmZvJgHX1tBuqvm8r+dClP5Y2kGxTWV/YNUsHUTc7eX1Vj2t5Irhy9f+Zqv0p01lx/WpNSBlZSUuKvIN7I6Tze/SWvaf/L29iY2NpZVq1a5t5lSR5Tsc/tKZbl5ZJftfu8qyie9QL5fqoZxlpCRVUpFkvXd69w97N9JBVvkO3GbfCfWULbP5Mhi6oszmZlZbbkOc3IepvWrMVWkMunhV+h33ju8vNpR8zB1Jem1gWqgNHBX9cheJ/bqyZnH+Nue4c4/ymsuP8RUmbmDb/5MJt8E7jWU75kqmDvufR6Ze+B5O7au4KWP17DNUUn5ku+58JX1lNUw3IHSnuM62DDrJ974Pesvw/3t5Cxk+a+rWZHrqrn8cCWlDlJaWhrBwcHY7XYrRx2MkJAQcnJycJjm8JU6osw5vaZUzp8vPc+Qd5Jxut+X8fWj/0fb2+fu+nG84PtJ9H5wGTlZ1nev+/vhQEm+e9+W79558t27R758J86W78Q/5Dtxj/y9017jV+az7Jd1rCrce7jDlyoPaf0OLZWv+oOnV7Xi7Q8v4do25vK/5uHqRlKqYbI/LKzXStVd2d/Jd38e+LayMvZSWcai6X+S2v0khjUvZ9WfOyi05/D1p/OZnR5Apzah+FuD4sjkt18y8G8eTrCtgk0L1rMzKIo4fxvFWzcwR4Zv6dzCu795cVyzDD75agMpofF0ivaRgLaAZbPm8/7XK/ljOzRtG4V9y2r5ovyJ2fkhBHr70KpZML7WrFx5O/l88m98siAT76YJtIwJIDI2hq4R+cz65GdenFtMXIAXAQlBpCxMpCAuikhvKNy0nt+zg2kZ6UXGmuV8OHURXy/JgPjGtPRK5dvq4zaNpXlkIPHNGtMiQoKa8hx+m/4H43/YwLrSEDq0MMtTsv9tYslbv4xxn6xgpdOHnHmbsJ/al5OinOxYuIh3Pl/GnC3lxLaKJdq9ghUkzpvPW5+vZHFeAO1bhRJgc5GzdilvTVnMLzu8aNU+kpD9/XxYtgpCu0t0oV0Iqf3LyspyB6AmeFeHxmy3du3aue/AK3XYladB+hQIPM7K2JsXsa6dPPtNOaPObEFYxVbGvbqYVTuh8znd6exXwa8TZrKp5xAui93Oe7/ZrO/e9fLd20i+e2W/dX/3zpPv3lXy3VtZ7bv3Z+u717vad6+NoJCq70SbfCcts76TbHt8JxVs3Gv8Jg5+/2wt9h5RbP5mIT9nmO/JEPf3ZOnODXw4eR5fry4kvGUsjeR6oUrBxnXMyQyklVwj2HCxY8lq1tsj8d22Qr67F8t3d7p8d8fTMtQLV/oG3v3dzugz40maZ77zI/f6zpfv8LIsfp72Gx/8vJ3skFg6xJjpVlch38kLq30nxxBdkcp3n//JpK3etIsMJqFtBDI72W7Z/DFrJxVNZT52B1sXrmGTbzQJQbX8UaOy9bI/NYfwE60MpRoGveOu6pmafpmtSob8daQx5en3GPrA7+yQL9cFL73FbbNLPGUmufL46rnPeG+LE0rW8dQd73DnN3nydVvKj+Mm89ZaUz1cvho3/Mb9X+QR7J3IA9dNZXphJY4Ny/h4pZOWHeNwzp7IBe8lUVpUSE6ZjJ2fT1pumUynanmK+OKxDxhfnEDf5g62JZXhSFzEPa8sY2d5GVn5FTjLi0nLLKKoIo2Pn55pVU2XL9dvv/r/9s4CMIprC8P/7kaJECEEggRCcHcv7i5FWhyKU6SFlkLRluItXlpoedAWK67F3SmSQALEQ4wQ1012974zuxPYhMVaoAHO1x525vrcuTPn/mPBlL9iaTEMO3YHQ1u4EMpqb2LohCPwUufIq9Pg3t6dmH44Xv+I+8Yvl2H8eR3cC5vRtq9Ar43R0D6vT8h0YWfRb9Rh3LG1QsSf+/CTv47CtQjfswEt5/hCV8gZljf2os340wjQGsK7rIqGe+UCSN/9P3RfFwEkXsenn59HSpni8MyIQVDa4/KfbgzzYph6HJzt+ZbVdwzzWjE+recwmxplUTv4Lo6Rm9IG3cPlfA3xaalQHLmaSc42DMdu5kWz+vZQUtrMu2cwdVsibFXB5Hu3YXcSucK7N/DbTZ3se/8g3xtOvjcFcemy743LwOM327S4t2cXph9KABJuGHxSafJJ6lgEpWal0UFjKr8mHD9+fxER1kryk6sx/kg6dJFXMGjkQfi7FUP59CvoN+Y4fKQHWOT6FCFXMGrOJYRK7lvtj4VTj+J0cgR27AqRfbcX+e6juEWbmpUHmQ/w29z92BUlPdWmReD+3ZhykHy+Np58+E/4NtgJtT0z8fukNfjBT0qTlVdHvvc38sl3oHOTffK4MwigeUFsAs0LMtPx4GEa0rPSwwxhBzei/5r7SPE5ikGUL9mKpMGj8nKxMcx7CAt35t1Bmng+yx6loV+FPXpM7I2vPmqKKW3t4OUd/TideWG0r52KI6dikO59Fz75XBF+xgcxqQE4eNMV7epb69OZudfFim9aYuSgVujpFIaroRqYlamPhaNroFZhZ9Sv7Iz7AdGwq1wN7YpbokTDxhjftgjssuohB5uRkYk0jQXKftAAfapayuF0YNq7o2cjV9gVKYexA6qheh5D+KM2Zi2rCmHoF23wUSVnFK9WDMUioxBgkyOvzeP0usjr+OVmCXwzozkGdm2K5WNLwXvvdYRIk4xn9QlNHB6c/Bs3q7fEwn4NMG3uhxhUWKGfRGz7MxgNx/XEpK618dm0tmh69wp2hMZjx7YAeDQrgyI2dqjzgRvun/Ch9Bqo1ZnItHZF2941UU/ftmcYw7wkOUUp2/ONYV4/0jh7htmURKuyYTh6OQ2RFwMhqldCr3r2OH8+GKmhd3HOguILSneBZd/7LfnewbLvvS/73jEmfK+H7Hvbke/NVqcE/epkn5SHfNJH5JNss+IVcHwiP6FyweDp5Cc/lv3krQeIPHwe54pUQssClnCtUhYVI2/hkNH3X2zrVkOziJvYEaaF+to1HHOtjO7uhTH0y+y+2096r924bY9+Hy/rom/g12v50KmBA+ydi6FNqTjsOxOvj9Obzsgnd5N98j3yycmF0aNJQdgXLo1RfcqhhEpOr7RD989bosDOP9D+62soNbY1mjzqg9xsDPN+wsKdeT9RmMNa/yibAtaWZqRLpbvHWZijTlNPhJ+7jbPnQ1H4oxaoF+qLvy7dxkW3cmjtZDhsFJZUhr4I+iXNrc0EMnxPoEP3VZj4x1Xs9E6Q39d7GjboOfVjdIk+hFadlmL6BelS/9NRKEyUlRGGpcMWoO2809h0JAQR5PifVaMuLglxdvYoYG5Yt8hnB+fUdCRImZ7ZJ0BsXDryUnr9w7RKC1hZUFqRggeJ1ijoIr9XbE5lO6iRmJSM6AQtwr28sPPITewJsEe3tkUBh2pY+l1lRK5egSr99uF4QvY6GIZhmHcVydE8xZR50LK+C66cu4OjV5NQs7YrPOqXhM0VX5w/54/UWmVRykxKK/leM/K9tKygX73vFbLvXZnD9xrSP1GXcbhDVfJJlYx80mPBnS1dlun9pD5Q9pMaxMSlIuNBMHYfuYGdx6JQsGVV1LQ1XGTQm3UJ9KqfgN2Ho3D6Lz8Ua10ZRTT3TfhuKb2EIZ/B52eZBAn3+CTEZibg8jGq64gX7rhUQc+K1AlZ6XRJsk+W5im0bm5n8MnJkq/NKiu7KV1Lo53HQ5yNLICWla1NpsmdxjDvHyzcmXcMUyf3LJN43rLBrKqWR4OQy5hx2gwN65dGqzL3sWLVHeRrWBYFpGf19BjnkdDi3tGrCP2gOzbN7ozJjZwMIpfizcwV0GQaPTunN5ogOJXAmNljcHa4FdZtvUNhEnK8mRJKmhRkSssqC9hapiBS+pqtNg5XfQ0TE23wTWyMKIdl3/fComHlUExfYY68epOQHLQTCsWE4VqsNDnRIurWfSR4FERxeUL0qG49WcuSKVCgoB1i/CMQq6PJQ0w4fB/SREBhj+KuSbhxO0n/CoAuJgTXk1xR0d0RJdzMULBec8z/sjMWks3pWZwmFQIuNT7A6vXj8ZXdRay5kLNPchrDvDim7ia/tGnTEBedoP+wo8n4f2RapMVFI0FtKu4lTfsAlzcuwBejBmPAoJH48vsd8Iqns4GptC9oDPNmyHl+NzbyMQ1Lw/XyMfzsXxCNyqtgVrw0Psi4jW8PxKNeAzdYPEorYbws+d4rsu/tJPteQ7xp35uVj34f+aRxJn3Sk/kljJcVKFTEEZYupfDlJIOvW/BZPdSzy0ojmRnqty2Lh3/txfIr+dC9mS2E3neXJd/dk3x3WfLdxukJlaVJn2/mmg/uFvZoPrSjvq6FX7TH0GrSlQQ5rzJvDp8cSj45PyoWzpruG9cjmRbRx/ZiaWYL/NwqHLNW3EWSlC8hEpf9kkykzy3GMO8nLNyZdwg6mUuTUJNGflBFEwFJ2AoFlAoFVNLVbIpTKg3r2dJbe6JDlRhcFR5o6mKFxg0K4I6vNdo0ygulFK9SQKEkcaxPT6tSGRRWrKYnzA7vxKAv12Hk8VQ4mknlKlGxckH8vfpndJ57FeFZf+YlMxwLRy5G+wnr8PH6WDRtWixbuRYli6HCrUPoPGIHNkc7oV0za2z6YgXaDdyIgxo7SDe8VW4l0NjsBiZ+9Rt6z/BGrL0Sqpx5I7WQmkHFQulUBZN6pGFO/+XoMmIZWv1ugS+HV0DeF+gTp6YN0SvyAFoOWY3mE68jyVFF6ezw4ZC6SPxxOZqN/AlNBp2GzdAW6GibB12H1EPS6pVo//nv6DtqObqtCYHmzlF07vUjPprwPywNK4mOlalRRnWYNIZ5CUwJ0xe19JAjWDK8M1p1nIFDqabTvLSlh+DIkuHo3KojZhxKNZ3mZSzFG+e9zFC1Qz8M/LA2zM4vxqdTtyNUYyLtCxrDvBGkofYMUxUsg+ZWIfAuUhINpRu/5kXQpkYyzoa6o01Fct5SOpVS9pFSHvJZet+rJN9bknzvLvK9/5N9r+RbVLLvXUO+92/yvY/rMvhEEuV3jpFPWk0+ab3sk1SP0jyZn+rV+0lDvMFPKuHUohmGpRxBq6HrMejztWg++hikV/MflwNYVK6GDqm3cL5EVXRwIj/t5km++yb57t/Jd98i360i301ps7ZPmU/2+SvJ52+SfT5VnLcSJvVMx9xBP6HP5A3o2n8tFnrRhmXVpcjyySvIJ/8s++SW5JMNZZtJbc5KK1myH2Yvf4ien39Afrodap/ZrS8v7fgetJrn9ThdbjOGeU9RkNPmQ4B5+/EbByQGATZN5ID/joyEWISk5kHxglZ4/IepNIgOjkacTT6Ukr4+n0VGCgKCk6DMnw/F8hruzxujjo3GvQQreBaXvlyrRdz9h0jK64Kixp9iz0hFcIQaToUdYfe4whx5s5MeEw2/OBUKFXOiCY4c+CJoUhEUlII8RVyQX3o6Lwt1EvyCU2Du6gL3vEaNyEiGf1AiMvM6oaSroT8y4h7iXowCbkWd4Zj1ef2nkbgVKDwQKDhYvyqdra5dA6rxR+aZHPj7++POnTtwcXGRQ16OpEvLMGrmSeSr7IRbp+0w5q9FaJ9HjjSF7iFuHvGCeZ1GKKv/PLMJki5h2aiZOJmvMpxunYbdmL+w6JmFvjzp5+ag+xcRGLhzCbo5P6UdzyEwMBAdO3aElVXOMwXDvDyrVwOZJFw/+QSwlPxE8k3AqyPgNN6Q4DXxUr7XiGf7pOfnN0DpQqIRqbFGMXeHbL74qTzFdz/mKT6fUMdSm6O1cCzkgkK2Jo77p/nkFyIFf37xEw60GIK1zfVv9uc+kvYBLo0A9ylyAMO8H/wzL88wzFOxIJHqmW3iIGEGF/eCTzp+Cxt4lCxgUrRLWDq5oMIj4a2CY2HXJxw4LPLA3f1Jx589b3asnCnO8yVFu4RZHhTzzCHaJSzt4FmqwJMTBAtblCjlhjKyaNcHOeZDec8XEO1GSIJ9K2n4ypWBzz6TAxnmFaKwrYJhKzdgbteSkG72PRdNAA6sWosT95/xnQaFLaoMW4kNc7ui5HMK1WSkIy0tzcjSkZ4h3SJ8NiprK1hKd+iku4AMkwsIDwfGjAE8PIClS4H09KzBmXW79PWYRV5H8r2W5GuMw1XkewuQ75WcnXH4Y7NwdCafRP7QwlT88/MbjNIVLYCKHnnJF5uKN2EW1uS7JZFvIk5vSvL5+cnny7f4jczSyRkVSucn0f5knN4sbcknu5JPluYLJuKfZalRiKvYFnObSrfpTcTnCmOY9xO+4868G0h33BMCc8Udd+bVIRL/xJ/XZ2HWsqbw9pYDCWkyyDDGREdHo0qVqyhc2EkO+WdkXFmInhMiMeTgQrR71s3xjMuY12sJ7L9dhxFln3MFLOMKFvacgMghB7HQVKHq05jd5QvsjzN2xwooC/XAio3jUMXEjT5dWgzuB93C4VXz8KfFMPwyvyMK/sNL8ceOJZC4agwzM0NF0qwgy4zXjZdf9brx8qteN15+3evGy6963Xj5eevSU9VZ688jZ9qXyWuKGzfkBZkaVVNxeG4dOBQdJIcwzL8keT/fcWfeS1i4M+8GeuEewML9XSPpTxy4Ow0zl7XCxYtyGLF2rbzAMDIPHjxAqVJXUajQvxTuVyXhHoUhBxaYEO5aRB5eju8PhUKrS0TA3wEwK1sZRfMoYVayMyZ/Uh/6G1w5ybiqF+5RQw5gwTOvBrwombi1sh9G/JUXrdp1QY+PWqGkdHPsH3Lx4kO4uLSAhYWFXrRlCbes5ZddN15+2XXj5ZddN15+2XXj5ZddN15+2XXj5eetGy8/a/2/ZuZMYMYMoGBBYPJkYOhHXrC82wFwHCunYJh/iV64N2bhzrx3sHBn3g0eCXc6kTPvDknbgMKD9O+4HzhgmBBaWwPHj8vxDCMjvePu6+sLZ2dnOeSfkXF1EXp9FonB+00JdyDF7zSO3YqFThuKw2uOwLprfzRwIeHuWgUt6rjD5BsgJNwX9foMkYP3P0W4pyLiXiBi1MbuWAFFnvzw9HBBzjdTDMJ9AD6P+gQ7ZzY2Ef9yhISE8DvuzCvjp5+AtDRg2DDQmKKArHfcHT81JGCYf0syTQhYuDPvIfyOO/MOIU162d4te0ybNsCFC8DKlXIAw/wH2Hg2RIdOndCpfW0UzWOPEvU7oBOtt3uaaH8RMrzx53czMXOmsc3AzEW74Sd9nfoJlHAoVhm1y+R/55x43APqDnmZeTsZOhQYO1YW7dkwdY6XLSUKp65GI0Va1kRhw/QfUe+j/+H728/7k6GSZSD2YQrUxmGaZPhcuY095+4jPMMo/IVNg5iAABw4fgfXH+T4RPy/sRdulxbJD2MQGPoQAbIFPkgFdCm4tvcvjPpiA/rOOoIdgWoTed8XY5j3DxbuzDuGqZO7sWUiITaHg3+GZSQlIe4fOf1cYNpY/Ln0MPbFGP0NnH9o2oQHOHfGByfvJdF0RgrTIt73Gr79dhP6Tt6B+cejkZ4jz6uz7JQtKy8wTA6kB8j+sWkzkJ6WivQMaYQLaNJTkaamZVNpZVPo/zMdZzAtMtLTkJqeAQ0NZaFJR2qampZzpDOvidFrN2PLli3ZbPPyQShnliOt3gBbz7poUDovdE/EvbzlFjTeQIviwKwrckAu59o30H9kU/ozo+b0a18I+Gg5kCzHv0nUR4FK1YBTufqqR9Y5/UnTBN3Gsi13Eaolv+t9EQvvemDNut4Y6SlNU03nybKYA5tRueVSjDmVZgjThGHBmF8wccdt7Fq7HtUHHcNN6QDMke/ppsGNNb+iw4JL2HPoCDp3XoVvvV+BeH+ZdumScXjdLoyevV1vo774CdX6HqTwBPjFOaB9r/ro5RaECZ/+hXNv6xzlXxnDvJ+wcGfeIehkLk1Cn2K6uCAsn7QE7s234M9U02kemTYZF377AzWazsHgg2rTaV7G1EGY9/khHJcehTUV/zpMl4TrJ+/COyl7eMa1Y/h4+T2ojcKeZZrbx9Fp6C6s/utvfD1sEVqsCUOG0OG+fwIK1q+FES3tcfqb/2HGNZrYmMj/70zetbkcjRfwgSNN3uUJvGMRoMcCIPYZHxx/rdCQHVcJmHRKXmeeS+KBr9C6aTO0mrATkeqzmNuuGZr3+gFXniaELKpj1Nql6F/mGR+mSzyAr1o3RbNWE7AzUo2zc9uhWfNe+OGphb4oGbiyYRZmfL8PgdINyXcE0iRIou2JS6QV+o2Mpl/qquC7dCwZdxnFhflTvJFClvJK6/FhlD+rT+g35A4QkUNJp0QBPr5ATLocQOhSAD+fJ9Nq4oA7fiTGTXzgPyKIyvIEDgZSG+8Bq1oAW78ii5ETvIL6M2Kpftr+5KxzyVP6xbIusGwJUJvOP1Kbo6lsKe9daqNx16VEAEFS+yg+9IEh7M2Q89ye3cyKlMSQTh4omhaBg8fuIyojDqcOheCB9EfHpTSaWJz56x7806X1TARc8sbFB7RTNA+xfmscPh7rgYt/XNMLf6hcMOr7Edj7TResWdIS9fzv4ORD6W+dy2XJlnHjOIb8HEz+LHs4hBJl+/TF6ZUfYuWc/phd7QF2nXoIbVgAtl14iHQpjfohTh4NRoRUX7a8mbj08xbMu27CH75gu/SmsEWXz/pj3+rB2L96AL6pbYXCTeikrnLFh31qoE0Vd7TrWw8t08NwNfYpZbzrxjDvISzcmXcM6WRuytKx5+eTCKlXCQ30L4Rmj8+4eQJD15IDl9eTjx/HgoiS6FlN+spy9rR6S4rA0WsPEXLtKhb9eBJ/3kl9FKeOCMD6Xw5h+urz2B8ozczSceucNw6cu4Mde/7G4YCcj7ZlIOjiRcxddhhLDoUhTieHUx071h/G7N994BsYiOP+6TQ5Dcfhy1l3t9Phc+EefFJoWUsi/cg5zFn2F+b+6Ydg/RX4LOTyJKNZ26Gjvjh82hu/770DX+kCBk2QTu86gRnLjuLHkw+QbJyezKxEXWz+bRD+N6sXdn/qjptHfBGkVaJC24YY1Mgd9RrXx4i66bjiLc04s+f99/Z2oA0HAmniPWIvTYppQr7+E+D0FGDCbjkB8TQBEBdCE3aaTGcF0/wUEVSWJp7CKS5Lg+gxIQTiIvVzcMQGU92UVw+N8RHLyGrT8lMm+hKSWAigib00Ih+EGsp52zF1R/lFzK7tfBw7exZnjez0tgmobm46vRAKWNnZwcJknGx2bTH/WPYyz57ehgnVzU2nf2GzRL2Ry7By1ofwVJmKfznLjcT/DpSuAbRsBLQlQVyUNMseEpxJ54HWJUigdgRqutPyPEP6bcOBynWAqmUBd8qTcJbyFgcadgOq0W//DXQo0EH2+wCgWFWgb3egeDFg8U1KewyoWwEYMw1oWhLos95wPJ6dQ2lovVs7+qX6N9DxmxOFGeBQEHArDEh/0EChAixoZvWv6yehfnw64FEa6E7b6l4GWElpn9Yv6QepnT2Bw3QQS3XUaAY0agy0qAxUGkkNpbr/6A8UpP5p3xRo1wYo24vE+xu9uChVZto0wdcxZZU3wjPUSEzKhDYzA7EJaXTaktNQx0Yf34H+v95Hyp2TGDTvHlLy0Lnr5jn8jooY2qsOOsdcws8+0p1xJfLo/bwagafv4p6bO2o5SuvZ6xTxD3E9OJmWsodLZmGpgkpa1qUiNkmJQm55oLBMwp5Zm7DINx03123BZxfSYat8Mm9MaDj84qURlDPOVLt0CN2/A60G/oimAwzWbMhObH4gnfnlfIm3sXy/JQb0LPI4jHom8uodXLVyRWUT2/buG8O8n7BwZ94hcoo+Y7NAp4l9ML+lE6z0X93NHi858L+DUsgdGNZtm7XFts8rwMNSSpw9rWTSJOPzCb9i2NY4WKtC8fWoPdhNAlr34BoGDtmDozoHFLcIwddD/8Dq4Ewkx6ciTZeJ+JgkxKZJTierLC3C921Fl9UxcK+UH+l7NqP7+ijyS7FYO3k95gdZIV/CVQwZvB5fHIqDJuhvTFxxy3CVnxTelh8O4s9wDTT3vPGblxbFy+aH9tg2fPRrJOk1qXyJrLqofRo1YhJoUpSRhqiYVKRoE7DxqzUYf17AvbAKl5auRa/ND6lVj/PAwhw2ZtKyFnFxqVDls0c+o787mxEdiCM+FqhUWvro1uPwV2NvETRUrGkCVcgD6PAlTcw9gX3bDWLYpABIAOa0BEo2pEl0NZpc06Taj+Zqm4YAtVoBTT4AmlHa8n1JXNMc0KQQIHE/gCb2zaicxm1JuBQFRu6hsqnS2ZRu9uGnT/SD/qCJOwmOJu0pL7WrAU3ofyLx/rZjSpi+i2aRvyTKF7WXvjBrMv5lLDdCpyio6VTYgsb5jX1AmSBg/xVgzWTgdhMK8yLbBuT525A+JQWQbjxuiASiadz/MgXwaU5pvIFztLyN8h1OBLyigeUXgUun6Xgk0b39L+DOcUpHy63pGNxCx0UzOo50AcAUOm6b/wJ436bl/MDkeYaLXMZofSi9M7WDTn+dqaxJlP5D+39fv5byTVwAdNlCeaj+BXR8TvkaCKPtfKJfrlF7U4FUikulc0gaHf9RNLvbQOH7PqNjndJlXKXzzSbg4620PbTcWgVkUh9L127fHMbn9pwmY18YHzZxpZ8SGPVRaZTI8jVKG3Qa3xSFdm9H++k3UXpMMzS1ScfhHX7w7FQZxSxcMairLfZspx1H6VPOHESzHsvR6JsguLcogWJ6H2Ywjc95DJvwGz5a64/Ayyfx8bjfMXRj2KP4x6ZF1PEj+DGhGsY3zwOlc1nMGWGPDdN+xdC/XDBzZAnYPUqrwfVN29Fz3EbMvxiLE2s34cMJ27Aqxzv6T7ZLgSJNmuGXOR9iXZZ92xTt82XNPbQI3HMeJ8vVRL+icpguCT8Pn4e2f1pi4qIW+MDk359/H4xh3j9YuDPvGKZO7k83jc+FJx34JmMHLpE9T1a40qUS5s9qgpEDm6CncySuhmYg7NAVXK7eAquGVMeAgR0xq04kNh5LR402ZVDGxgmt+zZAz/LSJ6zkcsgB79geDI+mJVHE1hZ1PiiA+yfvQhfji62+7vhqYj2MGPkhFre3p4PVUK+Bx+2Qfs3K1MLCUZVRq5AD6ldyxP3Ah7Jwz27KvEXQs5EL7IqUwtj+lVA12Qu/eBfDN9M/wMAuDbH80xLw3ncLIdKFgRx5dTE++ObPdAzoXw5O+jAtHmz9FR4jrsLxk48wuybNBHPkeTX2FkKT8EKuQNIDEs5PEQA+tD6HJv2/3CAhcg7ITyJkHgmOdGnSTRPqHy7RhP4ICQKaaH9PE3tTQuCvJEpPSkJJgvwalfNZGZqo76f6dSRkaCIvmUkBRGWvpjZpPqY2UXm/twYiM2kSLz04wjC5BIUDjdfC0rkWcCTNkknHxj0avyWq0jrNXpwakzil4ygLq3JAVRLQlnQquhcIJJ4AWtUGeq0HingANpZAQ1pf2xv4oBuJZzo2pOOtyjg63trQcTAaqNkVOEDHaSodt9J3v07MAGrXA9bTsexRUK7ICBUJ6qPkMtbRsaSOBwqUBCxIq/3r+u8BkgStUYP+oW2tWY3SUsB9OiU+0S/Gz8LLOHgChakfXCiNgo5tnXRBg8qpXJki6fxUg/pQOmO/WXKe259mWWQPV+YrjlbFYnAu0hUtK1tTmAXazxqDTR1tqIsUcO/VD9e+LqFPa9OgJY5uGYugvZ1RfN8mfHaEOlsux8y9LMYPa4LJbd1QsEwlfDm8MSZIV1/k+CxL8T6NPj8kYth3zfGBjRSmQIFaJVEqNAT3PT1R18E4vRIlm9bDlOGN0KucHaq0bYSpw+qjUzFpmv043ZPtSkXMLW/8tPXiY9vijWuJ0h17ypMRih+3JKBj73JwkV4bkMvRwg5tBzZGz5JG84n3yhjm/YSFO/MOYerkntOyMKybuZd50oE3NXbgElnL2U1hZQZrBS0r6NeSHKlGh4exqcjrYkvTCSmNEgXy5UFychqtSesSj/PrTZeC6AQtwknR7Tx6C3sCbdGtTSGIhBQk2Nkiv/5uA6h8lf4jWBLSHbbHZUgIZNw5iw491mHiphvYeSuRnHrWXX0J4/TZw3RxyYiztUMBc8O6RT5bOKemIyFbHWSpoVg06S+E9+iOWTWMJgok8As0rIfJrfLDxjj9K7O3FJq4h9FEOY8TiYinCIBAmpirE4EZrYB6vYAHRYCCNobsDhWA8lYkROi3AoUFURkmhYCUmCbuniTYVXQ2d3GkSbz0pGgOnpjoU3sioikfTeKlMgqTOHB787P4V46pu8lszzcJRW74A+A5oSZlm6TQGC1HwtjrLxK1JFaDNgKVystxhDkdM/phTMK0ZHE6jpoCBy8C5/YCg0jk258DRs8BGvwInNpKIlZ6H5yOF6//AceLkdFxto8E+O41gH9RoDgJ7aYzpb9zD+xdDDSmuk0eJlRvj++BgXQwTR4O3KKgf10/Hd/0P65cpn/odH7pKlVDYryItJty9osJFDkSmJcDSlPjjx+mOpOoXaf0p6k3TM7zu7FJmArPMi0eHDuEpZrG+LXdA8xe5Y8kk+nINMmI1D+qTmLf3hHFHDKRlCILYcny2KFM6QKoWNAKVnZ5UbFMAZTJn/21OLX/RfSd4ov6M3pinP47FhSuS8KuJeeQObQbevsdw6yL6dny2OR3QaUyrihqZwaHgvlRubQL3PI8jjfdLh2snJxQ3jO/kTnBxULa0QIxR89hs101DK8mt0EypTU6jeuEwSWknWxU/ntnDPP+8bxzP8O8RUgnckmwPs+M0uWxJQfuSg7ckhy4PTlwV3LgkoM0kTabZTmOrHUJgUKF7PHgThiidRRGTv6qTzrKlHKgeaQC5gotMkjcP85DZmaLEqSYCtZtiPmTWmMh2ZweRfSPoxeIj4ZPIk2tqJxbAYb38FQ25rCKT0KkVgdt1H3ceCCVo8G9Y9cR2rA9Ns1sjckfSPVltU8iZ51KKLUaZNKy0tUBhWLDcU3/NScNom6FI8EjP4qbGaXPiMRPX2zDgeqdsLGfK81Rs+IA52YtsKprPqrPKP0rtaxteAugpqppQhwdBZxcAvzmTyK7E2BLs29TAsCTzJIE9cyDFE4T+sWDaLKfz1BU/E3gZiqQ7k2T+hTKX8K0EMgnqwjlc2fxTwqgCqVJYBwHwmjX36A2hLz5WfwrxcyMRr0sQpkXR+ozrVar77//GqU9YEdjM68dYGFLQpWEsC0NXCUdP7aSUfyQH4DOsUAtV6DmZKDJdENemzxklEeSO9L4HkQCuQyJ1HJlDBeodpDQL0hjvh7l+74DUJVMUZbGvx+QvyIQNJfSUroBG4HmA+n4KAXMmQIc7kflVCCRTWEZBbIfR/bUHjNqq71UaV7g62/o5wqw9e6/r78iLS+cRPl6GMqY6At8Nwtwozqf6BfabiWFSdtvQ7vRVlomk9pqSb+SqUj0z5sGXBtN7agJ3JbCKIF8CnlDZPklE0YNkS4e6Z8sUykkN2VYzrKUAHyzMhY9P6uNj4Y1R93zB7HwlnTSMkojmy45EFMHLkOD4b+h/ce/YpWqPiY2l+7QZ09nXqk2lvQtJF9oN7Z07Fh2EPsfJmLHN2tQpcsyGmtXkXzpOGaFVsS8jythyrgiOLLoNK4+8VV4BWp93A6fVpR6P3vc09pl4+GBHm0roXc7g/Vq44HSkuDXxeKPP0NQq1dVlDJ6PU36c3mrp/4PU05JL24Yhb9XxjDvJwpy2nwEMG8/fuOABJrZ5GkgB+REQ072V0w8nYiggHQ4eDihQZ9e2NBd/1UX6OIjcS7KDvVKS4/ckQA7dwjNF97F/bBoxNu5oET1urgyr7o+rYTG5yjqzrXE5l8awAOxWDhoCxK//ASzit7H7FHbsVG4opSIQVC+utg4twbKmsVjzeifsSDFDR16dsD8ttKj7wZSbpxC5yleMC9XEM5pCUit2hLbBjnhyPxfMfhsHlR21CA5OQEpzfrg4mAt5g7+Hb8oCqCIuQXyJCSiztzBGBd3BI2mhaBMVTukJSQgwPEDnJ+RF3N674f94oH4vEhWbbSt4VfQuc8ZJNFscPi0Rii8bSMG7BOoUEzgXpgdxi3shiElHk/ik/dvQuHJgchf3B55aIKqMCuI8cs7o5+rgNfyn9As+AOELCgv3XR69SSRQi3yCc00B8sBuRMNCe2G9UiAk8iWlIN1fhLto4CVNPEvQF1/7jug13wanoWAGBIdg/9HoqAWTaRpUj6f8haizostCPxvFxDcH5gcARSTHpmnX+v2wAFK70yCvUcvEvQkUKxiDF2yiyb2w0jUF94JLG0ErO8CzHYH7pEI6FOEJuzrgEVxJPxnADtvA41SgS7FAPfdwExzSkN1naL4Oo1JxFNXf+oFTKIJ/ttIeno6du3ahQIFCkD53CsZTBYpKSl6wdSqVSs55L8lOpyEsBuNXR0t0ziXHvWWiKdjwZyOEdKbJpG+Kh9N4s+VxOsjSNeFkjDOdAY85HJAx4B/KB1PdNw40GpsGuBE4lv6LkRAoKGOIlKEjP4jkVS3swe1hURyNqiscMrn5iSvEzGU1obK0J8PX0H9ajpfBD6kcwSlly5qSNczTfYLhUsfoSzgSkmSqR10HnKROksLRFB+V1of3ZeO9aVAv+LAio7ANKonaBOVayjq9ZFMJzmvDkBeOpe/KTRpCAlKQKKVPUoWziN9rzN38ErapUN8eDzSnZ1QINds2Bsm5QiQvwU5M3KyDPMewcKdeTeQhHv8s4T7myQTD4Jj8dDcHqXcrKWnNg1kpMAvOA12RfPBNaezpTj/4CRk2juiJEUa7oJoEHs/BtGWDsjYsg5DlZ1xfgTNysjxB4Wq4VjUAXmNbpdkJMQjJNUaxQtm5X866tgY3Eu0hGcxW/0EMz0mBn5xKhQq5gDHl7jxpkuMR1CGDTzySY8ZvgaS3w7h/iI8TQDE0yQ+IpMm9hQuBa9pCywoA/w9lSbiNJkvTiLmkQw1IQSSabKuoGX9HJ3qeEi7wpVWkiIpvABga2qiT8No/2jgcB0S/P2AsBVAjWnA6iCgx2ufxb8+Lly4gMjISDg6OurFKPNsNBoNYujYr1+/PtzcaKAx7y4k4Hd+BXz9BxBF5xW7UsDUn4CBRq8avDYeCfchcgDD/EtSjrJwZ95LWLgz7wZ+40mR3CbhXl8OeJfQwnvlWnyikIR7fjnsPSF5Hwn3YSTcB8kB7z67aG67hIT74c9f72OswTuBEV8DV6PIEZBYbz8VWDHQcPHgbUWn0+HUqVN6MWptbQ1z89d0QekdQK1WIzU1FVWrVkXJkiXlUIZ5DaTcAm60Bhze4B135t1GuuPu2g4o+oUcwDDvByzcmXeDwOnAw5OATRM54N1Cm5iIKIUt3Ozes0eAk0ldFv8KcPlQDmCYZyO5tIiICNy7d0//GDi7uCeRXiXIly8fSpcuDXvpRW2GeZ2oI4BLZQCn8TTr5CdhmFdA8h6g8FDAjYxh3iNYuDPvBg93A/doUpC3rxzAvPUIDRC3HKh+BbB+S1+8ZhiGYYDLlQCzioAlP93B/EtEBhBLc4Nat2k8FZYDGeb9gL/gw7wbOLejk3kakGn8N9jZ3mpTewO21Vi0MwzDvO0UmUDn9Ku0YOJcz8b2Mpb2N+DQmEU7817Cwp15N1CogKKTgZQDkP42usmTPdvbY5poIPU04D6V1hmGYZi3mvy9AXNbIPkQrZg457OxvYipfckuAR5zaJ1h3j/4UXnm3cJ/EhC1EbBpB5hl/f0d5q0iIwhI2Q94LgYK9JcDGYZhmLcaTSJwoymQqQasapGQ579kwLwg2iQS7NcMT+JVPgzYVZMjGOb9goU78+4RSoIv5DtA5UhWFFBK38nmD+Lkbug0pEulCZ0/7S8zoMR8wKW7HMcwDMO8E2iTgbCVZMsMN1FV0h+t54c/madBg0R6DVITRXOC3kDRSYB1CTmOYd4/WLgz7ya6TODhDiDhDJ3w4ymAh3nuRgWYOwPObQDH5nIYwzAM804idEDSZSAzmvx1hhzIMDlQKGl6kBewqwGY2cmBDPP+wsKdYRiGYRiGYRiGYXIx/HwSwzAMwzAMwzAMw+RiWLgzDMMwDMMwDMMwTC6GhTvDMAzDMAzDMAzD5GJYuDMMwzAMwzAMwzBMLoaFO8MwDPNukBGHB7Gv5wvVuuRoRKfIK4/IQNyDWPqXYRiGYRjm9cLCnWEYhnkH0MB7bgsUbzJLXjeB+ijGVaqGSadIasftxvhWw7AxVJc93CTp2DWiHKqM3SevG9B4z0WL4k0w64pGDnlR4rB7fCsM2xgKqv1fYlyWGkfHVUK1SafkOIZhGIZh3hVYuDMMwzDvADokJCRBkxinX9PERSI6HciIDcbdIPmuuGVdjFi2BCNqW0Ab5Y3zp0/jWlhmtnA9uhRE+fvANzCGJLs+ACnJKUhOyn7LXZeQgCRNIuIStVKFiDRUiOC7QTC+8a9LiYSfjx8ikmWZro2C9/nTOH0tDFQ7lROByGQN4sNCEaeh6PgIRGVVpY1HROTjejUJYfAPiEQyVaknW1mWqDtiGZaMqC1HGrb/zt0IZFX9rHYyDMMwDJN7YeHOMAzDvGPE4/cBpVGjWUs0atwWLSoXRaWRe4D0g5jdrSdmH/TBzxOX4Fq6H1Z174ZlXvsM4YfToQ38HQMqFEPV9n3RvUFxFGu+GDdf4IZ6/O8DULpGM7Rs1BhtW1RG0UojsSdGh4RjX6FuhZYYM20EmpYsiz7r/XDv54lYci0dfqu6o9uyG9g6vAIq16mBqmVLw73RDGp7WdT78gTUVG7cbwNQtv6XtJSE83Nbo4RHbXTsUBPuHq0x73w8ArKV5YV9s7uh5+zDgC4Wx6c3gUfpxujesRrcy3THypvpT20nwzAMwzC5GxbuDMMwzLuFLgNp6WpEKVtgw7Ub2PdZGQTt20/hqUhJTUGK2h2fLBiHqlaeGLltO8aUUBvCU3VQ+3khutFyXPS+hNMrusHs7Hb8FZx1e/tp6JCRlg51lBItNlzDjX2foUzQPuy/lga/4/tww6wsWvf/Dlv+mIJmRW1Q4pMFGFfVCp4jt2H7GA+kpaQgVtsMGyITEX1kGFLT1Eil9gipXPpVp6VBG7AGk7+5jSZrb8DL6wa2DcyDvy+HwiNbWSWgTqFtJNN4L8PEBWHossULXrcvYUHZE5jy9e8ISzHVTum+P8MwDMMwuRkW7gzDMMw7iAIOnmVQWKWEi4sjFJkvJk4tSzdE7eS16N3wA3RbfAlpunSkpws59tkoHDxRprAKShcXOCoykZmhQtVxq/FDm3T8Pro5anb9DgduPzDxMTsFrMpVR9U8ZrC0VOlDhDDUqdUa7oZrAu8hSFsCVas5Qql0QuOvN+CXoRX1cabQ3LuLAJRBjRq25OkLoma1YkgP8MN9KvbJdr7Y9jEMwzAM89/Bwp1hGIZ5J1Eon+HiKE4JHQljeV2PGqfmj8Yc3wb48cQpbB1dGRbQ4AU1v1RhDqeqgdf/FuF4sWk4HhCKfR9rsXvNdtzRUDpKqDOq3NzKEnrJrrSEtZUSCYF+iFQ/wLlL9yClMvcsh5LmXvhrbwAyNEHY2K8Syn96UMrwRFkSZqVKwQO+uHI5iSIjcOlqEKw8S6GIgiKfaCfDMAzDMLkd9t0MwzDMO4AS9vZ2UNnmpUUL2NpYwcbGVpK1sKRfyaC00YfZ2iihcquA8i5B+LVfbbRZEA4rfbglStWrB9db36NDtarosEWBsi5h8PPTUD4b2NrayHUZUNrbw05li7x25rCgOCspDXlVpSX9SmZrhsIVPRA0twXKVa6LARvVaD6wO8pauqFCeRcE/doPtdssQoSlNWxsbSFpasAOLfr1Q1nvqahaoj22KMuikIsLlO5D8MMPnRH7XS24utTE5IAmmD62MWhDjMpagHArQzvNyo/BwkmFsaNHBZQrUwMTfRvju1kfwc3eVDt5KsAwDMMwuR2FyHoej2EYhmHeZtTRCE+0h5uLpf7vrscoXOAiaW1tPCIemqOgqzWSIqOhKOAKkvHQJYXjXpgGrp6FoXr4ODw1yh+hameUKOoAxMcizc4JNqmRiFYUgKuU4BFqRIcnwt7NBZa6ZETHKOBiqBDxEQ9hXtAVeqmfHo2AwFhaL4EiDmZSiFQ5wu+FQePqicKKh4hW5Sz7JTAuS0VlGbVTHRuEwIcWKFTCDXbSLf1ntZNhGIZhmFwLC3eGYRiGYRiGYRiGycXw83EMwzAMwzAMwzAMk4th4c4wDMMwDMMwDMMwuRgW7gzDMAzDMAzDMAyTi2HhzjAMwzAMwzAMwzC5GBbuDMMwDMMwDMMwDJOLYeHOMAzDMAzDMAzDMLkYFu4MwzAMwzAMwzAMk4th4c4wDMMwDMMwDMMwuRgW7gzDMAzDMAzDMAyTi2HhzjAMwzAMwzAMwzC5GBbuDMMwDMMwDMMwDJOLYeHOMAzDMAzDMAzDMLkYFu4MwzAMwzAMwzAMk4th4c4wDMMwDMMwDMMwuRgW7gzDMAzDMAzDMAyTi2HhzjAMwzAMwzAMwzC5GBbuDMMwDMMwDMMwDJOLYeHOMAzDMAzDMAzDMLkYFu4MwzAMwzAMwzAMk4th4c4wDMMwDMMwDMMwuRgW7gzDMLkQddglnLgWBY28nivJiEZUnE5eedtRI+zSCVyLytU9/t+iS0LghasI/s+6SIck/zPYtWUL9l0OQ7oc+t+gQ2qUL84fu4IwrRzEMAzDMK8RFu4MwzBvCl08rm35Fh9XsoNSoUK+ym3xYY8e6EH2YbdOaFGjKGytWmF1dAp2jm+J5u2m4K//Vp2YRh2GU6s+RctyVTD28D9oYPpt7Jo/BLWdVVCo8qJ00274sGsHNKtVGdWb9cX0rbeQLCd9Y6TsxPiWzdFuyl+vRxDm2PfOlds8Zd/L6XMVGgQeXY4R9YuhZOMZOJYiB79R1PBeNQCjtqbALnorRjWojTEHTOwpdQCOr/0KXWuURqnS1dCyz3CMGjUCw4b0Qdem1VG2XHf8GPBvlbYa/kdWYkzramj01SEkyaEmUfvj8PJRaFG+NEqXaYD+8w7AP0OOYxiGYZiXQTAMwzBvEK0IX95MWMBStP8lXg6T0UaI3z/uLZaHaUVa0Blx8EKYUMtRuYdE4XvykDi04kNRyCyv6LE5RQ5/WZLFb11shMKiiVhK26tHGyUOj6ssrFQFRLf196mn3iRpIujMQXEh7HX2+Ivt+9yJVoQtbSIsLNuLnE1/Izz8TXRzrSPm+GhoJUncPnpIeMU9pa8yL4nJ5c2FWclx4pTx7sy8JxZ2Gyb2pMnr/wbNPTGvnrUo/fm55x+jadtFH2elsPpgkfCXmv9KeIPjJLcOSYZhmPcMvuPOMAzzRlHCytICClpSKHKcgpUF0Omrz9DYntK410er2m6wkKNyD3Yo/UELNGlYDq7SRvxjFLCwNNf/KrLKUeZHkxG9UVUZhf2bDiJODn4zWMG9fivUdnudPf5i+z53ooSZubS//hsyfK7iZqKK2iCt2aJs0xao4GC6r3RRl3A5QAfXRi1R03h3mhVBnX4dUeMV7GJdzAmc9HJEg8ZVn3uMaryv4Dq1vVLLNnBXyYH/BrUv1gyZjJ1v4LEUte8aDJm8880/AcMwDMM8AQt3hmGYXIEWd7dswg3P6ihvq0Xs7QNY/e06XDZ+rFYTgdO/zMesqRPxxcwV2HryJvxDwhCV8BC3dq3AnJkzsXi3H5WkQeDxtVg0eyZmLtiBO/I7ySlBp7Buzq84H+OFLbM/xZgfTsPwinoyfHZ+jymjP8HwLxdi6404/OM313XROLvyK8zYfFsOeDlESgpS6VdlptILXF38LexaMQczZy7Gbj8t9UEgjq9dhNm0rQt23DF8A0Adiet7VmL6T2eRHHIcq78ehaFjF+JAcFbnqRF5fQ9WTv8JZ5NDcHz11xg1dCwWHgjGo+7VxuL2gdX4dt1lQ9hzyzSgiTiNX+bPwtSJX2Dmiq04edMfIWFRSHrJ98BTTm7F0bxVad/rEHXxNyymfTdj5rdYvsML4b77sHLOTHyzeCOuxMh7RhcH7x0rsOiH7zH7iy+xcM9dfb9JaGJu4/Da2fjhQCTib+3AoolDMWT8EpyIpLzJPti7fDrGDP0U8/YFPfqGgjbOF3/99A1+vRiH27u+x+QRw/DZ/O249TzFRuXt/H4KRn8yHF8u3IobRt88SA88iJ++X4YfVy3F8h834Wz4M0ZVqj+O0H79buaX+Gzyd/jlWKC8PRp4bf4W3/x0CpGZ93FsxSzMmL0aJ6KeXlb8saN03DigYcsGsNKHJOPSqctIgSXqd2yLApo4BF49iSshj7YekddO4caDnDtNi4TASzi45zCuhmX1roG0s5RfVRuN6xlqeDpa+B85hjuiFJq2KAG9btelI/ruJVzwlY4zHeL9TmHfYS/EZtukZASe34vte07hdrAPfAKl1wJ0SLqzC9M6NMf4e3lRKCbG8FqHJgmhXmdwzjceOhoXPidPwSdeKkyNWL9LuHgn4dHxnBx6C9f9YqhV2VFH++D03t047iMf+7ok3Nk1DR2aj8e9vIUQE/NaXiBhGIZhXgb5zjvDMAzzhoj9uY2whIVovshbBAQEkPmL2+fWiUG1+4jNKRoRfGKZGFw9r1Dm7UHrciZtsNjQs5RoMu+2UGvjxZkvqgorlZOo3n2E+GZ3iBDpJ8SnJcxFoSH7Rbo+Q7o4OdZTmLv0EzvTtOLB5fXi03qOQmlZS3z0+WgxvHct4dl4jriuDhPbR3cX43cEiDRNjDg3ra6wy1tXfHPFUMrTyLw5XVQzN/GofPpBMbSQSljWnSsHPI0UsaWXg1BYNBXLwg3P4qYEHRVzWhcUZjYVxfhDsfowifQTn4oS5oXEkP1ym9JPirGe5sKl306RRv/dOzhXdHFXCfNyncSnE78Vq39dLPpXzCNsGi4Qvhoh0u4dFHO7uAuVeTnR6dOJ4tvVv4rF/SuKPDYNxQIpgSZYnFg2WFTPqxR5e2ymlj2/TAlt8AbRs1QTMe+2Wmjjz4gvqloJlVN10X3EN2J3iOnni03te9+/94kZrduJuVkF0767ubiZcDYrJAbsihfa2F1iWOtRYnfY4/jzX1cVDk2WiPtUjSZwqWjqUE5MPKumHRMgjq0cICqYm4lirceJGQvXij+3LRcfl7IQ+ZoNF1O//Eas3rJLrP+svnCwbSJ+8NcIbcxlsW50PeGsshIVuwwXIz6fLb79vKMolUclnJssFDfkZ8GjVrXM9qi8Nmy7GN19vNgRkCY0MefEtLp2Im/db4R+6CQdEWNqdhfrIqmB2hhxcHQ78Xm259aNiD0uvqpbVfT5w19QT4q4i/NEc1dnUXfaKSFVpU6MEWEbeghHi+pi2sUo8TAmnsaqIeuTJIkdffMLlV0HsTYiTaTEhYkbm8eKQfNuikwpWhsuLm39VnQsbCEqTb3yKOyXjo7CvuOv0poUIB6e/UH0bdNbzNp2Rfhd/1l8WKaqmHAwRo5XixOflhA21P/Bz3uMXHtfLG9mLVTuI8QR6hftg0ti3Zh6wlGVT3y0NVJcXzdJfPJRfeFm7iL678p6hj9ZnPyiuqg+arfwuX1ATGlYjNLScab2FXt+GCUaOlmIcr1miYU/HxUh8XfEkR8HiHLmDqLbBm+xdWwdUdDcXFSfdkicWtqTjhtH0WOTvMM098SChjbCfeQR+RxBwyVkn5jW5yPxxS8nxZ2AraJ/8bJiwok0qmqP+GFUQ+FkUU70mrVQ/HyUzjEMwzDMfwoLd4ZhmDeMQbyRsGoyUAwZMoRssOjbqYZwy9dTFuoa4ftdHWFhJNw1vnNEbcuiYoQ0+ye095eJplbWou2ah/p1kXlNTKtiYSTcM8XN6dWEhV64S+saEbCwoTC3qC/m+z1WPZIoLlNnijjhe0fcuXNH+J6ZJuqYq0Tx0cceTe5N8VThTqRHBojg+OcpGlm4qwqJut27iubVPYSTIwnrCYvFHt9kOY2BzGvTRBULI+GeeVNMr2YhC3eJeLG2naUwrz9fGDZNK8KWNRUWNp3F+kR9AhG/tp2wNH+87dow6j8LG9E5K4HGV3xXx0IW7hLPK5P20ZzawrKoQZBJ8fcp3sq6rcjaJaYwte8H9mouSjnXFXMeCXdC4ydWtXEWeaqMFnNG9hDTzxn3SbzYPbKqqD52P8lUQrpYUthKNPo+mFpBpO0VgwqYi7KTzsvvX2eKy19VEOYOH4qN8uaKB6tFK0sb0eU3fQlC479ANLDII9qtzWp8pvCZ30BYq9zEoL2GHsku3NNJvJYRdaacEL40bu7c8RVnptUR5qriYvSxdKG5NVvUdKgnZl8ztFtzb5fY+bcp4Z4prkytLPLU+kbcfrT5mcJ7dk2qq7qYcV0vrUXa9j4kImtn7yNTpB8VI4uphHmJ5mLAgL6id7cWorxLOTHxvHHd6eLICHdh1+FXkXV5SH1hsmgz5rB+Oe7EZFHDtaaYei6rswzfY7BuuVLorzHR+JtR3VpUmy5fDHgWMetFl7wqkb/vdsO+IlJ2DxRuTl3FD5uXiJUnHojMoO9FI6viYhT1mx79sWwlyn95Ub//knYtFEvlftD4zRf181QWU/9+XLN+39nWFyNmTBNrvOLEnaM7xLkwjVCf/VyUtm0qlklXd4jMG9NFdQtn0XurYbu0ETvEkLJlxMAdkYZxk3xczOjSUyy6IB1VGuE3v77IU3mqMKqKYRiG+Q/hR+UZhmH+E1So2G8Jfv75Z7I1WL/zGH782O3R+0vmZmbykgGRkQGNLhahwYn6dWW+0ijpYgal8kVfNFfAzNwMCrP8cCuY9aKtBl6HjuN+ZgQuH9iP/fv348BlR/ScvxDjm+WX07w8lq7FUTTvC7oXVWl8tOQnfNkwD1ITo5Hm3hItStvIkS+KGcxokxQWlrDQd4cSdrY2UGSmIDnV8JCwmSEBLA0JoLSzhY0iEynJqfJjxOaURr8g87wyBTIyNNDFhsKwS5TIV7okXMyUeP4uyb7vf9l4ELsn187+rrSqBD75YQbqB6/CopiuGFfXuE/yosOKv3Hlh2ZIuvQn1qw+gDspOqSnpVGrCAW1QaWAijbIsBcUhrYrLaH/rICEjQ3yqDIRH2t4jFqhVFIqFfLYWBviaftLdu+MGspoeN8IlsOM0Hjh0PH7yIy4jAM0bvbvP4DLjj0xf+F4SENHVaINOpX1xoxGNdB11h4EuXVEp6om3gbX+uPwkdtAoWIomjUsqe7SHduigs4Lx47el8NejIwbh3HyvhKVByzBml/X448/d2PO8O5ok61uc5Qp6wFtkB8C9E/Ha+F/IRVNBjcGkk9g+tDFiO06B1/UtdOnlv4iQEx8JrRaYXh9I+IkTvm6oUGT0tRSKSAKXieO4ejRo2THcOJm5ONH008extlkW9Rr3gi2+pAMXD12BimeVkjStMDgRi5Iu3gR3ra10aiGpT4FzEqhyQdFcHfV51h8PR22HT/DmMpSTTrEnDgJr/wN0KTc48Eaf/oM5U9Ecv5e6F/BAaWadkZdNyDkzDmElmyAD1ylUZCME6s34IZ5LTRpKI2leByYOg5bCo7EtA6uhnFi0xjTt2/ChNpWVFUMTpz0Qv4GTWBUFcMwDPMf8oIzK4ZhGOb1YoeWU75E86e8MmtWrg9GtnfE6VWLcSpWixTvc7ibvz9GdHSQU/wTtHgYHQuNXSX0+HQcxo17bGM6l4csI14/Ckc0++43zGyQiSNf9sKkwzGPhE/uxQzl+oxEe8fTWLX4FGK1KfA+dxf5+4/Ay+8SFUoO+QoDij1SrnpUblVQ3dMWSfu+x7JrajnUgNp/Oyb3HoQfwyqi99B2KGPz3KsFphFP72mVa0G4WChgbm5KcD9EdKwGdpV64FOjcTNu3Bh0Lk8jx7I6Ju/aj0XtzXF8VmdUrdkf//PJvg16RDKSUwBNQhwSjJpiVrAg8ikF1OqXebfa8D75XXiiaXNPw/vkJNJrDB6C+tkGsxLOhdxgHR4E6TV3Xdgu7FL1xAgSx/F7V+G3QE/0GNBYFtpE4mmcvQFUbNiQ2iStnsQ1m3poLH/lTnd/P+ZPGCtv/wR8tydY/naAGhePnEKMRQ00byYPCo0PjpwMAqyrokuPsrCgNBeOnYOmdnM0enRtJg8+mLoYA1wuYNagb3HhURek4eyJy7Cq3wS1Hm1PMk4dPY8U6/ro27es4UKChO4hjp/wgkudD1CaAjW3/8T6Uw+hqtwYTaSNiD+AddsjUaV9R6MLJkakncWJy1ao36TWmzsPMAzDMM+EhTvDMEwuwdIlP57yoWz9Hdj+SxZjWMVkHFo2D6v/ro7lx5ehrfPTT+NC6O+/PgMVChTIB+2VPdgdYvy5Kg38Dx6Et0F9vBmsKuOzdUvR1ckXK/oPwtq7z6pces1LXvwPUZXojyWLh6Fi8iEsm7caf1dfjuPL2uIZu+SpKPO6wNnMH7/O+hm++l2RgBNzVsJszjZM8LyJBaMX40aW7tVcx7xeA7C3+Fh83aU0bBQ6w532V4wu+gFidIVIdBeWQ4xQFUCBfFpc2bMb2YeOPw4e9IYu8ir+TqmDsb9fgfehb9E4eSPGfrUJT/yZejMPlClpA63XeZwzPEyiRxsbi0TkR8UqxeSQF0AXjiNHb0Ln2gBNqmRdbFDBzb2IXiB7r/8Fx+WP7Snz54dzWixiEu5g25Z0dPikLgn1DNy57o0kp5qoVylLAusQvu13HLbugs+GlSdhTEL7xAVoazVGffnhBGXRgdjwtxe8vCS7jr+myE9PZNzA4RNhUFZqhmYFDINCG3oUJ3wc0WbkYJSXqqA0x87EoErzZvqLArp4H9ymDlW6tMe8H/rD1Xs1Vh6UP4yXcQXHz6tRs0lDkvYy6os4fCoepXoNQpNHVxqI1DM4ecUctT6oAcuM29h8KAwWIgOeHzSGdH1IE3oXAck2KOIu323PQcaV4zivrokmDR/VxDAMw/zH/IPpBcMwDPPP0SEtLV0vtDKecTdRo9FAaLWPv/6ccgpTem9AvpGTMHbcOIwe3B7l5Cd59Sid4eyoQKyvFwIzJAFAguBqJLQZKUjNNCQROh1F6KB9dGfTDOU6dEC5jBOYOWAKNl8KRVJKGM7/NAEL/NxQ5lmPyKo1yDQloHVROL5oPL5cf1MOeBo6qNOpoSKT+sEQoir2MVavHY7SsXsx/qOpOBlvCFc6O8NREQtfr0CSVjrE3ziGq5FaZKSkUhsksrbpcWOk/pPCs9qnkzf6UQqK16d4tAG0rhHQUp8beH6ZKaemoPeGfBg5SbrbOhqD25eD8S55Eh3S1Rn6Eh/Xk0U8LiwcieXhRfTCKu7wTCzVDsUkEnRTlo5Gsb/nYvT3N0g2EinXceVWKpIfPkQKrSbfu4678dKj8qnQSI0W1Eap7UY7R6ff95rH+57ipOjsF3e0SE1Oe7QcsH037tYcieENpHuuOipDajP9SlnMyqFDh3LIODETA6ZsxqXQJKSEncdPExbAz60MDYOD+GmjD/WqBQo1nYjvR9eCIoP2Xlb9j3BE59H94Zl4AP/7M5RKl9Dh/pHjCK4+CqObGR5B0WkyoRU05jKN25sd3cPDOHwlA9Y1GkB62vsRumicX9IHgw5ZoZIsblVOTrAXIdi/cBfy9OgF6SEBSeQ7OzlAZW0DW/kBBl3UPkxfEYH+Py9FT0l8a27i1LlYVGxUH8l/rceBoJz78TGauwdx5B7gXqcBPPR3tXWIOXoM1/O2Qo82jvo02vuncSawFBrVS8SO30/jgdd6LNgs/WUI6pnmXdAsP43zDEOvaG4fxamICmhUKwx7993Wj4WMG0dwKqoMOner+vhuO5HhdRFXUyqjQd1UHF11EPb1bREQmB8NSYjv33wG8fnc4GqRgvshWY/1axFxfAN2+UpjXIPbR08hokIj1Arbi3235QM03Ru/TR6PhUcjDesMwzDMm0X/pjvDMAzzBogTN7YvEAOq2gkllCJv9UFiwebL4kG277iliYCTv4ixdR2EUlVUdPx2h7gRQwli94txlfIKpUKv+4RCaSasnTxEw6EbhI/+u1taEb7tE1HGxlw4FCkranedKf6Y2Uzk82gkBi84LK6eXSfGNXSmMguI5pPXiRP+WV+wThKXl3QVpezNhEKhEEobD9F62gHDR7hMohbB5/8US/qXF1YKM1Gi+wKx6cgtITVRT/phMcLdTORpuEAOMEGar9j/w3BRx0kpoLARFT+eI34/H2H4QBZt/99zGgoHpVI41RwkFh4MpE0LF9s+KSNszB1EkbK1RdeZf4iZzfIJj0aDxYKjfiLwyBzRobBKqAq2FjN2eYsovwNiWgtXoVIVFK1nHhQ+vkfEnA6FDeszdgnvKD9xYFoL4apSiYKtZ4qDt33EyV/GiroOSqEq2lF8u+PKc8v0T5d2yThRKa9SkMajfUJ9Z2YtnDwaiqEbfOSPwhlD+37bPNGvsh2lVwr7ko1E554fi759+4je3dqJhmVdhIVS+gJ4lPA/MF20KlxGDNoeJKRPsakDtoj+JWn/WJYS3ecfFSHqYLGht7uwVNqKwtVaicELfxPTG9sKc+dKoucPe8Thlf1EGXOlcGjwmfj9UpiIuLJRfN7Qkfa9u+gyb7/wifQVB+Z2Fu60/QVo+3d5xQht4CLR0MJCeDbrKwZPmC2+m9JPtOs+SxyTvgpPrbhP42diYxcqo5BoN3OLuCKFJ10WS7qWEvZmCho7SmHj0VpMOxCu34+ZN2aJRqWbizHLtokDe9eKz3v0EUuvPPkhQwNp4vaG4aJBuXqi36wV4scFY0XvXl+LvSHS1lPd538XM9vR/qOxUu2TlWI7bVPWcMsiM+CwWNi7LI1JhVDlryG6Dx4hRgwbLPp0aSFqFMsrzFRuYsCurI/N0ZAK+l40KdpafC9/PC8L7YP94vPaVaifdolDO9aI6Z9OEr9ef5xPpO0RAwtYiVIdPhdLjxq21RTxN7eKqa0KUZuVwqXJF+K3i9L4ThRbeuUT+XpuotFgQH1+kihrUVg0GbVcnKITQfLG3qJw2W5izrZjYt+SfqLphyvETfmbdYkbughbc0/Rfsof4qa+KzXC59vawrrcF+JCjgGXfni4KGruKMq2HipWXUoU6uvTRFVLV1Fn4CJxLEpqdaI4NbORcCtYRwycOl189dnn4ptN3vKHGRPFhi40njzbiyl/3JTDqLaAJaKJjZkoMuygHMIwDMO8SRTSPwYJzzAMw+RWtKF78O2qaLT+pC7MI6MRl5yC1OQY3N2/Gfe7bsXiNoZbjBlxwQhJtEcxd0cokpOQnscONi/ybJUmHiEBsbAqXAz58/y7h7G0cRF4aFkQrq/0KdsMxAWHING+GNwdFUhOSkceO5v/8LExLUL3fItV0a3xSV1zREbHITklFckxd7F/83103boY8i55TaQiKuABzGh/OVsAuqQwBCbmRfFCtv+oT3RBi9G49AwUWB+GtQ0fIMayCIpJBb8AmvgQBMRaoXCx/Hg0dHTSEw1m0CUEwz9KATfPosj7rCc49Ej7OBSpTsVQyM7Ui9evEE04AsOdULyoiZ2kS6G+DUaKoyc8TPRBUogPom1LwMPpxfrn2aQjOjwF9m7O+nfJMx5EIMHZGargu4hUFYanu8PjjxZqkxAenon8RZyy3V03TQrC7kTColgJuOifJshATEQCbAq6yH/bXkKH9Ogg+EUJuHpSOqOu0CaFIzwzP4o4Za8pJSoCGfkKwvE17x6GYRjmSVi4MwzD5HZ0IVjdvg72dffG7kFOcqCEDjF7FmNL4XEYUfX5U3nm1aELWY32dfahu/duZN8lMdizeAsKjxuBt2mXPBbukdjSk99rZhiGYZjcBgt3hmGY3I4uFP/rXhNDz7mjx6APUb+EE5Sp0Qj2vw9FtUH4sl/Vx1/AZt4IutD/oXvNoTjn3gODPqyPEk5KpEYHw/++AtUGfYl+Vd+uPaLxmok61eci3/IQHBzqIocyDMMwDJNbYOHOMAzzNqAOwemNG7DzQgASLAqgZLlqaNKpPWoV5D/W9F+hDjmNjRt24kJAAiwKlES5ak3QqX0tvG27RBd+Br+u/gOng1KgdCiJuq27oleb531oj2EYhmGYNwkLd4ZhGIZhGIZhGIbJxfx33/VhGIZhGIZhGIZhGOY5AP8HWPymEddPP68AAAAASUVORK5CYII=" - } - }, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Introduction\n", - "\n", - "The WizardLM paper proposes a new method, **Evol-Instruct**, to synthetically create a dataset with open-domain instructions of varying complexity using *gpt-3.5-turbo*. The resulting dataset, combined with the original, was used to fine-tune LLaMa, leading to the creation of WizardLM. This model surpasses ChatGPT in both human and automatic evaluations, demonstrating more than 90% of ChatGPT's capabilities in 17 out of 29 skills.\n", - "\n", - "In this tutorial, we will only focus on the *Evol-Instruct* approach to create a more complex dataset. From an *initial dataset* that will be the seed for the evolution process, the steps for each epoch (determined as M=4) are as follows:\n", - "\n", - "1. **Intruction Evolving**: Use *gpt-3.5-turbo* with predefined prompts to generate the evolved instructions. These prompts can be of two types: *in-depth evolving* (includes adding constraints, deepening, concretizing, increasing reasoning, and complicating the input) and *in-breadth evolving* (includes mutation). The complicating prompt is the only one not applied as it needs in-context examples. Then, only one of the remaining five is selected randomly to be applied to the input instruction. You can check the original code [here](https://github.com/nlpxucan/WizardLM/tree/main/Evol_Instruct).\n", - "2. **Elimination Evolving**\n", - " * The instruction evolving step may fail, so the new instructions are filtered according to the following criteria:\n", - " 1. The evolved instruction *does not provide any information* gain. Automatically evaluated with ChatGPT.\n", - " 2. The evolved instruction contains *\"sorry\" and is less than 80 words*.\n", - " 3. The evolved instruction only contains *punctuation and stop words*.\n", - " 4. The evolved instruction *copies words* from the evolving prompt.\n", - " * If the evolved instruction passes the previous criteria, it is added to the pool of new instructions and also will be used as input for the next iteration. If not, it is dropped and the original instruction is the one used for the next iteration.\n", - "\n", - "Once, the evolved instructions are generated, they use the same LLM to **generate the corresponding responses**. Finally, the resulting dataset is the combination of the original and the new instructions generated in each epoch.\n", - "\n", - "![image-2.png](attachment:image-2.png)\n", - "\n", - "On the other hand, the Deita paper proposes more strategies to select the best data for alignment. While using the *Evol-Instruct* approach, but without the breadth evolving step, what they called **Evol-Complexity**. They also applied the **Evol-quality** and **Data selection** strategies.\n", - "\n", - "* The **Evol-quality** is similar to Evol-Complexity, although it uses a different prompt, which is focused on improving the quality of the responses by enhancing helpfulness, augmenting relevance, enriching depth, fostering creativity, and supplying additional details, to generate new pairs.\n", - "* The **Data Selection** strategy filters the new instructions using embeddings and cosine similarity to the original instructions to select the best and most diverse ones.\n", - "\n", - "In the next sections, we will see how to use these approaches to build our dataset using `distilabel`." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Getting started" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Install dependencies\n", - "\n", - "Let’s start by installing the required dependencies to run *distilabel*. You can also install argilla for better visualization and curation of the results." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "%pip install -q -U \"distilabel[openai,argilla]\" --upgrade" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Then we can import the required libraries." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "import os\n", - "import string\n", - "import time\n", - "from dataclasses import dataclass\n", - "from typing import Dict, List\n", - "\n", - "import pandas as pd\n", - "from datasets import Dataset, load_dataset\n", - "\n", - "from distilabel.dataset import CustomDataset\n", - "from distilabel.llm import LLM, OpenAILLM\n", - "from distilabel.pipeline import Pipeline\n", - "from distilabel.tasks import EvolComplexityTask, Prompt, EvolQualityTask, TextGenerationTask" - ] - }, - { - "cell_type": "code", - "execution_count": 29, - "metadata": {}, - "outputs": [], - "source": [ - "# Set the OpenAI API Key\n", - "os.environ[\"OPENAI_API_KEY\"] = 'sk-...'" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Prepare the initial dataset\n", - "\n", - "The first step is to prepare the initial dataset that will be used for the evolution process. Following the same idea as shown in an example from the paper, we will use the well-known [alpaca](https://huggingface.co/datasets/tatsu-lab/alpaca) dataset available in HuggingFace. For the sake of this tutorial's example, we will use 5 samples.\n", - "\n", - "Good to mention that other datasets like the [distilabel-intel-orca-dpo-pairs](https://huggingface.co/datasets/argilla/distilabel-intel-orca-dpo-pairs), a \"distilabeled\" version of orca_dpo_pairs for preference tuning with 12.9K samples, were also applied as the seed dataset. However, the instructions were already too complex, so the evolution process generated a small amount of instructions that were of poor-quality or with hallucinations." - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": {}, - "outputs": [], - "source": [ - "# Load the dataset\n", - "hf_dataset = load_dataset(\"tatsu-lab/alpaca\", split=\"train\")\n", - "\n", - "# Get our initial dataset\n", - "initial_dataset = (\n", - " hf_dataset\n", - " .select_columns([\"instruction\", \"output\"])\n", - " .rename_column(\"instruction\", \"input\")\n", - " .rename_column(\"output\", \"response\")\n", - ")\n", - "\n", - "# Select a subset\n", - "initial_dataset = initial_dataset.shuffle(seed=5).select(range(5))" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "{'input': 'Generate a list of three ingredients for a chocolate cake.',\n", - " 'response': '- Flour\\n- Cocoa powder\\n- Sugar'}" - ] - }, - "execution_count": 24, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "initial_dataset[0]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## The `Evol-Complexity` approach\n", - "\n", - "For our case, we will need to set two different LLMs with their corresponding tasks: one for the instruction evolving and another for the elimination evolving step 1." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Instruction Evolving LLM\n", - "\n", - "The next step is to define the LLM that will be used to generate the evolved instructions. We will use *gpt-3.5-turbo* as the language model, and the task `EvolComplexityTask`, also we will set some parameters (Section 4.3 from WizardLM). Take into account that the `EvolComplexity` will perform the random selection of the evolving prompt and the filtering of the evolved instructions up the first step from the elimination evolving related to *equal prompts*." - ] - }, - { - "cell_type": "code", - "execution_count": 37, - "metadata": {}, - "outputs": [], - "source": [ - "# Define our LLM\n", - "complexity_llm = OpenAILLM(\n", - " task=EvolComplexityTask(),\n", - " api_key=os.getenv(\"OPENAI_API_KEY\"),\n", - " model= \"gpt-3.5-turbo\",\n", - " num_threads=4,\n", - " max_new_tokens=2048,\n", - " temperature=1,\n", - " frequency_penalty=0.0,\n", - " top_p=0.9,\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Elimination Evolving LLM\n", - "\n", - "As part of the elimination step, it was stated to ask ChatGPT if the original prompt and the evolved one from the current epoch are equal. In order to do so, we will need to define a LLM with the corresponding task. As the task does not exist, we will customize one based on `TextGenerationTask` from `distilabel` indicating how to generate the prompt and parse the output." - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [], - "source": [ - "# Indicate the prompt (Appendix G from WizardLM)\n", - "elimination_equal_prompt = \"\"\"Here are two Instructions, do you think they are equal to each other and meet the following requirements?:\n", - " 1. They have the same constraints and requirements.\n", - " 2. They have the same depth and breadth of the inquiry.\n", - " The First Prompt: {first_instruction}\n", - " The Second Prompt: {second_instruction}\n", - " Your Judgement (Just answer: Equal or Not Equal. No need to explain the reason):\"\"\"" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [], - "source": [ - "# Define our distilabel class\n", - "@dataclass\n", - "class EliminationEqualPrompts(TextGenerationTask):\n", - "\n", - " system_prompt: str = \"You are an AI judge in charge of determining the equality of two instructions. \"\n", - "\n", - " def generate_prompt(self, input: List[str]) -> Prompt:\n", - " return Prompt(\n", - " system_prompt=self.system_prompt,\n", - " formatted_prompt=elimination_equal_prompt.format(\n", - " first_instruction=input[0], second_instruction=input[1]\n", - " ),\n", - " )\n", - "\n", - " def parse_output(self, output: str) -> List[Dict[str, str]]:\n", - " \"\"\"Remove punctuation from the string and lowercase it.\"\"\"\n", - " return {\n", - " \"generations\": output.translate(\n", - " str.maketrans(\"\", \"\", string.punctuation)).lower()\n", - " }" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We will use this task in our LLM definition. Similarly to the paper, the parameters will be the same as the ones used in the previous section." - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [], - "source": [ - "# Define out second LLM\n", - "elimination_llm = OpenAILLM(\n", - " task=EliminationEqualPrompts(),\n", - " api_key=os.getenv(\"OPENAI_API_KEY\"),\n", - " model= \"gpt-3.5-turbo\",\n", - " num_threads=4,\n", - " max_new_tokens=2048,\n", - " temperature=1,\n", - " frequency_penalty=0.0,\n", - " top_p=0.9,\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## The `Evol-quality` approach\n", - "\n", - "Following the Deita paper idea, we will run the `Evol-quality` approach to generate new responses from those generated instructions in the previous section focusing on quality. Similarly, we will define the LLM and the `EvolQualityTask` to generate the new responses." - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [], - "source": [ - "# Define our LLM\n", - "quality_llm = OpenAILLM(\n", - " task=EvolQualityTask(),\n", - " api_key=os.getenv(\"OPENAI_API_KEY\"),\n", - " model= \"gpt-4-turbo-preview\",\n", - " num_threads=4,\n", - " max_new_tokens=2048,\n", - " temperature=1,\n", - " frequency_penalty=0.0,\n", - " top_p=0.9,\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Run the evolution process" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "To run the evolution process, we will create the `make_evol_instruct_dataset` function that will take the defined LLMs, the initial dataset, and the number of evolution steps. In our approach, we will follow the steps from WizardLM, but using the Evol-Complexity task and their number of epochs, as well as Evol-Quality. To clarify, for each complexity step, we followed this process:\n", - "\n", - "* Run the complexity pipe to generate new instructions from the previous ones. Deita: *For each instruction sample $I^{(0)}_k$, we use the In-Depth Evolving Prompt [...]. After $M$ iterations, we obtain a set of instructions across different complexities for $I_k$, $\\{I^{(0)}_k, \\ldots, I^{(M)}_k\\}$.*\n", - "* Execute the elimination pipe to filter the new instructions. WizardLM: *The evolved instruction does not provide any information gain. Automatically evaluated with ChatGPT.*\n", - "* Create inside the current epoch a loop to generate the new responses for each new successful instruction. The generated samples will be saved for the final dataset. Deita: *After $M$ iterations, for the same instruction $I^{(0)}_k$, we procure a set of responses spanning various qualities for $R_k$, denoted as $\\{R^{(0)}_k, \\ldots, R^{(M)}_k\\}$*.\n", - "* The input for the next complexity step will be the successful instructions with their associated initial responses." - ] - }, - { - "cell_type": "code", - "execution_count": 38, - "metadata": {}, - "outputs": [], - "source": [ - "# Helper functions to generate the evol-instruct dataset\n", - "def prepare_for_equal_prompts(example):\n", - " \"\"\"\"If the evolved instruction is None, we use the original instruction (to make sure it will be removed)\"\"\"\n", - " if example[\"instructions\"][0] is None:\n", - " return {\"input\": [example[\"input\"], example[\"input\"]]}\n", - " else:\n", - " return {\"input\": [example[\"input\"], example[\"instructions\"][0]]}\n", - " \n", - "def prepare_for_evol_quality(example):\n", - " return {\"input\": example[\"instructions\"][0], \"generation\": example[\"response\"]}" - ] - }, - { - "cell_type": "code", - "execution_count": 56, - "metadata": {}, - "outputs": [], - "source": [ - "def make_evol_instruct_dataset(\n", - " complexity_llm: LLM, \n", - " elimination_llm: LLM,\n", - " quality_llm: LLM,\n", - " dataset: Dataset,\n", - " instruction_steps: int = 4,\n", - " responses_steps: int = 4\n", - " ) -> \"Dataset\":\n", - " \n", - " # Set the pipelines\n", - " complexity_pipe = Pipeline(generator=complexity_llm)\n", - " elimination_pipe = Pipeline(generator=elimination_llm)\n", - " quality_pipe = Pipeline(generator=quality_llm)\n", - " \n", - " # Set the initial dataset\n", - " input_complexity = dataset\n", - " successful_samples = []\n", - "\n", - " # Start the evolution process\n", - " for step in range(1, instruction_steps + 1):\n", - " print(f\"Evolving instruction step: {step}/{instruction_steps}\")\n", - "\n", - " # Run the complexity pipe to generate new instructions\n", - " instruction_dataset = complexity_pipe.generate(input_complexity, batch_size=8)\n", - "\n", - " # Run the elimination pipe to determine if the instructions are equal\n", - " prepared_dataset = (\n", - " instruction_dataset\n", - " .map(prepare_for_equal_prompts)\n", - " .select_columns([\"input\"])\n", - " )\n", - " elimination_dataset=elimination_pipe.generate(prepared_dataset, batch_size=8)\n", - " \n", - " # Save the successful instructions to be used for quality evol and prepare the inputs for the next iteration\n", - " new_instructions = []\n", - " responses= []\n", - " successful_instructions = []\n", - " \n", - " for row_evolved, row_elimination in zip(instruction_dataset, elimination_dataset):\n", - " if (row_evolved['instructions'][0] is not None) and (row_elimination['generations'][0] != \"equal\"):\n", - " new_instructions.append(row_evolved['instructions'][0])\n", - " responses.append(row_evolved['response'])\n", - " successful_instructions.append(row_evolved)\n", - " else:\n", - " new_instructions.append(row_evolved['input'])\n", - " responses.append(row_evolved['response'])\n", - " \n", - " input_complexity = Dataset.from_dict({\"input\": new_instructions, \"response\": responses})\n", - " \n", - " # Run the quality pipe to generate new responses\n", - " complexity_dataset = pd.DataFrame(successful_instructions)\n", - " input_quality = Dataset.from_pandas(complexity_dataset).map(prepare_for_evol_quality).select_columns([\"input\", \"generation\"])\n", - " \n", - " for q_step in range(1, responses_steps + 1):\n", - " print(f\"Evolving response step: {q_step}/{responses_steps}\")\n", - "\n", - " # Generate new responses\n", - " response_dataset = quality_pipe.generate(input_quality, batch_size=8)\n", - " \n", - " # Save the successful responses in the pool and prepare the inputs for the next iteration\n", - " inputs = []\n", - " new_responses = []\n", - " \n", - " for row in response_dataset:\n", - " inputs.append(row['input'])\n", - " new_responses.append(row['generations'][0])\n", - " successful_samples.append(row)\n", - " \n", - " input_quality = Dataset.from_dict({\"input\": inputs, \"generation\": new_responses})\n", - "\n", - " # Prepare the final dataset\n", - " df_final_dataset = pd.DataFrame(successful_samples)\n", - " final_dataset = Dataset.from_pandas(df_final_dataset)\n", - " final_dataset.__class__ = CustomDataset\n", - " final_dataset.task = TextGenerationTask() #or EvolQualityTask()\n", - " \n", - " return final_dataset" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "So, let's make our first evol-instruct dataset! 🧙" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "ds_evol_instruct = make_evol_instruct_dataset(\n", - " complexity_llm=complexity_llm,\n", - " elimination_llm=elimination_llm,\n", - " quality_llm=quality_llm,\n", - " dataset=initial_dataset,\n", - " instruction_steps=5,\n", - " responses_steps=5,\n", - " )" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "ds_evol_instruct" - ] - }, - { - "cell_type": "code", - "execution_count": 62, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "{'input': 'Provide a selection of three specific ingredients for a decadent dark chocolate raspberry cake.',\n", - " 'generation': '- Flour\\n- Cocoa powder\\n- Sugar',\n", - " 'generation_model': ['gpt-4-turbo-preview'],\n", - " 'generation_prompt': [[{'content': '', 'role': 'system'},\n", - " {'content': \"I want you to act as a Response Rewriter\\nYour goal is to enhance the quality of the response given by an AI assistant\\nto the #Given Prompt# through rewriting.\\nBut the rewritten response must be reasonable and must be understood by humans.\\nYour rewriting cannot omit the non-text parts such as the table and code in\\n#Given Prompt# and #Given Response#. Also, please do not omit the input\\nin #Given Prompt#.\\nYou Should enhance the quality of the response using the following method:\\nPlease make the Response more in-depth.\\nYou should try your best not to make the #Rewritten Response# become verbose,\\n#Rewritten Response# can only add 10 to 20 words into #Given Response#.\\n'#Given Response#', '#Rewritten Response#', 'given response' and 'rewritten response'\\nare not allowed to appear in #Rewritten Response#\\n#Given Prompt#:\\nProvide a selection of three specific ingredients for a decadent dark chocolate raspberry cake.\\n#Given Response#:\\n- Flour\\n- Cocoa powder\\n- Sugar\\n#Rewritten Response#:\",\n", - " 'role': 'user'}]],\n", - " 'raw_generation_responses': ['- High-quality all-purpose flour\\n- Unsweetened dark cocoa powder\\n- Granulated white sugar'],\n", - " 'generations': ['- High-quality all-purpose flour\\n- Unsweetened dark cocoa powder\\n- Granulated white sugar']}" - ] - }, - "execution_count": 62, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "ds_evol_instruct[0]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Optionally, we can push the dataset to HuggingFace to share it with the community thanks to the `push_to_hub` method." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Push to Hugging Face\n", - "HF_REPO_ID = \"argilla/distilabel-evol-instruct-dataset\"\n", - "ds_evol_instruct.push_to_hub(\n", - " HF_REPO_ID, # type: ignore\n", - " split=\"train\",\n", - " private=False,\n", - " token=os.getenv(\"HF_TOKEN\", None),\n", - " )" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Human Feedback with Argilla\n", - "\n", - "You can use the AI Feedback created by distilabel directly but we have seen that enhancing it with human feedback will improve the quality of your LLM. So, we provide a `to_argilla` method which creates a dataset for Argilla along with out-of-the-box tailored metadata filters and semantic search to allow you to provide human feedback as quickly and engaging as possible. You can check [the Argilla docs](https://docs.argilla.io/en/latest/getting_started/quickstart_installation.html) to get it up and running." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "If you are running Argilla using the Docker quickstart image or Hugging Face Spaces, you need to init the Argilla client with the URL and API_KEY:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "import argilla as rg\n", - "\n", - "# Replace api_url with the url to your HF Spaces URL if using Spaces\n", - "# Replace api_key if you configured a custom API key\n", - "rg.init(\n", - " api_url=\"http://localhost:6900\",\n", - " api_key=\"argilla.apikey\",\n", - " workspace=\"argilla\"\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "You can now push the dataset to Argilla as follows and curate even more the evolved instructions:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Convert the dataset to Argilla format adding questions and metadata\n", - "rg_dataset = ds_evol_instruct.to_argilla(vector_strategy=False, metric_strategy=False)\n", - "\n", - "# Push the dataset to Argilla\n", - "remote_rg_dataset = rg_dataset.push_to_argilla(name=\"distilabel-evol-instructions\", workspace=\"argilla\")" - ] - }, - { - "attachments": { - "image.png": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAB2QAAANPCAYAAAAFWm+/AAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAAEnQAABJ0Ad5mH3gAAP+lSURBVHhe7N0JQBRl/wfwryIgiKDoKh6oIJ544hWkiXlmHnmXpJap79+jsswy34rsIKvXtNfMNzVLzcojzSMTT7zAE7zAC0XFg1wvEEFQ9D/PzCwsywK7y7ICfj/vO+3MM7Oz88zz7CzOb57nKVWnTp1HICIiIiIiIiIiIiIiIqt59Ch7+EUs29k7wK6MA0qVtkOpUqXUNVTYxLl/9DADGQ/SkXE/XU1VGJYDy4UKQ2n1lYiIiIiIiIiIiIiIiKzAMBhbqlRpODiVh72jM0rblWHQz8bE+RbnXZx/BycXuTx0jAXOiayNAVkiIiIiIiIiIiIiIqJCIoJ/9k4uKG1np6bQ4yQCsw7O5fMMyhJZGwOyREREREREREREREREVqIf3BPzZRyd2SK2iBHlYV/WWS4fXXkZlhuRNXEMWSIiIiIiIiIiIiIiIivRD/CJMWNFN7lUNKXfS0HG/bRsAXPdPIPoJU+HShXR1r0CGpd3QR1nJ1RxdICzndJ2NSXjIa6lpeN8Sipi7iRj/83b2HXjlrzOGhiQJSIiIiIiIiIiIiIisgLDVpZivFLRRS4VTRkP7iM9NVmeNxaIZVC2+GtV0Q2Danjg+aoauJQxr9vw5AcZ+OsfLVZcTsChW4lqqmUYkCUiIiIiIiIiIiIiIrICw4CsYzk3BvWKMFFGqXduZQvGMiBbMohA7DivWnhW466mFMw27U18H3fR4sAsA7JERERERERERERERERWoAvI6l7LulSQX6noSkm6mS0ga+yVipcPG9bFyNo11SXrWnjhEj49eVZdMp3SMTIRERERERERERERERFZTL91LJUMLNPipWH5clj7lF+hBWMFsW/xGeKzzMGALBERERERERERERERET2xGHgt/jpUqogVbVuiqVt5NaXwiM8QnyU+01QMyBIREREREREREREREVkZg3zFD8useBKB0UWtmsKljJ2aUvjEZ4nPNDUoy4AsERERERERERERERERERU7ouvg71v4PpbxfsVnis82pftiBmSJiIiIiIiIiIiIiIiIqNj5yreBTVvGGhKfLY4hP6Xq1KnD9tdEREREREREREREREQFoN/drZgXk1N508eYpMcjJemm/KprYSle9VtbPo6Wl5bq3LkzhgwZgvLly8v1LyoqCgsXLsSNGzfULUqWDxvWxcjaNdWlx2vhhUv49ORZdSmnAgVkmzVrhm7duqFVq1aoX78+7O3tkZycjPPnz2P//v3466+/cObMGXVrRVxcnDqX09ixY7Fx40Z1iYiIiIiIiIiIiIiIqHhgQLZ4KikB2dq1a2Pbtm0oXVrpHLd9+/bYvXs3VqxYgXfffVdOK0laVXTDyrYt1KWiwSt0hzqXk0VdFjdq1AgLFizAmjVrMH78eDz11FNwd3eXI+7VqlWDv78/3nzzTWzatAlfffWVvE7n3Llz6lxO+tsRERERERERERERERERUf6effZZORg7btw4eHl54fLlyzh9+jS6dOmiblGyjPOqpc4VD2YHZAcMGIANGzbIzZ5NMWjQIKxbtw5t2rSRl8+ezb25bsWKfFKEiIiIiIiIiIiIiIiIyByNGzeWX0UQVkc0khSxt0qVKqkpJYNoHfuspug18hTHlRuzArIDBw7Ef/7zH3XJdNWrV8eiRYvkro2vXr2qpubk5+enztHj1HfOTpyM/AOT1OWiwxPDP52Lue8Pl+aKnqmrjuDkllnooS5bTydM/Wkz9kf8gWmmPQeRv85TsXDLfuxfMU3aO9meVJe/WS+V6WbMHVMUa7Ot8DwQEREREREREREVVCV3d3lIyeKvA97732rs2bYYHwWqSZSD6MV2586d2Lp1K15//XW5F1vRa23//v0RExOTrWGkGF5U+OGHH9CwYUP06dMHP//8M44cOYJPPvlEXlccDarhoc6ZQDMA+ChEmcZJ87nqnbVdtukD4NVhQLPa6na5y+u4TA7INmnSBF9//bW6ZD4nJyc5mCvGl81Nhw4dUKFCBXXpcZiOzXFxiNsyXV024qvNiIs7gqWvqcslTgB6NPOEY1I8lqspRUbrSRj1cg/0GDMM4+WE0Vh6JHt5Td8iLR9ZKq2xtUlo1cAVadeiUdBRkEf/ekQeazkzHyNGYUigDzQefnjhNTNzVlsqz3590bdfDwToXSuGvzIEnepqoGn9AkapdTnH55pMLQfpvUd+td6Zt/x4bM/8Yx2PYf18pTL1QY/BSm0uFLmUv+15IqCnOI6+6OGvH3i10Xkwiy+Gf7MZR84odbqg9a9du3byH0R5TewdgoiIiIiIiIiICuL/xozCwb17ULu2tbtwHY5Fe4/gVLQJ0/qP1fcUQNBwDOzgjcpVm6P3iOFqIukTgff58+ejRo0aKFOmDN5++2389ttvmDhxohyIHTNmjLqlYtmyZTh06JDcYPLvv//GN998Iw87mpiYiKCgIAwePFjdsnh5vqpGnTPBs81Ey1FlaiLN5/pWaYVuu2yTD9CuMzBuGvD+MHVb4/I6LpMDsu+88446Z7k6deqgfv366lJOoiL16tVLXaLHIxCeHoA2djvi1ZQi4+AMLFgdicjVSzBHTSoy+vnC0xmIj5mvJljRogX481gS0m5F488fzdx/l/H48ptZmPXNlxiv10384p//RPStNCQd+xMLflQTyYbmYPnWeCQlxWP78kKszbmUv+31wPgvxHHMwpev67cht9F5MJFnn6n4Y/96TOvnA9cyamIB/frrr/IfRHlNIihLRERERERERERkqYAAfzx69BAXL1r7rn460pLSkJaiN2WoqzIM0qWpwJYuxrroO0i7dRLrFi1WE0nfyJEj5WDsjz/+iMDAQDkAKxpDvvjii+jZs6c8bqy+lJQUuffb7t27Y9q0afjwww/l3mpFIPbevXt477335AaVxUmHShXhUsZOXcqPBmik11qptDT/XH7B3PvA8b3APt10CEhIUVbV7gy8mXs/qeK4xPEZY1JAVoz/2rFjR3WpYESlEE2pc/Pqq6/CzS33PpapkL3dCj5lknAmYo2aUJTEY/HbAzDg7cVFLlgc0MVH+lrH4vgSNcGqtiO4T3M09OuF4K1qUkFtDUYvv4Zo3idY2jvZXjzmj3oGzZs/g5HzityjDzZUtM7D+DdGw0/8FifFIvx0kpJoBW+88YY8iL7hVLduXXULIiIiIiIiIiKi/HnWrIlfFi2Eq6urmqJ0V+xT1xvhEXtRvnx5eb3Yzjp+x5hubdGsTda07qK66uKGbOnNBn+hriiIXfhkcHs0az8En4SpSZTNkCFDcOXKFbml66NHj7B582bMmTMH+/btw4MHD9StchLjyoquikUDkbt37yIhIUHuFdddqj+dOhWvgQ3bupvR026jAYDci3AicEGahHp5dVss3AdO/A/4STfNBj4eBxzSKqsb+Cuvucjt+EwKyPboYd1RMUVT6Nx4e3vjlVdeUZeKC0/0/WAhNkeeVLq4PHMSR3YtxdQ+2cdEnLb2JE7uWojRL8/K2vbITix9X1T2Tpj6604cOal0k3kycj2mGbwfTYdj1tr9Wdsc2Y/13wyHr7raGka39oFjSiwizWw16TtiFtZHHMFJtZvPk5GbsfCDvnpjvQ7Hwl1S/tdOR99P16t50Ov6WR7TNOv98vnrrHvPNHUjw2UTGZy3uJNHsPmnqehrtS5cPdGngZTTS7FYe0FNMolBvRHHJZVnTtOwPlrKtzSt/1RNkhiec/H+/WtnYbiar+ELduLk5AAoP82uCJgs9rETC0dIi1IZiP2djJbqmbw+NwbHKE0nI3fijzzqndzda2Y9NqwHCtESUb+8rVmX89v3kP9J50Xk/cgfmGpQB+RxgMW6COl7qqYZ7s869Uety9Jn7VyglrmuTKRrxHDp+7B0l/qZ4noSKpVrU2UzHWuV/3T5eqTsY7P4mynXumG8Hipd/K7H/iN617+I9Zg1Qj3jIxZiZ/QkBKh/I7q2mSTvQ8m3kfMgM1bvcrmmyMcjxqLNqnfyddWw3tXuK4/FfETaXnec8j7l668qIwmxq4PRq3lXhN1Q0wpI/FGUG9060Z3I77//jqVLl8rLREREREREREREhqpU0WDRwvlo07oV/J9qp6YC7dsHyK97wvei/dP+8nqxnQjU2taLmLdpP44e2I+tcybgvZ824OjRIzi1ez6C5PU10Pu977Bh9/7Mbo6P7t6A3794EY3l9cL7WC29X+xj9YdKStAcaT8ibfn7qPniF1nvP7obW3+ahN7W7qW5CCtVqpQcQHV2dka9evXU1JyGDx+O2bNn46OPPpK7KjbGwcEhc51+gL84aFzeRZ0zQYDaKCbpArBDDeBopLRGyqxZjl5VXktrREgvV7kdn0kB2dwKzFKlS5fGtWvX1KWcxM1pMQBxcdHpq4X48rVO8HwQi+2r12DN7likaQIw+tv1WDomKyTg6OwIR9cmGP1BJzie3I41GyIR7+iJgDFfYv1fszDcJwmHNqzBxoPxQEVfDP9iFiao70Xt0Vi6aBr6NnLEtciNWLN6Iw5pHeHbbxp+/XV0joCXZfrC30f64p0/hBlqiikCvtiMPz7uC1/nRETvlvK/ejtiH3ii02tfYu4HuiMTeZem2s/hkxd9kHYhHNsjjiP+prSq83RsnjManWoD8QdE3rZL56UVRn89DD7iPdJ5U6j7yFw2QXtp3yuk89bUEYnHpHMulc/202nwDByNL7+faqXzNgxNpGPXntqIcDXFFLp641NRzY+jK3z6TcWEhob5U/IsT7pVry3Fr+Kce7hKa9XuIKT3a5r2xbTf52KItImjs1vW9oK0IKeJrljleXVS1hrhidG/rscs3TGmSZ8jPqaiJ/xEvVtiZGRNn9GYKrp7VXfqWNFHrgcLv8q6OnmOWYr130rlXVc6dulY5H26auS6/Efo9LyuY/kyZd/LtsYiSeTb1Q8B2bp7V8YBFuck6WQoROfQhvuDeMBIlJNUf2atWIrRFgdlxecr599NmpQktTxcfTDs69EIqKl+ZhlHuNaXyvXHhXK5yqxW/j544f2+Uvkqm0D08pBr3dBLz1zRCdO3/IFpYhxYXaGL4/XwRd+Pf1Wuf9JyZh4FaVnsQ0mT5g3Pg2G9Uyl1aRb+kOqd8r3Nem8V/4XZ6h1cpetqtutPAKbP+xKjA6VtpO3lLlQypPeKfY6Zi/XqdnPG9ELXtxcjWl6yrUqVKsnjzRIRERERERERERlyLV8eS376ETVqVMenn09H6KbN6hrgaX+ltV7E3n3Y8HeovF5st+inBfL7bMch836dpu1wjGxbA47ifmMZcSevBkb+tAz/Gd4BdbPda66Bln3ex6L5usYayvvlSb3X5+is3LN1rNwW897tqbxfsCuPmtLnfD5zEqzVHrioEw08RJfFdnZ2WLFiBdq2bauuySLGjBVdE4vhQUWPtCtXrsSgQYPUtQoRgBXpYps///xTfk9xUsfZ1C6WGwHeavfEFw8C4eGA3DGilNbekoisaXI7PpMCso0aWffAqlSpIo+rlxcRlH1s4+qVcUPffn2NT+WyAgSy9rMwbZAPHC+swdi2vTDy7YmY+GovtB20GNFprggYNS0riCJIFf3aL73wzNCxmDh+AJ4ZvxFaqfB968Ri/iDl/WMHPYOxoVrA2Qf+agvSCf+ZhICKSQj/uhe6ive+PRZBXXohJCIJrv6jpWNQtiuQ9j3gI9XD2Ghz+t31g69zGpIuhSOkzzMY8KqU/7dHopfIf4ojfDuMV7dTuQLHv+6Ktt2DMHJoEKasBqa++QJ8HPXzJr2/bVd8d94TngV8MMOvQVmk3YpH+BfSOR80Utr3RIzsMwCLj6XBsXEnGBydZSzq5nkqJvWR6o2YvRWJ+W8+Ay+vZzDxx1hALwiVm6n91ZaP2nAEd2mIhr4N8cybG5WunCu2Qp9xwPyhzeH1WbhyfZH+G/6Z6Ca1OYJMbf3ccjz6NlcKIH71RDzTUPqchs/IdU5wfaqvlIvsXDWuiP1F2tbLS6rj3yH8lkh1hE+fSeq2ozF9vHLsaWfXYGKgl7RPL/T6RjlOx/ovYFJmEM1cJu57xRocV3sW8PXXy8HbAVJdFjNaHN8gfoCy9odb4ZjRRzp/9bL2B/HQxYfZvt3W4SrV+6SNCBkq1Yk+U7AsRvrLRNBI5apeD6xX/tIfMmmRWPzxSARJ370QM7vcDvhqKobUFfU1DbGrp6CX6Iq3TzA2XhJrletf3x+D0NwrBOHKgSApIkTurrf50FzGQ35tOib4K/UuKWKGsk+vXpih1jtN+5zXO03dKoheJD7/GQTNDodW7plDuv4EjleCt/1G4dn6yvcqVrr+ivPVsGEvzJeuAyLI7iNdp/ykdfEXrN9tsnhqLTe6dbNmzcJ///tfeZ6IiIiIiIiIiEifo6MjFi74AXXq1MZX//kGv/z6m7pGIVrI3rh5E+fi4uRlsV5sV8+nrvw+8X5bc3QGLm35Dq+/OhpjgudjU/PR6N1ECQ5fWvs+Ovu1RTO/nvhy/x05zbXd83hPnstDVW9oTv6Ofw9ujs6vzsfe60qyY8P2GPsEtZKNjIyUx4TNyMjAO++8o6YqRMtYY0Hat99+W51TiHFnmzZtihkzZuCtt97Ks5e/oqiKo4M6l4+A54BKYiYROLBTet0LnNd1WyytM1crtYXWQ60YaTJXuR2fSQFZe3t7dc46xADBop/qvFrJCmKbfv36qUs2VLsHZn0zy/jUM3uwKOAlP3iKYMeSidnP/7FgzN8tFYqmCbrrZyElGts/07vpvzVRVAXg6hnM0OvudvuBM9JeXVGlgViahE6NHZEWtRhB2cZZjMf878Ol/2rQpHtfNc1ynn18pLzEI3atOUEJEUzshbYdgjBfv7veCxGIF/ETD8/Mrl9ll8IxJ1sepiKgkfSDEPMnphjkbcaScKhxM4tF/jgRvfyfyXHeIq6Ig6sCT12XyQVgUTfPIogr/w6mIfKXAQiRz3k81nw2Fn/GiHQTlXND3eZKnYxfO1YOhHo1bIug7+Wkgomagl6+IhjmhWfeXiMdnRCP8AT1giVaQipzWWKWYeyHyrbxETMQ9EuklEOJow9aiWv+6z3QSn5TPLZ/PBFr1DoTPTsIi6PElo7w9c/WbFXPEEwy9p38ZpLy0IPJ+16DBQfU+lCnlfTtUkzw95W2kGiPI3SF9Pq2bn9SGf0UhO+OiXmxvymZZaTx6wNjnUyLFpmjPzV2rNMwur26Sa60CP92LOZHSMd4bBmmfLFdPfe664GeApe/Ftu/GIDgRdsRHrER29U8miYAg9v6KLMXNiL47WVKy9JjizH25zWIPh2L2FtpamtW0016vpVSr1Kka8vQ79TWqtH47v0/ES0HWjVo1cfgrEv1bsDH4vOl+vlNEJaJQKug8YRhh/tuNVup3VdHI6RPQ3jVa4iG3adIVzIiIiIiIiIiIqKiRbSE/P67b9G0iS+++/5/+PGnReoahRg7VnRNvHPXbjVFIbab+8N8+X3i/XalTQoFWc/J1Rjx5nxs2r8fO0L349KRj9GvTXM08G2Ozu9vgNyeA5exN0FtxWHnkPNes6GMk1g59AusjAYu7f8OI1YeUe49Q4OagfLME0OMB3vs2DG0bNlSTVG0adNGncvOw8MjWxfHAQEBSE9Px3fffaemFC/OdibWZz81gCq6K96nzOKQGjhwldYpvX0bYQ80+j/gVd30NvD590AzN2X1qQjlNRe5HZ9JRy0KxprEgMEiGJtfK1lBDEz86aefymPL2syFjXJLSqPTBjWQo/KtKArgGuKNBOPW7BdBVQ089R9IeHBPbbFmDg1cnQHHpqPl8RKzTT90kgMejs5VlE0LYLCPtKdb8YjIfu02ie+gSZj+0x/YHLpTHqPx5JmF6CEPlGwgLdGgW1+lW9akxEtq0EnP6mjEp6jzBdF0CCZ9sRB/hG7Gzkjp2E7GYWF3tZl6gQXATzTjvXTGrG6eIXc1K8TjzDfyjCoeoedznIkclqxRWz46+2L4tzuV8UO3rMfSL0YjwOJudI2oHYDRH4tzp5ardO7W98s9xKa9Gpm9HL85oy6LbmylF+lcKfn2RKcf1DqsTqObKmtE17vGtUQPY63W+/WQ1kjM2Hf4b+pxSucvQH44aDT81RaU2qNrIHfQoF9Gs+UZVTwWnFJzWbGK3vgG+nwR2MfYsb6AQMOgag6JuLZanRV2J6p/WGSxXvlLnyWCzxbxhUbt6jjpSnT277V4EKJ7V3TtPhbm/qRndn189Uz2915YgNjLyqxrtexnPSkx+6MbSfcMztjqJdh2Vv3zLHAa1stj0u7E5hVzMWmQNUYuJiIiIiIiIiIisr4Pp05B+wB/RMecwOw5c9XULLqxZPfsyRkgmvXf7xBz4qT8/qnvv6um2kZS0mU16KqnVluMnPodfv9zAw6IMWEjj2B1nxrqShOkJGVvwJWYluO+6ZNC9Lyn0Whw65bcRWUmrTb3Jm43b4rxIxWJiYnyGLIiUFty9QC81QDqmb+VV2GfNH9DzEjr2hk259GxB5o8Ja3XTc2ASnL3msCFrcC3G5V5M5kUkI2Otu6IehcuKBHob7/9Fhs2bJDn8/Lyyy9j1apV8riyHTp0UFML0YNEeaxRo9NdM77iGeqr6CfdGu5cQ/yl+BxTrGiJdiHv1sb5Gw2/uo5IOx+JxWqKaTwxesl+rP9qAoa094GbXRquxYRj49KQzBaKj5MYA3T/qumY8GIniOFx07TRCN+wWG2RagW1+8CnJhAfu1ZNKLh4E6pY/LwgDP14GcLPJsl97YtAo6auLwJenIqloZsxPd9WmCYQ4xavXoqpIzrBr74nXKV6nKaNReTZ3C/q99IK0KY5XRkLVR4P1ahLSl03MuX4cTdkuO/dyxEp10/RanYC8Fogmsix2ngc+jn/rqfjH+RXSNJ31chxikkeN7mAbFL+RU487sktZC2xHVNeew/fhUZDm6SUnRgL2ad1D0z4aj32/2RkPGQiIiIiIiIiIqLHbPEvv8rdEfs2boQP/z1FTc3y9NNKE7/wiL3yqz6xfeNGDeX3L/31MY8RWms4Fv06H+8FdUDLejWUe83XzyEqTu13mEwmWk1/+eWXciPGNWuy38v+66+/1LnsRBzuxg05Cilbvny5/CrGjrX2kKW2kJLxUJ3Lw/OtATWGimZvA9/OVydpXm1ohDrSNrnRXgGuqJOu4aBW+p59kf+4f7kdn0kB2f3796tz1nHw4EF1Dhg/fjzOnDmjLuXOzc1NHld28eLFclPsn3/+GZ9//nmOPrJt7Zoc4HFDFSM9K3v6esIVSbgWqyZYLAlpD6QL1Pk16Cq3Oss5DXjfnPFLjejnj3quQGykWe08JeMxuL0GuLAGI+s1R9su0vGIsVo/NvUJASVvrm41c3Zt2s8XnrovjIXGDwiABvFYM8oLzf3FuRqAkW8HY6MuWF5Qw5rAB1rEbsne7jdfalDIWLfJg+uY1tpZjJkZ1KW5PE6qGJN4xurYzO6Bn33FCl1Yjx+MAHFheiCdPzHGbcOGaN5BqmuRapfFRlSppgwgn+k1TymHijTRpDMz3/HY2FMZ+zTH1CdY3cbQdxhrpO5ntsI0a9/hmLFf+WI61vfHtPb1lC4xLkRiia6FeOb+pO+3wZilo2uquUq6hrPKnIE1mDLI2LEOkMdNtobCLn9pRyir39q2XxXxzJCea0owWJLj+9t5AqbrdydthszT7lrF4L2j4ak2bE+6Zvys50m6Rs34v15o27yhPCbtyI8XI1x9fkDTPud4yERERERERERERI+bGBd20ItBuJqQgJeHvoRPp30kt44URGDuqbZtcCb2rBx01RHrxXZi+8uXr8jv140v+7jUHNMPT4l7zRmXsW5yTzTwa4s23frhxcPm9yf6pHvvvffQv39//P333/jPf/6jpioOHTqEd999FwlSfdERwViRpk+8d9y4cahcubIcnK1SpeA9sNrStTQTevVtpHdzWwzL6qg36SKjjtI2z6vz2aQAYVOBT9Rpuxrk07QCeuff+2pux2dSQFYUjrWI7o8N99etWzd1zjQuLi7o2LEjhg4dilatpBPwGK0JPQ6tGNNw0GiDgGInTG0jpaTEImKemmSxJTh0WqobjaV9GnZHOmg6/lixEJMMAkbmCujiI+UiFsfzD+4bJboszTaGbvvx8DWpt4ElCD+dBjR+AdPH6J9BX0x9VQRTC0i0Tk6JR/RWZVERgPHNcoR/LTLJz0fK/BlEmBtkW3JcOtuCK1q9NF2qLQrPPnPRt6XaZWuuhmPhLqUr3v1LlHoXH7ER3327HbHqkxqOjtlDZ1IKyhom5cPPXX2DOH+ZLYo9MUl0bZ0Lx5bDsTSzHDth+kvqeKC6urXkkDoOqCc6faH/nemEWVtEno5g5xzjo7Lmy8x9x88JV7Z3bYUh/kpNiz+yPKvr3cz9aRDwr6wyQufpGOyn5CrtdATmy3O2VMjlH3tN6Q5ZPo8TlPFWa/fFrPGG38c1CI1WI5rZvr9SHRk/AUNEF82d/dTyz+JY1jAluyUH1B4ZNAEY9VXmWUenrwZnjukbG2HeWff7dL3S5faRzZjeWaRI16tFwVgQqR6/sfGQiYiIiIiIiIiIigD9oOrggQMw/fNP5aBr82ZN4eTkhAi91rEiXawX2+mCueL9j1vLiurdt5TLiNmgjkuGGpjobUaXxYTSpUtjxIgROHnypBxQTdO1mNGzYsUK+Pv7y3G31q1by40ixTCihkScTjR4FPG23r17q6nFw/mUVHUuNwMAT3tl9vAS4Kf/GUxSmtxgWNqmibRtftb9Acgxbmn7DsPkpLzkdnwmBWSPHj2KjRst6xPZ0IIFC5CcnKwuZfHy8kJYWJi6VIysCMafMWlw9Z+EP36dhuEiCDFiEhaGzUWPmmmI/es7s8dQzCkewT9vh9bRF6PXbsbcycPl8SiHT56LzR8MgV9TT2gK1A2qJ/o08AQuxWKt2d0MRyFeC7j6DcNC9bj6jpuFzXNegKdJrVDjEfLNn4hNc0XA+5uxf8tmbJbHel2P0RWvZe8T3gJR8sG1wrCfJill028CZoXOxQtS2RSc2s3z2Ujzg3IXpmD5biXs5Vh3CBZKF1ARYNv5bQ+43crvqaDFiDifBkdnR2jaT8X6Xco5279hNHzlFsVaHFqrdjy9JRbxclDREX5jpc84uR7T5RX5W3MkXmlx6RqASfuVz9gsvU4wPmiqLOkWpHLcKefl5MmFGCKdHzl993JMEXXrQnBmS05X/6lSOe9Ujj16IfpK2zpKxx8faV6n2ZnM3feFBfKDDuLcOMqHGYvwb/RaOuvtTy6j6P3YvGU/Tv5vCHzE9mmx+PN/j2PQ80Iu/3kRmYFdcV1bfyYOcWGz0NfVYIwGybKP5yNcHqZAfH934kjEfhw5uRMT5IcKpOtf6AL1u7ERsWq/0o4tJ8j1Y/0XyrKh+I9nYJk83qsjfAYtxMkIKX8RJ7FwkI+UIu317J/4LtuYvvmLDD2Oa3ZSObv6YMgcqRxFXd51JHMs6bSY7Zgjz1nfo0eP8MYbb+D333/PMenGUX/40IQuNoiIiIiIiIiI6Iml1V7Hi0EjcDw6Gi/07S13R6wbP3Z3eNb4sSJdrD92PBpDhg7P1nL2cVp37LJ8nxXl22LijtXY8Kc0Sa9jG8qryUTiPuKePXvg6+ubb2NF0TOtfjfFxgQFBcmvERE5xyAuymLu5IwxZjOombi9LNECO7YC+/YaTFLaOfVud21p23ydADYdVWZdpe2H593Nc27HZ1JAVvjqq6+QkqLepbfQ8ePH8fXXX6tLOb366quYN6/AzUltLB4hz4/F/IhrcPUfjmmim86PJ6BTjTRE//IeRr6brd2o5VaMxIAP1yAWPugxbhpmSZ8zbVwPaSkWaz4biSnZWoCaaxia1Jaq5qmNWa0DTbYMwf+VjivNE53U45o1uQccD8zAxnwH9lRtnYKug4Kx5uA1OFbzhGfNKih7aQ2CXw5H7p3jmmbZx99hzek0eAZOUMrmm0no4XwIMzZYYQxZi7t5VswfNlGqN2rQ01EEDB2RdGwxJm7JfzzgzPc+kL7/NX3gU98HGhGMuyXVh49fxcgVynZyUHFpNJJEUK6MCDxK53eMsipfsydixlbl+Bw1ymf4lIvHxhWH1BaUOV3bMhGLjyXJeVGCnGmIj5iPicOyQtbb3x2JkNWxyjGJcTx1x54Ui43fDEXQj/JmFjFv3/EIjtAbHzsmHHMMHkgQ+3vvF/X8OWvgU1cDxzJSri6FY760rmDfO8sVbvl/h4lfSN9pXSFL+UVSNBa/vy3n9/HCfASNmIHtl+RaDFcPDVxFuT9IQuzqEL3rn3Suv1mMaHWMeVE/PGvnNm6rMt6rqEeCo4eUPw9ppw+UuvTea1Oyt8Y3xe4pGPmZlCfx+Y5SOYq6XFP68ur2OS5EOsLCsW/fPvkPH3d3d7Rrp/yRrE+s1x9Qn4iIiIiIiIiIyJjExES8POI1ROzdh3Xr/0b7pwOQkZGB/QeyhogU6bv3hGPYK68hKSm/hj829L/3MStMCco6VvZG3XrS5HwZm1YfyfVeMxknYmyiEYiI2Q0YMEAeN/b06dNyA5C+fY0PZefj44Pvv/8eUVFR2Lt3LyZPnozXX38dTz/9tPz+mJgYdcviYf/N2+qcMRqgvtrVrPasHEs1aq26orS07RAT+moNXwLE31fmWw2QPyY3uR1fqTp16jxS5/Mlmjj/8MMP6pJ5/vnnHwwfPlyuGPkZNmwYXnvtNdSubdg/b06i8rz00kvq0mNWOwA9/DRwTNMickN4od3g9/TvAT8PR6QlRGJjhBU+5e0/cPJ1Hxz6ojmCLI6HeyKgpx80jiL2tQbbj6nJBTIdm+OGwCdmPryeD1HTLKM7ZyIwt2arXhCuAALm7MTSnsCawGcw0eyWxXrUegOLytPU865s53rLgs+woF4r51u63kVuRHge58a3c1/4uMJ6dVmPtfet25/16rc1FG75i3L0RbRp7zGxnsh1o2KSiXXJF536+UCMxR27ert0JFbQtBP6yhWjcK/Thp577jn5jx4x2L74g8mQ6BZk5syZ8h9HRERERERERERUPOnf9xHzYnIqLwZPtS7RVfGhfXtw5OgxvPTyCDW1GKjVFt1aVIZj2nVEhe6HqW26CltKktJgQnT5rHvVzQv680VBcHAwXnnlFbl+iUC96MK4UaNGcHNzkwO24j6kjuiddtWqVXLXxAsXLkSnTp1Qr149ed3t27fRq1cvXL6s60a6+DjWuT1cyogxKw1ohgHTOivNUcMnA4tz64dVA3z8NeAhzcZvBT4XYy6OBP73jPSaAqwYBxg2yGr2OjBObZl8dCHw/U5lXk/ygww03bpbXcrOrICs0LlzZ3mg4AoVKqgp+Ttx4gTeeustnDp1Sk3JX6VKleSgrJgcHBzU1JyKVEC2mBry035Mb38N8+v1QsHCnpbxHTEXc0e5Yvm4IHynF1DyfX89/hjji6StE9F21Bo1tajwxLS/dmK4Zjsmth2JonZ0RFS06AKyeRFPNDIgS0RERERERERUfNkqINusaRP8uuRn/G/eAnz3/f/UVLJUcQvIirFk+/XrB2dnZ/zxxx9y77YVK1bEypUrUaNGDbk7Y924sZ999pncNbGI0f35559yWps2beRJjCMbFxcnpxU305s0wJAaIppatCy7nIApx43HQs0OyAoeHh54++23MWjQIDUld6IL4i+//NLiMfJEX9hdunRBYGAgWrRooaZmYUC2+PMcsxTr3w+Aa5oWsZGHEJ3gCM9mTeAruoe9FY6QfkGYX5AWqEREj5nosrh+/frqknHiD3TRhTERERERERERERVPtgrICmXLOsotZW/dyqv7VjJFcQvI5ubNN9/ExIkT5djdwYNKV9a//fabHKBt0KBBtvpZ3LWq6IaVbXPGDB+3gfsP49At44NxWhSQ1alZsya6du0qF6boXlg0eU5OTsb58+exf/9+bNiwId9Bg81Rq1YtuTm1+FzRQlc0vy5fvjwDsiWAZ5+pmPbGEARUc1QSHiQhPnoblnwxBYuLTPewRERERERERERERETG2TIgS9ZTUgKyul76RGxON3zoiBEjkJCQgJ49e8rLJcmPfk3xrMZdXSoavEJ3qHM5FSggS0RERERERERERERERAzIFlclJSBrZ2eH9evXo2HDhmoKkJ6eLvd4+9dff6kpJUdRbCXLgCwREREREREREREREVEhYkC2eCopAVkdMRSo6F1WOHbsWOZ4siXRhw3rYmTtmurS47XwwiV8evKsupQTA7JEREREREREREREREQFxIBs8VTSArJPmrVP+aGpmxKAflyOJd5Bn72R6pJxpdVXIiIiIiIiIiIiIiIiIqJi493oU0h+kKEu2Z74bHEM+WFAloiIiIiIiIiIiIiIiIiKnZN37mLc4ehsLdRtRXym+GxxDPlhQJaIiIiIiIiIiIiIiIiIiqVdN25hxKFjNm0pKz5LfKb4bFMwIEtERERERERERERERERExZYIjA7aHyWP51rYxGeIzzI1GCswIEtERERERERERERERERExZroOrjP3kgsvHBJTbE+sW/xGaZ0U6yvVJ06dWzfqTIREREREREREREREVEJoj+GpZgXU1mXCihVqpSaSkWNKKPUO0orR105iVf9MmP5FU+tKrphnFctPKtxV1MKZpv2Jr6Pu4hDtxLVFPMwIEtERERERERERERERFRAxgKyDk4usCtjr6ZSUZPx4D7SUpQubhmQLZlEYHZQDQ88X1UDlzJ2aqppxDixf/2jxYrLCRYHYnUYkCUiIiIiIiIiIiIiIiogw4CsULqMAxzKOsvzVPSkp97Fg/tp8rx+IJYB2ZKpQ6WKaOteAY3Lu6COsxOqODrA2U4Z3TUl4yGupaXjfEoqYu4kY//N22aNEZsfBmSJiIiIiIiIiIiIiIgKyFhAVrw6OpdHabsy8jIVHQ8zHuDe3SR53jAQy4AsWZsS9iUiIiIiIiIiIiIiIiKL5Ra4u38vJVuwlh4/UR7p9+6qS7ljMJashQFZIiIiIiIiIiIiIiIiK9IP5D18mIG0lCS5RSY9fqIclPLIUFOyYxCWCgMDskRERERERERERERERIVAF9x79PCh3D2uGLM048F9tpi1MXG+xXkX51+Ug34wVldGDMRSYeIYskRERERERERERERERFaiC7bqB12NpdHjZywYywAtFQa2kCUiIiIiIiIiIiIiIrIyYwE9BvmKDpYP2RIDskRERERERERERERERFaiH9TTzYtXw3ndMtmO4bk3nNfRnyeyBnZZTEREREREREREREREZEWGXRMb676YHq+8ArAMyJK1sYUsERERERERERERERGRFeUV4BPz+hPZRm7n3bAMDJeJrIEtZImIiIiIiIiIiIiIiApBbq1h2Ur28cot6MpgLBUWBmSJiIiIiIiIiIiIiIgKEQOwRRsDsVTY2GUxERERERERERERERFRIRIBPwb9ih6WC9kKA7JEREREREREREREREQ2oAsAMgj4+LAM6HFgl8VERERERERERERERERERIWkVHp6OgOyREREREREREREREREhYjjyBZNbClrXRcvXkS1atXUJdJhl8VERERERERERERERESFTL+rXAYBHx+WAz0ObCFLRERERERERERERERERAXGFrLGsYUsEREREREREREREREREVEhYUCWiIiIiIiIiIiIiIiIiKiQMCBLRERERERERERERERERFRIGJAlIiIiIiIiIiIiIiIiIiokDMgSERERERERERERERERERUSBmSJiIiIiIiIiIiIiIiIiAoJA7JERERERERERERERERERIWEAVkiIiIiIiIiIiIiIiIiokLCgCwRERERERERERERERERUSFhQJaIiIiIiIiIiIiIiIiIqJAwIEtEREREREREREREREREVEgYkCUiIiIiIiIiIiIiIiIiKiQMyBIRERERERERERERERERFRIGZImIiIiIiIiIiIiIiIiICgkDskREREREREREREREREREhYQBWSIiIiIiIiIiIiIiIiKiQsKALBERERERERERERERERFRISmVnp7+SJ0nIiIiIiIiIqInUFpaGtLT03H//n08fPgQjx7xdhERERFRcVSqVCmULl0a9vb2cHBwgKOjo7rGNi5evIhq1aqpS6TDgCwRERERERERFaoHDx4gIyODgT4jdDfM7OzsUKZMGTXVdlJSUpCamirfqBM37MSNO3EsYiIiIiKi4kf83S0m8aCdeOBOPHjn5OQEZ2dndYvCxYCscU90QDbh4C/QHv0Tdy4dwv2UW2oqPQ72zhVRvmYraJq9AI/WL6upREREREREVNyJG0DihhDlTwRBbdWCQQTJ79y5IweDK1So8FiCwURERERU+MTffbdu3ZIfjCxfvnyh/93HgKxxT2RANvnKUZxZ/RYcXCqjetvhqODdXp6nxyc9+Tpun9uNK/sXy/P1+s2ES/Vm6loiIiIiIiIqjhiMNZ8tgrKipYQIxrq4uMgTEREREZV8ycnJ8iSCsqJnlMLCgKxxT1xAVgRjjy7oC5+e01DD/zU1lYqSyxE/InZDMJqNWsOgLBERERERUTElnsQXgT9BPIVftmzZx94NrggO37t3Tz62okzcICuslgsi74mJiahUqZLcPTERERERPTnE3+c3b96Em5tbof29yYCscaXV1yeGaBnLYGzRJspGlJEoKyIiIiIiIiqedC1jxY2ecuXKFYkxScUxiGMp7G7aCqowWxWLlrGii2IGY4mIiIiePOLBP/G3oPibkGzriQrIijFjRdfEDMYWfaKMRFmJMiMiIiIiIqLi5+HDh/KraBlb1BTFY9KnO3fWlpKSIt+EK+r5JyIiIqLCI/4WFA/nib8NyXaeqICs9uif8pixVDyIshJlRkRERERERMXPo0fKCElFoWWsoaJ4TPp0587aRHfNYswwIiIiInqyubq6IjU1VV0iW3iiArJ3Lh1CBe/26hIVdaKsRJkRERERERERUcGkpaXJLSGKejCaiIiIiAqf+JtQ9Jwi/kYk23iiArL3U27J3eBS8SDKSpQZERERERERERVMeno6uyomIiIiokzib0PxNyLZxhMVkCUiIiIiIiIiehLdv39fbgVBRERERCSI3lPE34hkGwzIEhERERERERGVcA8fPkTp0rwNREREREQK8beh+BuRbIN/iRMRERERERERlXCPHj1iQJaIiIiIMolxZMXfiGQbpdLT021ytq9du4bbt2/L89WrV4eLi4s8b0s7plRAlxl31SUqDrZMKoeO05V680R5eAPHd0Yh1etptKntpCaSucSPiRiUvHDGSbqP1NQHymxpJzg5KrNERERERKRISUmRX93c3OTX3Hz88ce4evWqumQ9P/zwgzpnXGJiojpXNDk7O6tz1qHVauX7MUREREREOleuXIFGo1GXrOPixYuoVq2aulT0xMbGYvfu3YiPj8eNGzdw9+5dVK5cWT4PzZo1Q/v27QslplDoAdmzZ89iw4YNOHHihJqiRN3btWuHnj17wt3dXU0tfCU5IHst/AdcuvsUGnRujnIl6IHXEheQvX0A86b+hMPqYg5+r2L6qDawP/wLJs0LBzT98f60LvCUVp3bMA7/Wd8Cr4aMQZsKyuZIS0XqQ6CMkxPs1STK8uuvv+L69euYMGGCFZ8ET8W5zb/jl60HkJCkJkkq+XZBnwG90cajEEqC5UxERERExZCpAdl//etf6px1MSCbHQOyRERERGToSQnIiq6ZV6xYgZ9//lkOxOZFjK3btWtXTJw40ap/PxdqQHbLli1YtWqVXJgdOnRA1apVIX2e/OTr1q1b5QDJ+PHj4e3trb6jcJkbkL25eSgiN65Rl/SUaQcnv2A0GtAR7mXUNFs69hW2/DwNaL4NXYa3kw50DfZ8PhSpqAP30dHwa6huVwIUZkBWPPnw9ddfIylJL6pmggoVKmDy5MmoWLGimmIGXUDWtyP616+kJupx8cbT/t5wSkvA4YjjSPF8GgF1lRayxgKyRoO0JNu2bRtWrlwpzz/11FMYPny4PF8wqTj++zR8vzMJlaQy7NjOF56uD3Ajej/+3nwYN1zb4NXJr6KNkaItCJYzERERERVH5gRkK1WqhJCQEDWlYMLDw7Fo0SIGZA0wIEtEREREhp6EgOzRo0fx73//G3FxcWoK5H9/+Pr6ysdZvnx5+TyIQG1MTAwyMjLkbURg9rXXXsPYsWPlhqYFVWgBWdEidvbs2WjVqpUcCBEHru/WrVuYM2eOHKD96KOPUKZM4Uc2LQ3IlvH6Aq66hrzp55F0+k88SPsHqPETWkwcjMq2bpFqGJDFPVzZuQgJSS1Qt2c7uLGFrEnEF+yzzz5Tl8wj6qyHh4e6ZAZdQLbXO/i+p3kPIjAga7qEhAT8/vvvOHPmjNxtcZ06ddC7d280atRI3cJCl7bgi5BViPd7FZ+OagP9uOv9E6vw4ewtgFS2080s2/ywnImIiIioOCrOAdlNmzbJQy0FBATI+di4caN8/6IgxEPpYn81a9ZUU/LGgCwRERERFbaSHpBdvHgxZsyYIQdZRRxy2LBh6N+/P7y8vNQtshN/++/ZswezZs3ChQsX5DQR5xTLFjXS01NoAdng4GD59YMPPsgRjNW5fPkyvvjiCzz//PN47rnn1NTCY2lA1u2Vu2jTVE0UHp7H8a99kXCtKsoPjUG7VoUxPmUecgRkS67C7rJYBO4saSFbpUoVdclMpgZkk45j1aKtiG/aH28Gig6LDYJypZX1566fwjmtKzzqV4ObnSc6j+iPJq7y5kBqAg5v34Idkcdx6oo9vP2fRsdnOmYbkzY+7FusOia978UApO5ehb/3HYfHwOkY01rZSdLpHfh75wEcjzyHGxpvtGjREX16tIFHMRnWVnQpIG6afPLJJ3If8AUWtxHjvl4L7xc/wjvPGATk7ychPu4qUhyrwbu2a2bXwqlXDmPH1h3YH30KCY7SOWzUBh17dkQDXTlJci2H+hfzL2ciIiIioiKqOAdkjxw5AicnJ9SvXx8PHjzA3r17kZaWpq61jHiqvkWLFvK/KU3BgCwRERERFbaSHJBduHAhvvnmG3leNNr63//+Z/LDkSKAKxqVzps3T14W71++fHmB/kYvlLaU165dk//QF09+5haMFWrUqIF69erh2LFjakoxUboO6nd6Q5r5B3fPnVLShAf/4Owfb2PnR77YMskb2z5/G4f3nkequlp28geEfdITEbv/QWLUf7HnY7/MbY9GJ+KhupnOg+s7EDmrJ7ZNLoctU/tj3+ZT2fcn+wenfugp7fcH6Hq+jv9DLL+PU9cSEbdsHLZN9caWyX4I+24RLtxRN9Jz85D+sbyP43H3cHP3+/KxHj6pbmSiRw8zkJGWrC5lEWliXVEiWrmKf2CbM1kcjDXHw1RcP3EKp1LuqwlmunEYv0z/BPPWn4K9TwD692wC59i1+OnLafjp4A11I+B+ivQZJ+IRvuYn/LTvOtxqNICb2lhdBAlDZi1DVLIH2vTrj/4tXBG/+Sd88t1GxFt4WMWefRllPN99+3HcMI5v7wrP+g3QQC8YeyPyF4R8Ng9rpe+2Z7v+6NHIGfE7l+HbkG+xMS7rJOZVDoXl/v378o0lQ7mlExERERE9SZo3by7/+08QT9K3b98enTt3LtAUGBhocjCWiIiIiIgsJx7SnDlzpjwv/q7/5ZdfMoOx9+7dw4YNG/Dpp5/KrWUPHDggp+sTD1O+8cYbeOutt+Tl8+fPY8qUKfK8pQotICuYEgEXT2eKZr+iW9HipIy90ir2Yeo9+RWp+3DgM3/Ehf+JB+X7wL3VEJS5+yeur/BFxOJ9WUHU+4l4kLgD9w9/iUO//oy00h4oU74CHt78AdcW9sPh0+p2kocJyxH+ZU/cjD8JVPgXynt54O6W53Bg82F1iyz3b++Q9ivtW11+cFcsX8D15f1w9sh5lC7bEKXtb+NB3Dic+fq/iNeL/F7f/Coif30fqXelfHmNQLly+5Dw/Vicjb2gHKuZwbfLET8ian4/ZKQrT0MLYj5q/gu4su9nNaVoEa0oY2Njcfr0aaOTWFfQ7qmyuRWPU6dP5ZgScsaxjXNtgv6vv4n+cgNpbzz3ypt483Vdq8lUHN/8O8K13ugz+SOMe7EPuvQagnHBn+JlvyQcWPg3Dmf7nFM4Z98Fn4Z8JO3jTQxpIXYSj+iNp5BUsz/GT3wZfbp2QZd+YzB1fBc0qJiIBG3Ri8iKh0DGjRsnt4otNDU7YkjfBnCN24jvpYvvJwtXYcdBqdySjJyP5OPYsjwcN2r2wJvBH+HVfl3Q58Vx0kX+ZbRIOoW1K3dkPkChMFIOeZZzwYgu2MQTQbr+8AURiBVpoaGhagoRERERERERERERUfEherYRwVMRdxQxyPnz58sPRorlNWvWyL32vvvuu1i2bJkc/8mLGENWDMsqbNu2DevXr5fnLVGoo40+fGjY3jMnsY3oBqhUqVJqSnFwDxeOKQELJ++G8mv8+veReAdw6LENgZO/gN/QL/DMZ1HwatocD4+8hRMGrUzTE9xQ+6NIPPvRBgR+HIkWXftKqftwc+8+tZVsIk7+/irSHzZH+aFRCPz3N2g3+ns8+/FvcLq9Rt4if2uQ5hIM/8+kz5A+59nPtsFDNO68OwsJ0coWuLYcMRuXSxl5F17S8QROCEa7idvw9PBGuHPM1M/Jrob/a7B3roioeX3x8ME9eRLz9s7uqN7uFXWrokUEoUTTddEPuLFJrNM1TbeKPcvw7axvc0yHter6gkg9i+idSUDX3ujspddCvXQltHm6izQTjlNx+u2sPdGlcxtUMnY1SIpHQlaDWjj59sebo4agTfXcW76XbPbw7v4mpk5+GV2aOiPl4BYsW/gtPpnyJqZ89hO2nM06r6lx0dghFUOTTk+jgX4Xz5XaoGN3VyBuC6KVLuhVeZRDIejevbscgP3+++/loKyY5s6dK7+KdURERERERERERERExY0YvuTmzZvy/OzZs+XhUUQwdvTo0fj3v/+Nf/75R15nqsmTJ8tDjwhif5b2MFkot/49PZUxL3UD3uZFbGOVsR0L0cO7ibhzR5munQ7F8Z+H4uyRI4BTMKq3EWPhHIH2yD7ALRj1u9bJOqml3VC3079QRlp/+5i0vZ7SzV9A3fLqgqSy3wtwEDNXL0AeMfV6GK6L5nPu/4JXK7esfTq1Q8MuI9SF/DRHhYCOKKd7c+k6qO4nAr//IDVBqXA3j/0N0e6zzFMjsh2PU9N/wUMpRrOVKm2HZq/8Cvty7jjy04s4vGAAHFwqy2liHUm6j5MHkjacOtdW1xfEtUuIEq+H1+H72d/iW73p+/XyGiSm6bforAQ3F3U2kyfaDGwD16QD+OnDcfjw63lYtj4chy8loei1jbU9V68A9B/7EaZ/OwOfTh2Dl7u2gP2VA1g1IwRrTytn6Gr8DvnV26OS/JrFHtVqiPGDk3BRq9/vsbFyKDyi27Xx48fLP0RibC0xiXmRJtYRERERET3JLl++LPfCI4i/k8+cOYPjx48XaIqJiSnwOLRERERERJQ70eDop59+kueHDBmCBg0ayPOLFy/G3r175XlziQalU6dOlefFvxM2btwoz5urUAKybm5u8PHxQVhYWGYU2pioqCi53+UOHTqoKUXTnRXVse9jZTr6Q38kiNax5d9A9bHvwstR2uD6eSSLhnF3vkXMJ2LsVr3pp2/lboQzuzZWlangoc7l4p9TcqAUng1hOGJp+drtYFq4pA4c8hmeJvHycvm1XO068msWN7h7dVTnzVeqdBk0Hb5Embezl+dFWlH1f//3f3j77bfl7m6NTWLdmDFj1K2twN5ZbhluONlb4xv5UIT6JFU84dvQN/vUoiP69+uPJpXyb+FaqfWrCJ42Di93DUBlxGPHhl8wL2QKPpy1Eed4D0Fh74RKNVsgoN8YfPrREDTBDWwMPSD9t3gQY3yLbp5Fd9xiEvN5jftNRERERPSk2Ldvn3zPQkhKSsKhQ4eMBlnNmY4ePYqLFy/K+yQiIiIiIusTf8ffuXNHnh81apT8GhcXJ/eEWhCNGzdGy5Yt5XnRdbElCiUgK7z00kvyU6SiO8yEhAQ1NYv4h8jSpUtRtmxZ+Pv7q6lFk1P7DfB6WTdtQ5P3byDw4y/QuIa6wUM1OuXYHOV8esBVf6r/CtxbfQF3n6rKNqbKq7dnR6fCKzgrKm3ngOav/IbmI5cX6WCs4ODgID9EIAZ3NjaJdWKbYsG1EuTG87XboIsY+9XIFOCl34du7pw0TRDQ72W8OflTfP/tdIzr7o2k02uxbE/20U+LKnGRFdcga7XCv3FsC7Zs3oLjxrqW9vCEaPeKE0lIlF7cKildGCTKT2tkl5ikhGw9KlphMNgC0rWUZctYIiIiIqIs7dq1y7zh4urqCj8/PzRp0qRAU7NmzVCrVi15n0REREREZH07d+6UX0VMp1q1avL8ihUrcP9+wfv+7NJFDAkJ7N69W26Ja65Ci+uJjE6YMEF+kvTzzz+XxyZctWoVfvvtN3k8TjFmp2iJde/ePTm9KHPw6Yi6LXVTO3hULpu9hWrl2hANZVHuOdQd+gb8jE0Bhi1Q86Gpo3RhfDMBSiw/S/rFKKX1rBW41Rgsv+q6MM6SiES1y9WCKG3vJAdmixPR5FwM5CymK1euqKlFWap0MVFnhUreaOIrve7egQMGTTVvRG7Eqs07cFybz8XnxnFsWb8Mv+zUC7zau6JJk/rybOKT2m9x8mmsWr0KGw+cy9F1c+rp40pX0X6VIMK/lbyboIn0umNnVPYWs2nnELVXOq+uPdDArHsxBuVsReJazJaxRERERERZatSoAY1GI8+LLsrEg7rGgqzmTOKpekdH+e4BEREREREVAtEaVmjUqJH8KohYjzU0bdpUfk1JScGlS5fkeXMUakNLEYGeNm0annvuOXms2C1btiAyMlKORAcFBcmB2s6dO8vNe0WEutgq3RyVfasC1/+HuGPZuyZOPfYD9v38XxyNFm3mzODRAC6iEWP8IsTpD8X78DxOb/+vulBw7g0D5eBy+o5ZOKPXu/TdqB9wWam3TxTRjZSol6JlpZg+++wzeZyfosqtogj5ncLalauwZfMBxMsBu0po07MPvMX4r/+dh40Hj+PU6VM4vHkeZi1Yiy2HU+FWIZ/gWyU34MQOhP8+D/M2H5bff+rwDvyySvSN7o0uvhYOMFxIRBnp+oUX1xdRdteuXZOXramSXw/08QLOrf8PPpmzDGs3Ky1mVy38BNNmbUS8dG76dG0Bud2rpg169PIGon/B13PX4kC0eg7nSmVyyRVtBj6NBibGQI2XMxEREREREREREZVkGckJuJyQDPPb4hU16bh5+TISbTwUXvqNy7h821rN26g4uHFDaR5VsWJF+VWIjY1V5wpGPLSpIxr2mavQe74V42L27NkT06dPl7sO/frrr/Hee+/h6aefRunSpTFgwAC5me/27dvlLoyLp7Lw6jkdDqX3IXFxf+z5Yw3ORu3AmfXvY9/it3EnOgplNG7qtqZqjkZ93pBeQ3Htu57KPvcux4Gvn8c1+8EmjiFrghoj0KTHYCD1v7jwhR+2iXFvP/ZDxK8nUL5pX3UjKqoq+Q/BuGcbAMe2YNXqLTilNnS29+qB8e8NQRv7c1i78Ht8O+tbzFt9Dvat++OdsT3gmW8g0BNdxr6D/q3tcW71PPn9385bhuNpbdB/0nh0qaluVkSIJ809PJRxmUVX6a1bt0aVKoajL1uBozd6TPgIr3ZtAkTvwMbVq+QWs1sOJsDetwte/WA8etTWnVx7ePccj/cHt4HzhY34aY5yDsNv1UKXMZPxautK6nb5y62ciYiIiIiIiIiIngTpF8OxePFirI/Wa1VUlDxIR3p6AcKmGcben4y4fZuwddNBXExRk4qpjISjWL91K9acMjYWnIGUOIRJZR0Wl3MouLylIm7HYiw+qn5GRgKO/rUVW9eeggmfSiVEWpoS9dfvETI5OVmdMy48PFydy5sYykRH9A5srlLp6emP1PnHas2aNQgNDcXkyZPh5eWlplrXjikV0GXGXXUpfzc3D0XkxjVwe+Uu2igtkfP04PIaHPpxKu4knldTJG5vwGNYMJp4lVWWj32FLT9Pg0OPc3imq964steWY+eXryK9yk/we28w3HXJO99HzF//xYMHYqkqytSfiyZ9ExHztbRt823oMrydlP4Pjn/pjYRrwag7412Isxe3uBzOHukLj/d+RRO9uJQuT4aff/PQIpzZtQypog659oDny2+gYpR5+S8MWyaVQ8fpt9UlytXD+0i9bw8nI71f3U9NhVx9yjjBKd9ArBH3U5Gq7ABOFu3ANh4+fCi3jK1du7b8oEfhk865cmJMOLe6bQt4DvMoZyIiIiKiokZ05SW4ueX9gPK//vUvVKpUCSEhIWpKwYgbKosWLcIPP/ygphiXmJh7T1ZRUVHyA+YNGzZEeno69u/fn3lzx1J2dnbyOLLu7rp/8efN2dlZnbMOrVaL6tWrq0tERETFSTouhv+OMNHIzaklnhvUFMrAAkWH9uhi/H2rAwZ19ILo+NJcqXFhWLGrEp4bnj1vGYkXEZfoBq9abrBT04qndGhjLwKePtDkd29TBGRX7gI6DEKglzlnUwRkV2BXxecwvJlyFtOvxeIiasGnSvEaVtGWxLCNuqE6rOXixYuZ47fa2iuvvIKDBw/ihRdekHtAFV566SUcO3ZMns/NW2+9hddee01dMi4+Pl7uEVgQPXa2adNGnjdVkQnICufPn0edOmaOtWoGcwOylnqQmqgEsMq4obwlV18jUu8k4oEV92eK+BUBOLX3CAOyVGyIManFmExijCciIiIiInq8inNAVgy55OLigqeeegqpqanYsGGDPDxKQYhewtq3b29yUJQBWSIiItWdWGxdHQX3gJZIDI+CW7f+aOlRtMKThRWQfSJZMSBbHP3zzz9ISEhQl7KIMVEdHKwfWC5pAVnR6PPvv/9Gu3bt8OOPP8ppYmhVU4ZNfffddzF8+HB1KSfxkObIkSPlefHvg1q1asnzpipSAdnCZquAbLFy5xRiVk9Hws3n0OyNwais68Q6dR8OfPEsEu/+C54ff4MG5dV0G2NAloiIiIiIqHgyJyBbGAoSkC0KGJAlIiJSJMduxaqoKnhukA+Sd6zAQddu6N/SI3uL0dTLOLg7GuX9uqHG3YM4GH0RF7WApnYtNGzREl5u6tambqeTnoiLJ6Nx8vxlJNy2U7Zr3gxeFdTAmLo/bXICtA/c4FFBBBBro3XXBpm9YKbfvohTMSdx7nICEstoUKu6Nxo2awAPOdZ4E6c2H8SF1ERl/9VcpHy5w7d9a9SQ1t88uQkHk33RoXWNrEDvo1QknDqKk3GXpWPPgJtHDdRr1hKNlR0qzM2nMWlanDosfc7Fy/Jx+9Rvjda+doiTjvdOow5oXVP6vBunsCnyTubxZtL7/AZi5DbDZR1jn1E7GeGrcgZk9c9juqMHatRpCN+GteCWGaM0DMim4vLBXYh2aY1uDZXSyDyfzZxw8eBBnNTtq25LKW8aGIY7UxNO4eipc7h8QZy8Wqjh1RDNGnjASb89kLHyaNEajS1slXv06FEcPnxYXcrSv39/+YFBaytpAVnRtflXX30ld1kcERGBsmXLyud06NCh6hZ5yysoK4ZkFQ9+iq6Ld+3aJfeAY45CH0OWirjytaUL+QU8jH8Vhz/oiT3z/4t93/XHto9EMLYqynT6F+o9pmAsERERERERlXxVq+oN50NERESUzU1cPHkZ7o1rQAMn1PDyQeqxC0hIV1frPEpH8tUE3Ijdh61xjqjdLADdAn3hlhKDXZsO4rJu5AFTtxMeaHFs6xrsSwBqt+iAbt1aw9vhJg6uXYNdceqYlA7u8G7aDN4e0nyFWmgozTdr6gFd2Cz1wi6sWRuGS6iJZgHd0K1tQ7jdPYpN6/epn+UCD+k9DWuJB9g85H01a+oNdzWWl5GegIS7+plNRtye9dh0IhWVGraTjikAzTzScXLTCvx9VIvMUWjNyacxyXHYtfZvHE10QsN2ynGXv74LW49exm1pv8m6jkMepiPhajJyNPtTPz/9YS7LQm6fcfgSDIs3Q3sMW9fuw9VStdGyQzd0aFEbSNiHNVuPQauOKmdM+l3p/OmNzSufz+RLOBp2EDfcG6Jdh85o7WmHy4f+xtaY7OMTJ8ftwvpN0UitKG3XrRvaNayE1BObsH5PnFQKOqm4qJZHFV/pHHfrgJY1pPLYuAYHr+Y9prAY11QED/Wn7du3y0NciIBg37595WAimad79+7yq+jdRvR6I4hz2rt3b3k+PyKYu2zZMnUpy4MHD+RhV4Xnn3/e7GCswIDsE68svIZvg9/Q71G+ilRJr25E6s17KFP7C3i8EoH2vRqwkhAREREREVGh+eSTT+TWrNaeiIiIqAS4mYBzN93hXU1p4ehQtSZ8cAoXckRkFbH3qqBzx6bwquEBj1oNENChA2qlnsKZK6nqFor8t8tAwrEwRGU0ReCzAWhQS9rOoxYa+HdD51YuiDsYrQQ17Zzg7uEB93LSvEMFaKR5Dw83taVluvS/CqjV6jl0C2isfFYNL7R8Rtqf9FnnEsRnOcBNeo9GbuZZXt6Xh4c7nHKJ9STH7sOucxp06BqIpl41pG1rwKtZIJ4LbIDkwwdxKntM0eTzkV06LsccRJxLy6y8S8fdtGNftLx/Ujr71iCd3zO5fIZTArJ12JuRgKNhUUCLQHT2b4Ba4hyJvDwrnYOMKOwzzHR+Lmrh0KIzAhrWUs5fy0AENnOHNvoytOomopvsfbsS4NGhm7TOCzWkz6zhJdWFrh2gObcLRy+q9S9Zqp/nUtH06UA0luuIB2r5Svvr4IMKpYzXUUPiPc2bN5cnLy8vOU305CKCf+np6Y+tpWlxJR727CDVc+G7776TA6nC22+/DScn/Wbcufv0009zBGV/++23zK6kBw4cKL+ai7E2krm3GoF2Ezcg8CNlembCG2jStCrKqOuJiIiIiIiIiIiIiGxJeykaN9294aHr/9fRA7UbALGXEnK0ohQa1K2R2TpV5qJB7VrAxTtZbRqFfLfL0OLSsVTU8m0IjcFNcvd6zeSA6iVtfgE3B7jVbop2vprs3SuXcUGFakBcYvZjyl8yEuIuw6mFL7wMeq51qlUPvu5anEvIHpw09Xxkky7l/WQqfHwbGOTdDh5evpldMReI7vw29Mn3MzKuXcKx1MZomeM8alCvgQduxiXArJCsVJ9qV9Hfkx001WsAqTeQrIy4geSEc7hcrSVaGp5ol1po6CvVv6tapf7Z2cnHlJiU/Xy6e7WEj34X0nkQAVddQLZOnTqZwVgRSOzWrZscsCXzvPHGG/LrpUuX8O2338rzolvmb775Bu7uptVgMV5sRobSyvn8+fNycFfo2bMnGjSQLkIWYECWiIiIiIiIiIiIiIiKlowEXDqVCo23Bi7p6XJrQen/cPcQEdkzuHhH3U6Ps6PhuJ12gP54n6p8t0tLlbulreRiJKjm4IYqIqh5y7SAakbKTVyOO4WYw/sQtnkT/l69BvuuqivNkopU6X2a8gZBQpk7NDWBmzeTpa2ymHo+snmQLu+jvJPheyVu7rBKeDCv82vwGen3xJYXEbVtEzZJ509/Cj+RKGU6I6urZlOUd8oaj1enVPaoe2pqAnA7GuEGn7dp81ZEXZQ2uJeufKZTDTRs6QFt+CqsWLsV+w7H4qJUBhmGXTib6M6dO9i0aZMcCBRd71apUkVdQ+Zo1KgRXnjhBXn+p59+wqpVq+R50XL2r7/+yrP7YhGw/f777zFjxgy5W+IbN27gX//6F+7evQtnZ2e8+eab6pbme6ICsvbOFZGefF1doqJOlJUoMyIiIiIiIiIiIiJ6smRoryI2FdAe/Bu///575rRih+g09zIu/GNaQNT6lKBm6qP8woAZ0B7bhFUr12PfyRtIsS+Paj6+aP1sLwTUVjexJhHtUVv0lTxucK9eEzUNp7rS+WzlnjPAag1O7tAY+cza9VujdQ0XuWWsqAuapt3Qt29ntKzlgtRr0di3fhWW/hmGUzfNL4vSpUujXLly6NGjBypUqCB3kevt7S2PKeviYiwQT7n597//jXr16snzwcHBWL16tTxfvnx5fPHFFwgPD8eSJUvk4VNEd8YiCLt+/Xp5HN9nnnlG3vbq1asICgrC5cuXUapUKTlIW6NGDXmdJZ6ogGz5mq1w+9xudYmKOlFWosyIiIiIiIio+BE3LcgyPHdERETpSLhwDKk12qHXiy/ixWzTIHT2dcLlkxfN66rWHGUc5CBfSpqxbomTcfsCUMtY6059qZdxMioBmvb90f+5ALT2bYwGXjXk8WLtLGpBaQc7d+nTU42N/5qMZHEy3FwKHpxU834n1UjeE29mH99V56H6aqpSSle/Rs9vSnK2crWzF0fjhtoNG6OxdA5zTgbdMluBXRnpRDtWQz2jnydNPhp1nGCFg1sN+LRoh8BufTHoxb5o534R+w7Fya2AzSGCsaJL3IoVK+LevXtya9mzZ8+qa8kcYrzY2bNno3Llynj06BE+/PBDeWzY27dvy+tdXV3RsmVL9O/fHyNHjpSDsKLLaNEqVmy/bt06DB06VO72WBBBW93YtJZ6ogKymmYv4Mr+xeoSFXWirESZERERERERUfEjnvAXdGMvFSVF8Zj06c4dERHREystARdOAbW8a8HdwQEO2SYn1KjVEE43z8FgyFTrcdCgmg9w6uzlHEG1jKsXEIsaqKkxCAOmG3Sd+0hZrmTYxXCKFhdEt7c5pOXTwNUdHl7uuHnuArQP1CSdOwk4d9EJTTMH2y0AKe81GzghNvqUweek43JcdPYguJMLauEirt7MHlhNTrggpebByR3Vahg/vzfjz2QL+jpoqsEHcbhwNWfwNvHSKcRdSzWvy2ITuHt4w/3qGVzMUb/SoT0Ti4uJyrFkpCQg9nBc9nPi4IYa1T2Aq6nZuo8m26tZsyaWLVsGLy8veVnMi3F5p06dKreYjYmJwc2bN3H//n15nNg9e/Zg5syZcnfH77//PrRarfyg5LRp0/Dqq6/K+yiIJ+ovfI/WL8vd4F6O+FFNoaJKlJEoK1FmREREREREVPyIp8sF8XR/UVMUj0mf7twRERE9qVKvnEMsaqF21Vzae2pqwNf9Js5dLbSILGo1bA3NhV3YtT8ON1PF+LWpSLwYha27Y+DSohm8yqubStzcGwBXzyA69jIStMlKgNDZDVXcgZOnTkGbrIyBm3ozDvt2n0SqQdzUya0K3BGH6JiLSEhIhJF2ozJ3n5ZokHoMYTuPIUHdZ7L2FMK3hOOmd2vU87DG3xAOqOHbDj73ovD3ujAcjI5BTHQU9m1dj5PwkkpFj4sGNWsAsfuk7UTeEy4j7mgYtsZl5DPWrAu8WrQ0OL/J0J4Mx66bIsirx7EWGrZ2waltW7EvVotkeSxhadvYfQjfdhSX7mao3QdbkbsPWjZIxsGtW3HsciJSxWemJuLysV0IiziDxHTlE+3u3cSZo7uwL+oiEuU8SOWRcAz7DifAvYWHVKb0uFWtWhW//vorXnvtNbkFckpKCtauXSu3mB08eLDcMla0lO3Vq5c8VuyPP/6Y2SpZrBPdGg8YMEBeLig76UM/VuefCOVrtsSJZf+CvZMbXD391FQqSkQwNnZDMBoH/QyH8lXVVCIiIiIiIipORCvPhw8fyq1RxSSCjI+75ac4jtTUVDx4YNispOgQ50m0/rE2cfNJjJlFRERU9CXjQuRexFdtiQBvt1yCbU6wux+PIzEPUbVhNbhk3Mb5mItwrtccVcupm8ge4PaFGFx0qofmYsV9E7cTnDTwruOKpLMHsWf/YRw/HoNT/6RB07QrOvhWhr2ylczOtQIq37+M45HHcCq2FKo1qQ6X0k5wr+qKe+ejEHFAvP84Yq4CPgFtUfX2KYPPckdlx+s4degITpxNhKt3Xbg7Sr/f/xxB7L3a8K1TUfm8Mq6o6VMdpa5EYdfeSHmfJ2IT4VQvAIHt6sBFN+qBOfk0xsENnnXroGKpRPxzRYtbd0rDvX47tKldChel/aK2L+pUFEfkAPcaVVFaexbHYk7h7NkEpLs3RvumFaE9pff5Ro6ntHNV1K5mj4TovTgQdVzKywlcLuWNwKdr48GxWKRmfoYoCm/UcU3C2cgIHDisbBt73R51/DuirZer2vLQMG8585rjfOqkXMOR2FTUbizlWV5hB9ea9VAdlxG1Zz8OS+f5uJS/uLsV0eLZjmhSRX23VEfkPBwLx345D1J5nE2Ga4MAtG9RHWXzGIVCBG9PnDghjxN75MiRHJNYJ3h4eMhBxcJy584dOVBpTYmJiUXq705HR0f4+/vj5ZdflrslFv8mEePDGvs3QaNGjTBkyBB89NFH8vbi/FtLKanQLeqtvDhLvnIUZ1a/BQeXyqjedjgqeLeX5+nxSU++Lo8ZK7opFvP1+s2ES/Vm6loiIiIiIiIqrtLSRPd71u5IrmQSwVhxw6gwiC7Xqlevri4RERGROTLS0+VWr3YODnm3xnyUgfSHdnAw2Mjk90tbpT+Q3l9GXczLg3Tps6R92kv7tNXw8ylxCFu5C07Pvoh2NQ0eIMuQ8ljasmNRzo94KC3vsyOYs611SGWSLpdenp+ZWcYmlocuIJufwg7IXrlyBRqNRl2yjosXL6JatWrqUtEk/n1y+vRpxMbGyt0Wi0Bsw4YN5bFlC8sTGZDVSTj4C7RH/8SdS4dwP+WWmkqPg71zRZSv2UoeM5bdFBMREREREZUs4ulzcdNDtJh99OiJvQ1hlBiXSjylL4KxZcqYcvfVMgzIEhERkanSb8fiaLwLmjX1gH7YNf3yQazZmgDfXr3QmP3xlghPakD2cXiiA7JERERERERERE8CBmSJiIjIVBnaY9j0dxRSazdGM6+acLFLRWLCBURHX4RTi+fQrZkmn5a+VFwwIGs7DMgSEREREREREZVwDMgSERGRWVITcOroSVxISleWy7nDu3ZD1Krhkq3VLBVvDMjaDgOyREREREREREQlHAOyRERERGSIAVnbKa2+EhERERERERERERERERGRlTEgS0RERERERERERERERERUSBiQJSIiIiIiIiIiIiIiIiIqJAzIEhEREREREREREREREREVEgZkiYiIiIiIiIiIiIiIiIgKCQOyRERERERERERERERERESFhAFZIiIiIiIiIiIiIiIiIqJCwoAsEREREREREREREREREVEhYUCWiIiIiIiIiIiIiIiIiKiQMCBLRERERERERERERERERFRIGJAlIiIiIiIiIiIiIiIiIiokDMgSERERERERERERERERERUSBmSJiIiIiIiIiIiIiIiIiAoJA7JERERERERERERERERERIWEAVkiIiIiIiIiIiIiIiIiokLCgCwRERERERERERERERERUSFhQJaIiIiIiIiIiIiIiIiIqJAwIEtEREREREREREREREREVEgYkCUiIiIiIiIiIiIiIiIiKiQMyBIRERERERFRlgfpSE/PUBeIiIiIiIiooBiQJSIiIiIiIipu0hNx8VQMYs5qka4mFVw6Eo5swR+/L8fy5dsRe0dNzkX67YuI2b8DW7ZuwY79Mbh423pHQkREREREVJIwIEtERERERERUjKT+E4Mdf2/BgeORiLySDKu1Zb0Vi8hjdmjS6yW8HNQFPuXVdCOSz+/Guq1HcNOpFho1aYRaTlpErt+G49cfX8vajIwM7Nu3D1qtVk2xnZMnT+K///0v0tMZlCYiIiIiopwYkCUiIiIiIiIqJlLj92LDXi00T/XE0/XVRGvJeIib0MC9gh1QSk0zJv0yTuxOQt0OPdG+qRdqVK0Br6Yd8YzfQxw+cRGp6ma2pAvG3rhxAw8fPlRTbUcEYk+fPo3Zs2czKEtERERERDkwIEtERERERERUXDjXQZfnOqJxVSfYqUkmSbuJuGN75e6Ft+w6gJj4RL2ujlNx+ZCUfjBWmo/FIbHN1lO4qazMycEDzQd3QdMq2Y/ArYIGuHAXyeqyreiCsbdv30bLli1RtWpVdY3tNGvWDK+99hrOnTvHoCwREREREeXAgCwRERERERFRMeFUyQNuDuqCqZLjsHv9dpxNr4xGTZqgSZ1y0Eauw7ZjWrW7Ywe415HSvT2keQ94iW2aeMBFXmeMHRwcHAwCwulISLgIpyaV4a6m2IIuGHvr1i05GFutWjV1je2Jzx8xYgSDskRERERElAMDskREREREREQlVjouHtuDf7yeRqdWPqhR1QMeno3RsfPTcDpyAKduiW3s5ECvh7sIwbrAXWxT1Q2mxH2TL8UgJuYwDmwLRWRKE3Rq4mFey90C0A/GtmjR4rEGY3Xatm2LoKAgBmWJiIiIiCgbBmSJiIiIiIiISqqMm9CedUKDWgaBUpca8Kl/Eycu59oxsRkykJEupmQkpihtbm1BjNkqgrE1atSQp6IiICAArVq1wtmzZ/HXX3+pqURERERE9CRjQJaIiIiIiIiopEpLRTIqo5yzupzJAQ5OQOqjggVQXWo2RuPGrfBUjxfQpU4qIjdH4nKaurKQ1a9fHxUrVsTly5flqajYv38/Dh06hLp16+L5559XU4mIiIiI6EnGgCwRERERERFRSVXKDna4jwxjcdeH6quVuHg3QN3UU7h1R00oZHZ2dmjXrp0clD18+DCuXr2qrnl8RDB20aJF8Pb2xuuvvy6PtUtEREVcWhps9CzRY5d2KQxL5i3AgkUR0KppZLm0FHWmxEtC9Gqp3kh1Z23Mk/JtIbI+BmSJiIiIiIiISiond3hUS0D8tWQ1QecmtJeABhXd1GXTpV86gF9+OYQEwyBvWiruwQkopS7bgH5QNioqCv/884+6xvbE5z95wdgkRK5UbtCGXVCTjEiKWi5vs2BrvJpCptKdu+VRSWpKPpIisVyc63lh4NkuOswuR7KZtGNzMLBRIzQaMAfRT0CcybGmP3zvrkHItBCpPjKwZjktQie1Q6Mm7TBxQ0kIbachNnSJ8lu9MlL6dTfkCt82VXBoeggmfh+aezA/Q4vIdUsw48OxCBo+BSGL1iIywYJ6tm4G8FOEukBUcjAgS0RERERERFRiuaBWgwa4efgAYq6nK0kZqbh8eD8i7VqgbjXzg4YOHp5o5HQChyNjoU1OR0ZGBtKTE3A84gBiKzdC9UrqhjaiC8pWqFBB7ipYq7X9jdGjR4/ixx9/fAJbxqbhUlgIQqaHIDqP4YjTLm2XtwmJYXssc+nO3fZLJt7QTrmE7eJcT49m67dsTHt4oCDyevDA7HIkK4tHmPygwnJEGkSa0m5cUx5euHQN2mJVPLnnKW+O8PvXNIxvHI0ZP+YRWCNZ7t/rRFw7L86eFpe0iUpScaWNwIIJ3dBtbLDyWx12yXiL8Zp9MHVGd2DDfOPB/EthCB7cDgPfDMacpaGI2C2du2kTMTCgG6ZsMPMRocPvAH/HqQtEJQcDskREREREREQlmEPNNuje1hVXdizHL7/8gl9++wMH7tRC905N4G6nbmSOMh5o1as7aqWdwM4/l+O3337D8j/3Quvqh95dGsNd3cyWdEHZypUro1QpGzbRVdnb26NBgwbsppioyDLt4YGC4IMHRZkW0fKDCttxyaCLWdfAaVi/finWrZ+GQFc1sVjIPU/5cvbDhK9mYWqzRETzIYE85f699sGwn3Zg5R87sHCEj5pW3KQhdl0IgnoFIWTDPfi19FXTc+fZbyqWBveF4/lYg1a0SQj970gsiQL8RszFpuPncO7MCexYOB5+iMfyCcFYnt/DML8NAAbPAW6ry029pPkTwNudgZnSjolKAAZkiYiIiIiIiIohTdOX8XIHL9FJcL5cPFuhy4CXMHjwYAx+8WW80KExNI7qSp3KTfDyy02gURfz5KhB4/a9MSBI2edLQS+gk58X3Mqo6x8DEZRt27atHJS1tUaNGjEYS0RUTGka+8PXpB+/ksOxcR+MGjMMgTUN/xggk7l6wq+lJ4pVHD+baIS+uQCxPqMwa+NmzHylppqeF0/4jxiFUf18s+dbG4G/V4qZUZg0pTt8nKVZO0d4Bk7ApDEiPQzh0fk8rFKvJ3D9M+mPqs7ABmk5Qsw3BjZ7AC2qKdsQFXMMyBIRERERERE9EezkgKGDNYOmpZR92tm+USqVFKKrxHcHoqO3t9zls3engZgyOxSx+i2+Yhagt1g3fLnBuKjRWNBLeV/w1uxtddJ2hyj7ezfUyFh4iqTQKco20yOyd8+YFIZgke7dGwti1DRV/O9B8nt6z4tWUxTaiAWYMqCjsj9p6jhgCuaExubo9lG7bqy8fuy6nDemI2cr7zW2LqckRC4KxshOynu8O41EyLqcn5ebzLwbPT9JCH1X2e+UUP21SXJrqpE92inv9W6HbqODseRgzj3o8jInR6MmLdZOyG1ddlnnKh7xW6XPVfOq/z5txBIEj+6GdvLxSJOoP/MioNUb41rZjxjnUVmeMUDZNsd5NqiL7XqMRPCi7PsyKmEtxort3wxVlmcOVI5lwlqj3cGmnV2LkJG6utIRA99dgMhb6koD2euVer4jTKkfOrnUE/WYvb3nIFLdMpOJ50G/LhvmaeSHyxGdyxfP1Dxl1aE0RC+aiG7txPJYrE1QNxD1MXROtu+dOFaRP/2PVvYzEDPkpVBMDNDtV07ILD+j5WXK9UnQ30dKLNZOH5n5no4jg7H8WC4nwwhT6nS+ebKCtLOhmPOm7jikcnpTqae5X6cMrw+ibs9B6GnDvEdijrxe1D2pfs7Tla0ov4mYE5ZL17ZJynnVbZtZFoa71yuL+EthWfVytl5Nl/YVOnsKBuq+F3I9DMFa/WM14Xud+3XOsmtl0sEFmKh7T7tumDg7DPFGrj9Jp6WyMaVe5ssRmskrsXnpVPSp74qyaqpFNIH45PBhHD48Cf7ZYvyOcFSX0/K7lrZ+DdgWB0yVjmSvtPy3dNEevRU4thTo5KFsQ1TMMSBLREREREREREQ2lxY1BwPbBSFkZSTQ0h/+7f3hh0gsnzkW3YbNQaTu5nJjP/QQrdd2b0dUZjBGciEa29WA6ZID0dmCkdFRa+TX7h38cm295No8AN3FzOpI6IdX046GY4k8J+3/qH5wQIuo3RHSqwY92ui6dkxD5OyBaBcUguVRgJ+UB//2fkDUcswY2w1BsyNNDpKaLh5rJ3XFwGlLEHbBU/lMzySEvimdy7WmjdPn6t8Dw8TMyu2IMAwG3orAdrml0zD08NedPeUzRVAm7JabXFb+/m5I3LoEwYO7YuI6M8cHNMf+BXhrtPS5Uu3wb+mpJkpHtG4iegUFY8nWNHj2HIbxYwbD3zEey6cHode7a7OC986e8vH6qC0gPdW65ilacKmy6mI8HP3V9WlhWDJN2tfwBYjOqxDtXOEpzkd99QNqS8cplj2M1LzY5Xhv6ESEJtaUtvGDp3SUkStDMHDUHIPP0KtXlxyV/bX3RJo430G9EDQve303Lvd68t6KM+o22Vl0HmIXY2LX7HkKWzoFvScaPkBhWZ7iV4Vg5LS1SKwobV9fF+kR+xqJbmNnKPsaOArjg7rLx7rgzW4Yqfe9c3QVnyOOS9DAR82Xaz4PJ5l8fdKXcQaL3+2GiaFJqCm2ry0df9gSTOk7Mf/uWiWm1mlL82QqkfegrmMxY10sUF/s2weaU/PlehphtMtvvetDmvJ98/d3RPzKGRjbozemhBp7iOAats8MwsAfY6BpIG0vfX+0p9dixsiBCNltUBMurZXqmHRe54UhraaSV/m8iLLoOwWh+r8LOhmHpLowEgvCxHVZd64kKZGY82o3jJ0p1U9HfwweMx7Deop6KIKhI+UHAGTmfK+zsexaeS1sBoIGz0dMJR9pe+l8a2OxduZIDPw6+wNDomxG9pDKZqUWGqneT50yCn3UcxH0od51zyS+GDw2999I8zjC1dVVmgxaXCeFYePvYsYXrerm0ww9dgMwuDHwxgnRIzTw1LPA/M5Az3eAw7p+jImKNwZkiYiIiIiIiIioQO4lJiEpyfiUeFfdSF9aBL77vxmIhAZ9ZuzAjj+WYunipVi5/TCWjhUBzRkY+1/djWhf+PUTr6E4pNfsThsdDhEelWULqkYjUg4A+KNTszxuAHu0RKf20qt2IyL1WsLGHlOCuULE7qisVnNJ0Tgkt7LsC7/GcoqUje8wdmYkoOmDWTt3YKWUh6WLV2LHoaUY3xKInDkWMwyDCwWUtHUBPl8tHZXhZ+78NxJ/nCGdJRO4+qPHGDGzHNv3Z2+1lbR/u5Qq7X5sD+jisfErgzFRfGbLSVi5eZNcVkuXbsLOzdPRR6PF2jdNGB/QQqFLo+G/cB/ObV+JpX/skM8rboVhyZwIaHXn4LtpmDRlOpb+tRTTAqUiXf051qqt1jSdp0rHOwsT2ijLgz9Q6trUzmrdSIvEgg9FXfTDpOWbsWlp9rqojQjBjLwCzppATJW2nzVeqrdCf/F50j4+CMzRBXzo7O2oN+ewWt9FPVmIUaIuSfV9+e6sckiLWoBgUa/0z3dmvdIiYvoMrMnnfOdVT/DLnJz1xMLzEDo7Ak2W6+Vp5yypTkgrwmZkloFgaZ6Wb0rEpI2HsW+jtP1Gad+ioVzMcny3Sm9fX03FpE/nYuUa6XxKnx05c35mkM53hPicqRgsL/lhwgwlX8OaygnGmXV90hM6BxENVuKwqKti+y07MKuffDIwY610vHkxo05blCeTRWPJZyLv0p7fWonN4ryLstq4GSsDt2PGImUrfdp1IfL1QdNvFnZsUfKedX2Ix/KPFiMix8laguWXRmNHuFoXxP7fEt8hLRb8HqrXWlm6vkyfiLXa7GWxdONObArpA82F5fhoibGyWILopxZi3xlR96V69rry/Yxe/Z3y8Iyat+lTJmHadyuxbuEoqbQjMeNH9bPN+F7rs/RaueT3eIzeuU/53knbb14+SSpZKffzFusFnLUI+0Wpl6MWb8JKqd6PGjMVszaulOuZNnIZQvW+c49b0unlmNJ3JBZIp8PvrWkYpv5u5mr7HOD6UODqOWC4tNzzM+m7thVwWQWsO6FsQ1TMMSBLREREREREREQFMmdkC7RoYXzqNjVniDBp90bMEXe9B36CT/pltXoEXOE/arQcaMi6Ee0Iv/ajxAyWHI2VX4E0xB5dK70Ow9Qp/tLGekHVhLM4JOYbd4JvbSXJOE/495Tei2gcOqULNMUjWnSf2n4qpo6QFjccyup69Ww0NorXoAD4yo2AkhCxYY58837wJ5+gj/7wexX9MXqMnAuD4EJBJSEybInxz6zZB5MmB6oL+ZHOacfxcmBh+dYIaa86Up62yuFYDG7vJ20lRCP05zDp1RdTPx0PP73mVI51B2P0a6K1sAkBJwtpxk7ChECDEEjFQEzduA/ndn6Z/RzY+cBXBGylM3T8kmlnPWn3GsyQ6ovvlGkY31q/rVhWXQz7OVQv4F8AYyZhlP5nSPno219pbb3xtK4OSmWwaob0eTnPd1a9CsOSrXkdkVaqm+bVE4vPg2GepP0Pf1HM6JeB5XkKnDwJg+vrv0HSeBgWbj+HE78a7MvVF03kwHso4q/KKRYx7/qkbxQmjdFrcWjniT4via2l7U9dkssjV1as0wVyLAzzRVCv8VRMe12/9aQr/KSyHp8jGhmNNT+Ia/xgfPJBH3jaKalC5vVBOwcb9R44UPhj0hv620v77zdc6bVgQ3xWS8+YNZgvHoTJURaO8HlxNEY3lnY/dyMiDHevGS/tPxAaveMRfIMWYse5E1g6LnvLUNeGTeQAaLbPNpvl10r/tyZlK3fX1tL3SD4Z2etymhx5roIq7votUaV6NkM8tLIUo+S68vglhQWjd48pWH7BE92D12GhVJcM2s7mNPovYNtngK534mNx0vyz0o/UOeB98VtNVPwxIEtERERERERERAUSGDQVU6cYn8b303XvmyU2RukUuLt/42w3xWUV/dBJbRGruxHt2CxA6WJ3q64lbDQiV0svQZ0wuH0n+ErLuu6Fk6IPya3/fPv7S+l582wm3it9UuRZJSiZEIXtu6X3BvpL+xWfuAThR5W2V9FRG+WAyrBA3Y38WEQvFa/dEeCbIxdw9euEPmKmQDf4DeX9mZ6NA/LNs46jfycMF8GVleGI1AUzdN0Va4ajk24gQF2AG4GZLYP1+fr3kAO7+QacLOTX0Cf3G/mOjkhLSkJ8TAQiIkKxfOYUzPhFXWciXV30dUyS9iH2ozedvCavQ0w8tIYBHwt0982ZlyoaJQqjfaBr46crY184JhocjzRFX5c3QnScVi+QbigeseL7kVs9adMDhuENS8+DsTwhR9e5luepVV39IFx2YmzKtCQtYqOk/YStxZLpH2GGOlZwQZh7fcrUswl8DE+GnZkjc1qhTheE9vxx5Xvc2S/ntcTRDwFy3vXorg+tNUg7mb1cxXTprnIGIy8YXgUD4GP4wIyRLpe1Zw/J13w/TRqiDfYdEXEJie5iq0jEXhKvetrUy1kWmRyl/6UhSRuLSGk/YeuWIOQzE3sXyEsBrpUBDQzruVRvDILJ4kGZun4ibByNkFe7YeL05QiNioXWWPfZmeNE55ysOdawcdFY/p8l0lXIF+OXrsPcEb45v0f5afEf4DkvdUFipe64iR43BmSJiIiIiIiIiKhAWvUfhVFjjE/DA/Wbe2VXpWIVdU6fBpo6ylxmizBXX7TqKb3GbEe06O4xJhIbpVXd2/rCVR1jNiJaBFXTEH1ABFM06NHShNCkbnzapeHy+JhKMFd5r6tvK7m1VsRp0So3HtFhIizQHa1yBLiqwFUOChjQaFBPnjmOS8bGOCwoYzeo3asg97NtyA+BcoutJdh+QAmDJUWGy90V+74WqLQW09dayqc6m43G0woty8yXdFCM+dgOjVq0QMdeQQgKGospv0dCqzc2rDmWTxP7MJyC5fMhxrtMMhb0KFTLEZzjeKTpQ+WIcEvUdhMYqyeOZXMNkBTuebBSnkQL+XUhGNnJWyr/dug2QNrHyIkIDj0LR/F9thKTr09WYu06XSBGA2COcCynzho6OAcTjZTt2NlKx/LRd00r2dxEzp2YY9/i/MzZLdZGqy1HTZASi7XTR6JjvUZo0a4bBkr7GflmMEJjHaWStZJCvFb6jlyIlVO6w1OMMTtvCsYO6IZ2TbzRccAULDio9ziDbgxcI5O1xhrOlS4w3X4YBmeOQ26m3pOAV9kqlkoeBmSJiIiIiIiIiOixuHbHWBu/JCSpDfJ8qulukWvQMlB0sxqB7Ue1iD+6HdGZY8SqY8yKoGqK2nJWb5zXvEnvHSj2sQaRMbpgrvpedYxZEYiNV1vOon0ntNR1p5jpGpKMZiNJWiP4oGaO9xSStHt5tJrMybd9X7kV3JKwSHHW5e6QxTnp295IMPug2MKIm9cgN07r7mm9gEZ+YhZg5OAQrD3ticHBc7Fu52EcPn4O5/ZtwvT+6jZmGvbdPhw+LO3H6PQlutuqDDMNw9xwY8eiTiHdTTvfD9RXfXnUk8I9D9bJU9LWEAS9uQBhKYEY/+1SbNonvfeEVP7bl2aOFWwNpl+frKAQ6nSBGKs3SEOasTHBhdZTsdJYmeqm13I84mEWvw9WGt+vOo1qpm6YpySEfRGEifPCcK/zeMxaugn7pPeeOHcOO36ekPMhFEsV6rVSdB09FzvOnMC+zSsx96vxGBboifio5QgZPBJzjqmRaXUMXHkMW4PJOmMN50GqO24i+Fu/imjnS1QipKSkYMuWLeqS5RiQJSIiIiIiIiIim/KsIw+Oh9Do2Jwt4tKicWiTmAmEp95da103q6H71yB0d4TeGLGO8G0juhdeg8jflZazGNMJfrl2V6nPEX7+faVXLTYeWKJ2g6wbI9YTvoG+wO7tCN2gdIMsxpzN6ljSE56i1a605nhszuZZadGHlDFnA3PefI+8pEZ0MiVBa1KTqazPPHQy52cmnYyE0h7NRI390VcEn5duR+SFSGwX3cq2H4bu+sFsj5poImcgHLGidbKB+JhwuUtRjbcGhu0Jz1w1bEF4DdfOq7MFILoxFaMw+ofMxPQR3eFb0xWuulaERgNJudPVRVEmrq7SfnKZTKpOVqEr40jE3zR+LMqU1xH5wDdIvIYiPHMQ5CzxBzbmqCeFex6skacsokthUbNGzZiLSb394aOR3iu/9R6QIV4LxpLrU0FZs04XhKZuK/khjazu4fWkRSJcfuBFj+76cDAW2gz9sjSYLGzlq6nZRL5+Rp6UStzYftXJMUf3vsaIrrPlmoNZ301CH38faMR7xSprnOMCXCvNZucolZUfug+chGkLN2Hl66LUIrF4t26c9ceoZh9MF8HfDwILEHgmsr6LFy9i2bJleOONN9CvXz8888wzaNGiBbp06YJXXnkFU6ZMwdy5cxEfn/0Psrt372LUqFFYsGCBmmI5BmSJiIiIiIiIiMimNO2HYJi4UztvBhZE6Yc80hC9dD7miHvmPV9AJ/0xBmv7opMcPAxByAZpH92zxjhUuhfWYsZnIfIN72FtfE0OHOnGp42eHoIZ0ufK3SArq+DbUoz5F4qQz5SWo52a6Y/zp0Fgv2HyDecFMxcgUr8r15RoLJk/Rw4ade/XKTOI61pRmdP+PB9r9cY8jF/9ET4SY7fmSwP/7kqwaMlsg89MisD82WrXrybzRfdXRMvjJVg8bbH0XyCwj37QWfBD4L9E27EIzPjv2uxdbd4KxYKvw6QZXwzv4pd5zjUapavJtT8uzxqfFkmInB2MEHmMRetIMmyafGktFv+uzufiWmL2EJum/QsYLL1G/5i9TIS0qDkY6N0O3SYsh8lhjpumdrubG6le9ZaPCPN/lM53tgBjmnQOB8K7XTeMXZnXEblK9WSUXDeXf/QRlp/OOk9JUQsQLJdZdlY/D9lYI085JRl0g5sWJZV/ngOBJiExtxaeeiy6PlmJ+XXatDyZrHF3DBOXhJgQuZ5odWWVFo/Q6TOUvGej6/p8Oeb/Ilra64vH2knt4N1pIGbstvBb0TIQo8V1f+V8LNHvkleQzs3EdqK73hmIMKsr7SSDrrelOrh6sfzQTa5M+l6bf600y60whPSQzme7kFzz61PRwi6CrUn6/Vsr/Z7OCTXyQAPRYyACsWPHjkXPnj3x6aefYtu2bThz5gxu3ryJBw8eICEhAQcPHsT69esxZ84cPPfcc3IA9vjx40hMTMSrr76Ko0ePIiYmJuc12kwMyBIRERERERERkW1VDMSoD/pAg0jMGNANIz+cgQXzFiBkQjf0/iwM0PTBrClivT5f+HXPSumrP0as2r2wwtg4r3nQjU8r03WDrGrsB9F+VqbpkaMbZNfOo/DvftL2UTMw8PmRCJ65QMpHCMY+3xshIhv9ZmFq76z9Obbpi0ktpRntWkx8piMGDg9CUI926Di9CvqOULbJj6b3BEwV+9D/zJlTENQ1CLGdx8vj3ppDtDwW8ZewMBEs6I4X2mcPxwq+L06Vj1u7eiIG9piIEKms5M/sMRZLtIDfW9MwqmVWiMEzcDj6iGyLY+zaDUFSPgd2aoGBUX4YZe4BGqFp1kk+5ujp4zB2+nKERoRiuTieAfNxVq/4smjQuI3SIemS93rLxzPnoBoqqNgd47+V6ppaJmOnizJcgBkfjkS3ATOkGloW3YP6wkfZOleaBgFKl6eL3kNvMb7l3EiLgxGu3cdjllSvxPnu2GWscr7nzUDwyG4YODMScO6O4T3zPiLH9pMw9y3piKR8TenRAt7e3vLUYsBGtPpgWs56YqXzkBtr5EnHt/V4Ndg8FlPmrZXq7losmT5WOs6NSDP4jip84DtCvCMCwaMGSuU/BWuNtGDMZNH1qWDMr9Nm5slknhj8ySz5+xs5dyTa1VPqjXejjvgoaThmva5upsf35Wny9SFy5kB0DZqCGXLZhmBij4GYuFoLTcPBGNzeohCkxBfDPp0kfbekshjcFUFTlbJYMH2iVN4TsVYrfbdfGgx/k1rgSr8hY8U5W46PJkzBgnVhCFu3RC7XgaFp0tqczP1em3utNEtF6fdJVBLtAgQ9L32HFq1FqHT8M6aOxNjZ0XK9HB6Y8/pta/EbZmCilO8ZY0Owxip1ksgyGRkZmDlzJnr37o1du3apqabZu3cvXnzxRfm9IhArPHz4EBERZvVDkgMDskREREREREREVPgMuoT07D0Lm5dPRZ/69xC2dA5CpodgwYZ78Ok9FUvXz0KfmuqGevzaD1eDIMMQ0Ez/prbavbAQaGyc17xktTrN6gZZ5eiLALnrV2mrgVktcrN4os+MzVg5pQ98UsKwZHaIlI8FCE3xQZ8pS7H+qz7ZW5tK+xv/7UKMkm+axyNydwRiK/XF3D+mooe7skn+fDFqySbMGukPzQX1M2dvB15cii8H1VO3MUPtTnhBF5Ae+AICjZ07Zz+MF585JhBlT6/FAqmsQmYvR4RzIEZ9uwkLXzdo8eXRHV/+NE0qW6m0tLGIkPKp9Z2GdbOGoYlJXYvmo/ZgzJLqTvfa8QidNwVjg8Ziyu/x8P3ke0zNJeDrM2ImFopzph7PxqNZrTH162LoPFGGIZizNAz36vfB1OXrMMnfhABK/WGYOX8U/DVaxEZEIOKvSAtbkwr69SpUOd/T52BJmPL9WLlqkgkBKEf4vb4S+5ZOx6iB/vAXYzoOnIS5GxdifBs3dZvsrHIecmWNPCkc/Sdg6bfSuUYElk+fiJEjJyI4FBi1ZiZG11E3ysYVgZMXYlpP6Xt3IVIq/+U4FJt3KydLrk8FYnadNj9PJqvZB7M2b8LcKcPQXdSb9t0xLFi5ntUso26jT//6ELEcc+SyXYC1p8sicMwsLJ0xOPt10EyOLcdj6eZZ0nWzLCJ+V8oiZN5axMrXn6WYNdDUvTvCf7y0vXQdgHScIW+OxMg3gxGKUVj3zWgYLVJzv9fmXivNIh3/FL3v0LSJGCsd/5zfY+Gm1kvbj3WdU5UGrZQgdstW8C0Cx0NPpuvXr8stW3/88Uc5MKtTvnx5uaviCRMm4PPPP5e7If7666/l7oqHDh0qd4GuT7Si1VfQgGyp9PT0R+o8ERERERERERGVQFqtFtWrV1eXip60JLU7SEdXdSzI4igNSUlK2ylH3biEeUlJQhKk/Fo4tqIsTdqH+MgCnbc0RExvhKB5wOC5hzG9ez6tizOkfMpdxTrClDE/5bItxHLV1R3HciaOIykfP3I99sy6WMbyshH7gKnHky+9emWtfV5ai7HPTERo++nYsdh4sMwa5yF31sqTmd85Qf7OmFZ3dTLPhY2uT2bXaQvyZKnImd4YOBsYtfgEphpr9Zp5fTCjTMwhrpvywz0FzK/u2mnGfsz+Xpt5rTRPVt23Vb00S1qadN13tH75U6G4cuUKNBrlcTdrEd0EV6tWTV2yve+//16edBwcHPDmm2/i5Zdfhp1d7l9i0YXxokWL5Ja1xlStWhVbt25Vl8zHFrJERERERERERPRYiRv3olVCkbupbBZx013Jh0nZcJa2LWigS9yIL+h5uxSKxfPEzCj0DTShq2c7XT5N+1C5bAuxXHV1x+QgiXz8uR9QZl0sQNnIgSiLg4yG9OqVOfvURmLt7ImYsi7bSJay+AN/K+Nl1q4C421lrXMecmdhnnIw8zsnyN8Z8ypk5rkoxHqsz+w6bUGecpeE+LAlCH5zTvYxqoWUSGyX4xC+qOKey+dlXh/MKBNziOumvP8C7l137TRjP2Z/r828Vpon6zzbql6ahcFYeszGjRuHESOUsSD8/Pzk8WHFcl7BWEEEp3/55Rd1Kad//vkH58+fV5fMxxayREREREREREQlXFFvIUu2lxQ2A2MXRiItPgKRFwC/D9Zh5UhjoyhSsRSzAAN7hSBSdMn94gQM7+0DVyQhdt1ifPd7BLTww6Q1SzG+KcMmpC8JYR92xcilWqB2d0x6ewj8Kjsi7Xokln0zA6HStULTby7Wz+hu1TF0iejxKYktZHXE+Piii+LSpfNvm3rhwgW88sor8t/Mefnggw/k8WUtwYAsEREREREREVEJx4AsGYr42htBc6UZjQ/6vDYdn4zxgwntY6kYSTu7FjM++hwLIrLfXNb4D8akKVMxuClLnIxJQuS89/DW9FBkb1/tie5vTcPUcYHwLFDLZiIqSkpyQNYc9+7dw8GDBxEeHo49e/bg7Nmz6prsOnXqhNmzZ6tL5mFAloiIiIiIiIiohGNAlujJJca+TNLGIh6e8NEUVheqVOLIY6BeQ3x0Elx9PVHFauMiE1FRwoCscdevX8euXbvkAG1ERARu374tpzs7O8vL+XV/bAwDskREREREREREJRwDskRERERkiAHZ/D18+BAxMTFyy1kRoH3rrbfQokULda3pGJAlIiIiIiIiIirhGJAlIiIiIkMMyNpO/iPZEhERERERERERERERERGRRRiQJSIiIiIiIiIiIiIiIiIqJAzIEhEREREREREREREREREVEquMIZuWlob79+/jwYMHyMjIwKNHHJaWiIiIiIiIiEinVKlSsLOzQ5kyZWBvbw9HR0d1jW1wDFkiIiIiMlQSx5A9ceIEKlSoUOTGsS1QQDY1NVWexD8knJ2d4eDggNKl2eiWiIiIiIiIiMjQw4cPkZ6ejpSUFPnBdicnJ3myBQZkiYiIiMhQSQzIfvjhh1i9ejXq1KmD9u3bIyAgAG3atLHZ3925sSggK1rCJicny091urq6yk94EhERERERERGRaUQPY0lJSfI9FhcXF/keS2FiQJaIiIiIDJXEgOyGDRvw7rvvqksK0bC0ZcuWePrpp+UAbcOGDeUebGzJ7ICseIJT/IPBzc3tsUeTiYiIiIiIiIiKM9HzWGJiovzAu7hRVFgYkCUiIiIiQyUxIHv79m25ZWxeKlasiBdeeAGTJk1SUwqfWf0Li6c2RTBWHCiDsUREREREREREBSPur4j7LLrWskREREREZDkxfmz9+vXVJePEEKwvvfSSupQ3MezIl19+if/85z9qimXMCsiKbopFy1hHR0c1hYiIiIiIiIiICkLcZxH3W8R9FyIiIiIiKhh/f391LqcqVarg559/Nqn3GNHa9//+7/+wZMkS+T1fffWVusZ8JgdkRRc6YjwTtowlIiIiIiIiIrIucb9F3HcR91+IiIiIiMhyeQVkRc80//vf/7B//348epRzVFeRduDAAUyZMgW9evVCeHi4ugbYtGkTbty4oS6Zx+QxZG/evInKlSvDzs5OTSEiIiIiIiIiImvJyMjA9evX4e7urqZYD8eQJSIiIiJDJXEMWUE85PjUU0/Jf1/nRXRdLP72rlq1qjwvxMfHIyEhQZ7X17hxYzmQa+nf6iYFZNPS0iBtVyj/ICAiIiIiIiIiIoV4IF7cDLL2cFFFLSCblCSGxgLu3hX3nQAxfO7Dh+pKIiKiJ1jp0kCZMmJIA6BcOcDFBXB1VVcSWVlJDcgKr776qtzSVfDx8UG/fv3kgOqdO3fkNFOVk76Iw4YNw2uvvVagXoRNCsiKMUzEh5QtW1ZNISIiIiIiIiIia7t37578RL+LuPtqRUUhICuCr9Jh4PZt5QazuJ/l4PBIvuksbj6XKqVsJ3qOE8FZMWVklJKDtWIqisSxi8nO7pGcB+bj8WI+ihbmo2hhPooWU/Ihjj09vZT0d4HyG1qhAiDiZuI3lMhaSnJA9ocffsDs2bNRu3ZteQxY0ehUBGNXrFghT6IlbG5Eb8HNmjVDly5dMGjQIDg7O6trLGdSQPa29JdypUqVpIuCdFUgIiIiIiIiIqJC8fDhQ3lcqgrirqsVPc6ArLiJfOUKcP8+4Ob2COJ+lrm3mMSNafH+tLRS8vzjJI7d0fER7O2ZD+bDepgP5qMwMB8lKx8pKUBiYin5/eInnYFZsoaSHJA9evQoJk+ejMWLF8tdEhsSsU+R/8uXL8uvYuxYEQsV2zZp0sQqQVh9JgVkxT8EPDw81CUiIiIiIiIiIiosYswqcTPImh5XQFY0PEhMhJQfJRBrDaKL43v3SsktiGxJtFwqW/YRrNWbNPNRMMyHccxHwTAfxjEfBWPtfIjA7I0bpeDmBnh6qolEFirJAVkxfqzIn2cR+aKY9ByGiAoTEREREREREVHhKwn3YUT3ijExSouemjWtF4wVxA1tV9dHcHBQE2xAfJb4TGvdTBeYD8sxH7ljPizHfOSO+bBcYeRD/KaK31bxGyt+a8VvLhHlJLodLirBWMHMhvFERERERERERES5S0oCTp0CKlZ8hAoVHsktg6xN7NPZ+RGcnAo/eC0+Q3wW85E75sN8zEf+mA/zMR/5K0n5EL+x4rdW/OaK314iKtoYkCUiIiIiIiIiIqsQN4RjY8XYduImtJpYiESLo3LlCu+muti3NVs15Yb5MA3zYR7mwzTMh3mYD9PYKh/it1b85orfXgZliYo2BmSJiIiIiIiIiKjARJeJ584p3Sja4ia0jr194dxUF/sU+7YV5iNvzIdlmI+8MR+WYT7yZut8iN9c8dsrfoPZfTFR0cWALBERERERERERFVhcHFC1qm2DsTrixrc1u58U+7LlzXQd5sM45qNgmA/jmI+CYT6Me1z5EL+94jdY/BYTUdHEgCwRERERERERERVIfLxoEaR0nfi4iJvRDg7qQgGIfTyOoLIO85Ed82EdzEd2zId1MB/ZPe58iN9g8VssfpOJqOhhQJaIiIiIiIiIiCx29y6QmAi4uVmvhZGlRMukUqXUBQuI91qzpZSlmA8F82FdzIeC+bAu5kNRVPIhfovFb7L4bSaiooUBWSIiIiIiIiIistiVK0ClSgW7kW0t4hjKlrX8hrh4L/NhPcyHgvmwLuZDwXxYV0nKh/hNFr/NRFS0MCBLREREREREREQWES1w7t9/vF0VGxLdRZa24I6XeE+Bu5q8n4iUO7ekKRH3M9Q0Cz3WfNwTeRBTsppguceaDytiPqyQj4xktV7dKt7fDyt6rPkoEd/zDNxPUfORkqqmWe6xloehAvyeiN9k8dvMVrJERUup9PT0fB/7uH79OqpVq6YuERERERERERFRYbl69SoqV66sLlmHVqtF9erV1SXrOX8esLd/BBcXNcEiGUg5sRMhM6/g/D2g3rDOCO7qoa6zTFoakJpqXlMl0dWkxTfUM+IRNncvFu1Px301CWUdEPDyUxj3jKeaYD6b5+Pmcfz67RFsiFOXhbJO6DnhGQxtZnmdtHk+9GWcx5oP92DFJWnepw5mfvQ0NMoas9k2HwnY/MlWLIpVFw0U5Hti+/JIxvnNYfj290RodV8QezvU6+mHyQPqw9LnOWyZj5hFSxGyVV0wqjKmLu6OxuqSOfg9VxfMdTMSC748gbCr6rLEvrIbhr4eiK5elv8oFXo+sv1eGKk3GddxYNF2fB+m/3tifvkkJ4ugbCnUqaMmEOXiypUr0Ggs/WU07uLFi4wpGmH34YcffqzO5yolJQXly5dXl4iIiIiIiIiIqLAkJyfD2cpNTgvr3o4IyIp7eBZ305hyFpt/2IYvl93GzQdKUqXm3gisW6AIr9xaKS3NvIMSp9yyfCRgc0gYfjqagUrNqmPo0Np4tkkZ3I69jcg9F3CuiicCajmp25rHpvlIPID/vBODXTeAOoF1MLRfTbSpdx/aY3dwYPd53GvaCE3dLWg6JrFteejLgHZTGL7Zo1Yu9wro0bEWyilLZrNtPq5g3/IrOOPohMCOlVFP+k7U1ZvqNfREPU0xqFeiDDZvwAdLknHP3QU9BtRF1+ZlcD/+DmKiruBQaVd0bVhB3dY8tszH/btaqf5kLwN58gLuxKUjxd4ZHfr6WBTst2l53DuBRR8eRuhV6Xveoz5G9a6GgCalceXobRzYeR53GtZFC429urF5bJoP+Xp1CnsTs65Xzaum4MLxOwjfeRHln6qPui7SAVmg8PKRgcSj2/FZcDS2XcjAQzlNqjf99OtNMmKWbMR/tj+AnVdlDHvJG083yroO36lXBy2qOKjb5q1MGeCff0rBo2DPN9ET4M6dOyhXztJfRuMSExMZUzTCsqsSERERERERERE90ZKSAHH/Tty8tlTMCqWVUL0Xn8JnQy0LLhkjjkncjDaV2NbifMRGY8VpwN6/ET5/pxMCWzZHi2c6Yeq0unKrp8N/HoOlQ/nZMh9Xws7j8H2g8aie+Gzk0wiQ8hHQtSeC36oMZ2RgQ9gJdUvz2bQ89P2zF9+vSIV9fSfUU5MKwqb5yEhHyh3ptWpV9B3WGSMMpp6NKirbWcCm+Ug8gPlLUnG/ZnUEf90XQ7v6SfWqM975rDkCy0v1bm0MDtxTtzWTLfNR/emcZSCmF7wArVg/oLFFrWMFW+Yj5dBpbL4JOPdoI11z26CFfL3qjM/e8ZC/55v/Oo4UdVtz2S4fGTjz11n5elVvaKfM61XggL74XLpeud1PxaJFB5Cobm2uQsvH9b2Y9Z8EXHapiHHfNEFXNTmb0/swa2uG3Jr/q4+6o6u/ch3+bJonqovy+TXS5N8TcUziN1r8VhNR0WDRJY+IiIiIiIiIiJ5sojtEp4LGUDWV8c43gzC1Z12Us1PTrMTcG+qWup8ClKvqgBa+1bN3vepWB218pNd/UnFbSbGIrfJRrmV9vPOWH0a3zR7os/dwQQ0xk5BscYBDsFU+siRg8/zzOAMnDP2/+rBWr502y8etRFwWr7XdLO5iOS+2yod2/xXESK8BA55CHf3vuHMTDHqvCd6ZUAs1MvtlNZ/NysOYe8fx5zLpQmhfEYOetbxrcsFW+bibogxGWkPjKr9mqlkRvuI1JR0FGXbUNvmIR0yUyIcbegZm74rfuUlTPF9bmjn+D6LFAw0WKpx8OKHxsKcw5+ueCKhs/AfvTKRWDogH9PCDRn+Tmk3xQjPp9dIVhOXSjbkx4jda/FYTUdHAgCwREREREREREZnt7l3AweGRumSZxj27o0Vl07pfNJednenHZs62huybdcbMrwfhzWcM+oVMuYIYcePcx6VAATVb5cOtVnO0aNkImrJqgiwD2qh/cF6aq+5XA25KokVslQ+dxD378OtpoN6gp9DVikMy2ywft+/JAVlNBSckXozEmiVbsWjJToRfvKWsLyDb5CMV52NTpVcXtKjvJBXKeRzevF3Kx3ZsjoqHfQ1R55qgegF6tbRZeRih3XUam++I1rFN0Sbb98Z8tsqHpklliBDm+dgr2VrCphy/gsPSq5uvRzG4XqXjrnzw9iiX47yXhr3c43IyzlyQEyxSKPmo7IdBXevCOdeHjxJw/rQINDuhno/h004VUa+5SMuQ8pWgJJlA/EaL32oiKhoYkCUiIiIiIiKiku+B/H+yorS0grXUKmzmdIVpWbeZeUlGzIrTOCDNtejcuEABjseRjyt7RPBvKxbMXIV3l6QCTepicveCtQC0aT5SIrF0YTLu1/TE6K7ZW9AVlM3ykZImB8xur92L8R+cwIrNCdi8OR7ff7AB4789AK3S0NFitslHIm6L/nxhj/QT0nG/vgf/WXJFyscVLJq5E+Mnh+LwnYJlxGblYejecWz4U/puWKF1rGCzfFR7GpNHuAARJzA+eIP8PV80dxXGf5cof88/fqGuuqFlbJMPDep4iddbOHBcBPz1XD+LcDNakObGZuWRzXVckY+9HGq4ywnZaKopY3zeTja9j2/xGy1+q4moaLDa5YKIiIiIiIiInlzXwv+LyF8NpvVrEH9d3cCG7kQvkj5/ES7ouiu8E4qI98shbG4oCtCDIRl48MCaN6Kt7/HcUBcyoN28CV9vzYBb5+YY97TlY30KjyMft2NF8C8BYVHpsK/thhc61IASCrCc7fKRjMO/nkb4fTv0HPk0qlu5K2xb5SPF3gVdA91Q7+n6+Gx2f/yy+EX89HUTdK0NJB46ja9D49UtLWObfOgCTLew6Ick+I7thJ9+CsIvP3bCO10dpNXX8a0ILsvbWsZW5WHImq1jBVvmo5x3VTwt1aP7cbfk7/nmiFTct3fA009pisn3vCLaPF8ZbtK1dvPM9VgUFY+UO7egjd2Dbz87j8vlC/6lt2V5mEt72/Q+iMWxid9qIioabHy5ICIiIiIiIqKS6G7s+7h56Afcjt2IJDGd/AE3tw/FqS98sWfreTxUt7OF+1dCpWMJxR1dwxkHDziWb4cylaVXNYkK7qFUqKVKqQtFkDnHZr18iGDsGqVVaf06+PjlJtnHlbXA48hH4yE9MW+ONH3phxcqJ2PF3J2Y/MvxbF2cmstW+Ug5vgfzd2bArWtzDPKxcjRWYqt8ODd6BiNG9sLUkW1Qx010VWoH+6rNMeKdumgsLV356zTOyFtaxjb5cIC92h1xnUHPYJx/ddiLIrGvjhbDOmCoj3S9Ph2P8EvKNpawVXlkY+XWsYKt8pFyfAsmB5/FnrsVMe7LvvhlcRB+mSfKBtizYG+x+Z7bN+qCj/8lxldOx+aZOzFm/Aa89cl5nG/SCBN7F7wbfFvlIzvpyyF3t5yLh0prck0FF/nVFOLYxG81ERUNDMgSERERERERPaESIpfj0Jzu2PaeuzyJeZFmuRHw+mgDAsX0STSe/TgSlaucR+qGr3AyUd3kcXBsDr+PtiFwUHMUzmilREIGtHv+xsdyMNYTwW8/DY3144G2UbYinMtLU7VG6DmhDfpWBRK3nsaem+r6oureCaxYcB2Jzm4Y1M0D9+/cklvOpdxJhzyM4v0M3BXL99LlzYsltzpo4yO93kmGtsg3+XeFRqo7YkzMNi0Nu472QIu2ItCcjtu3lZTi4sq2E1ZtHWs7CdizSvp+SL+Egyb3REA1NbBX1hMBo57CoJrie34CYVeV5KLNDpqne2Hm/zoh+K0meEeagr/uj5mjmiP9kngaywnVrdtbuQ1URPXa4vUuLhvpXUR7RemquIJLsap0RKSHAVkiIiIiIiKiJ9CZte/j+NJXcevcbjx8kCZPYl6kiXXWULp8AzTu9IY0twiJp/TGPHuYiAubv8KeT3oi7JOhiPh1Da5kCywcwWGx7o8jSI1bgwOzxHY9sWextJ2u1auOtK+4P97GTnlf4xAZlWikNW7W/gyX893/g39w1mD/N3e/L82/j1OPoTvmokR0hfjokbpQBJlzbAXPRwYS94fi4x8SkVK5Mia//cz/s3c38FFU9/7Hv8jDKpRQ20RFY7VGqYRaiaUlQDUULtF4efIKpBUIFQglkv4ppFd5UHnwytNtSLkXjMqDNRBbBCoSKiW0lGCR4EUWqwalhgougiQVWSSyAeQ/szsJm80m2U12Qwif98sxM7MnM3Nmzpkd5pdzjm5uaNNYS+Pk47g+shv1wv6Rqv3tRMubddt3zJkv9cmn7jX10ij5+OIzfWQGjctOaNl/vuZuNeeZ9ukN8/ODH+txc3n1fnOpXhrnekgnDpnXY58+qdZc8bTK3PfL1mrbgDLWOPm4Tje4x/os1+cnfMeKPaeST60bbgP+cKGxrkel029r/brykLaONTVOPiq6kI7QzR3dK7zcqJvd9bxcJf9yr6iXxsnHlyrZ56kfJeeu121xd6qrMd127VVGsSpWkd1Icm2kuvgZhzVQjZMPX9fp5k5mZfhS/zjg+zByXO/93VzXRl2/c51nVQDMY2vsLpUB1IzqCAAAAADAZcZsBXuw4H+sperMzxrWUvaCNld5xs88c9IK83z1kd79TZz+kf97net4nyJuvUln3n5IRf81Wf+ojASd1pkTBTr74Xz937Mv6uzX79NVVx3Vl2a67FdV2UjP2lbxG+t19qo7jW110Be/f0BF7/g2t7K2d6oiKBzE9v+nh/7ps/1333xbZ08c1JnLvBvAVq2MU9SEz0Ewx9awfJxT2d//rGmLj+vENyL1n/91r2JDFIw1NU4+XPrHH9/Vr7MKtebvPuMTflqoV3eaM1/TbdHuNfXSKPn42rc11GotV3W63t3Nr669WmPN5R/f4E5eH41zPaRT7+43rsceLd3+ibXGo+zvRfqjGRj/XpTcsZt6aqx8xHa/Tm2NOrLl5UKVeMdkjXK1Zrvxs/XVinUHbeunsfJR4ZOt5vjEoW8d2zj5iNT1ZutqHdcbvvW87F298aY500ZR33SvqZfGycdV+vztfe768cw27/pRrk+2vOtpvfzjb6shDWQbJx/V3db9WnUwfr6x/v/0iVd9KXv3Ta1515iJvlY/COI+bB6b+V0NoGlo+cQTT8y05mtUVlam9u2tDv8BAAAAAMAl7YM/TNbp44esJf/OnPqXrv/hSGupbp+/PUfHP+2tb9zbS54QrOm0/rlpqo4fu13fTPq5rv26dPL1afrg/86qw6it6pnUSx3v+Dfd9KMf6dOtk/Wvsv666bvXqYUO65P8F+X6apBufjJbd/ygu6J7jdK5Qy/qxD9Pq8X3ByuqrVS+Z5HeeyNfbfq9qXtGDdH17m3drqP5s1V+9nZ97UcP6pp25nFY27tulG6503yT2bDtH/vzbLnOeG8/tL744gu1bUjTNz/C8W7nxAmpTZvQvewtO7BPm/9+Vt+88xb1jgl8jLyanDtnlOMzgQ3u17q11LK+wa1/FuiXcz51tyy9/vYInTn4T739d+/JoTa33KSoeg5g3Dj5+Jq+FXVE2/52Sh+88YEKP3Lokw8P6e233tGLvz2mj89It43spZGd61+GGiUfrdorquN1uq7adEoHXvlUB4z5kT/5gWLcY7LWT2OVq/Y3nNfJNz7V/735kV4vdsh16pjeyd+tRS+flKv1VRo1+ce6/Wv1b2vTaPXjm9coxvmhCnYf19Yd/1TZFSd1dNduLV5mlavhPfTQd5p4uapw+m2t/PURfdzyao1O76YbQhjoaqx63vGbR7R9h1HP/+9DvfPJZ0ad+Vwf7d6jF7M/0p6TUoe+39W4H11T61CmtWms6/HNW4znCa/68WnxIb2R95ZWbiuXbrpR08d+T+0b0BQt/Pk4prfNe5La6u4HblWUtVZXR+nbRn15/e3Ptc2rvjz30uf67KuW6jehj+6OCvzqnDHq2NmzLfTNBgTZ0fydPHlS7dqF9oH2hPGQSEyxOlrIAgAAAABwmTlx6P+suZoFkqa6Qh196X+0xz3N0s7Z31fxO2/rijtn6Db3uGif6uPdL0rfSNZ1N7t08uQJz3S2q77RSfrqg7065t6O5db7dFNl3ORKffPmeONngU5Z3aYe+cDYln6ua3vdfOEFx1XdddMPEqyFOtRz+zd+P8DtN3Pmu7vy8sBeWF8M584FfmzBpK3mVHllN7+f2I9qyxbfqVSHXVaCemisfLTufK/+e1aMendqqRL7cc+xb/tCn195le6f1Fcz+jVsQMZGux5h1mj5aPtdjXryTt1vXI/P/35ca1Z+pFd3fil9O1KP/Fd/9bu2IZHFxrweX1PsiCRNG3SVWp/4Qq+t3K8X/3Qplqtz+mSzp3XsbT+5K+RjxzZWPtp+16rn35Y+2vmxlmW9q2VrjusjtVHPkfH67xHfVUP+HKjRrodP/TDvV2/sP6eoHjdrxtR7dH3Dqkfj5aMas778m351n/FwUlq1vgyamqRRnYP7YxLzOzrEcTYADdCivLy8zl7OS0tL1bFjtY7lAQAAAADAJWjrY99wjxlbmyta2dRnfmXnvXX6Z047FVcM0Wpq1V2t2t2udr0nKvZH31E7d0TzI/396S46VuNmZygm81F9W7v0fxl9dOLOrfq3lO7WZ9JnWx7Snj+9qg4/O6Uf3FGxz4rfucCTTrrusZf03WvMNb7bC/X2Q+vIkSOKjIy0lkKjpKRE11/fsMCHL6dT+vRT6ZprQjaAXkh98UULnT1rLdTBbOX7ta+Rj0rnvlBZ2RmpdTu1vbKNtbJhuB4NUHE9roxQ29YNjDRZLs71KNeZk6d0puWVatu2/q2UvVGuGqC51PMzJ1R2+iu1bnu1QlQ9mka5qrg+Dagvx4610LXXShER1grAj08++URRUZXttEPi0KFDxBT9oIUsAAAAAACXmQ7f+oE1V7NA0lRnBi9P6d/Maf5W9X7yGf3gnopgrOkqXdHK+BH5jGJnfqLu1ab/pxs9CYNwXL6x5a/OWTMhEe7tX7rMF7ynToV2/LxQMY8p0JfpJjMt+fDS8mtq2/7qkAVpuB4NVHE9QhRtunjXo41am/kIUTD24uUjtC5aPppLPW/dwZ2PUAVjL1o+fFVcn3rWF/OYzO9ogrFA00FAFgAAAACAy8wNPcZYczULJE3wrlWHm++UPntfp1p1UPv2FZNNrsPGujPBvajo0HGQ8f/VKn37tGeF26c6+var1nzDRN7yc+P/q3Vk+0eqfNf61Uf65K3QbL85+PrXzfFprYUmxBw3L1j1+Z1wIx9NC/loWshH00I+mhbzu9n8jgbQdBCQBQAAAADgMnPdXcN0U8L/s5aqMz8z04TDjT9+TG30Pzr4mwX6YP9HOln6gYpfmay9S/uo6C8fWKkC840fTVT7qz7VqTUP6f+2v61jh9/Wu799WMdO3mmlaJj2PUcpsr1U/qd/19+WesbF3TH73/WZGEO2gtnD3YkToRw/LzRcruCPqT6/E27ko2khH00L+WhayEfTYn43h7gXWgANREAWAAAAAIDL0G0D5+q7w1/Q1bf8yD1erDmZ8+Y687OwuWaQfvDIC2p/5kV9/FwX7Zp7l/75RqHa/HCrvv/gncG9qLiqu76f9pLatdurE6/21N8XPqBS10R9+0c3Wwka6Io71fXxnfp2z3ulI3+S88NP1Sbxj4r9IU1OKrRrJ7Vu3bRaybpc9es+0vwd83ebCvJBPsKBfJCPcCAfTSsf5ney+d1sfkcDaDpalJeX1znidGlpKQPwAgAAAACAkDr75Ql9eVayteugNg38k/HyUyfkuqKD2odmaMIqzBetV3gd32dbHtKeP0nXPfaSvnuNtTKEjhw5osjISGspNEpKSnT99ddbS6FljlH3z39K0dHn1eIiNxI6f15yOlu4f9aHefwREeQjVMiHB/kILfLhQT5Cqznlw+FooW9/m4AsAvPJJ58oKsTNqQ8dOkRM0Q9ayAIAAAAAgIui1VWeMWQbGow1tWkXhmDs4Ze1Y1oX/S3vA52yWsycPVGg4tdfla6KV4fQxkwvWeYL3w4dmkbXxV9+Wf+X6Sbzd81tXGzkw4N8hBb58CAfoUU+PJpKPszvYvM7mWAs0PQQkAUAAAAAAPDnhoH6Vtx3VL79Lu38z3b6c0Y7bZt9v064BilyxDjdyFuVSjfe6GkpezG7Lja7iywvtxYawNzGxex6knxURT5Cg3xURT5Cg3xUdbHzYX4Hm9/F5ncygKaHLosBAAAAAABqcfbEBzp84KjOmgvtbtL1t9ysq1q5PwqLS63L4gpffil98IGM/ZyXzWatbCRnzpgvoUPbMqldu/PuMfgaE/moGfmoP/JRM/JRf+SjZhcjH2Yg+JNPWug735GuCsPwDWi+6LK48fC3nAAAAAAAALVo1eE7uikuQTHm1Cm8wdhLmfkC+JZbPGPXNWYLoXC8TDeZ2zS33VjIR+3IR/2Qj9qRj/ohH7Vr7HyY37nmd6/5HUwwFmi6CMgCAAAAAAAgJCIipFtv9bTSaYzui82X0OF4mV7B3HZjBJfJR2DIR3DIR2DIR3DIR2AaKx/md635nWt+95rfwQCaLgKyAAAAAAAACBnzhbDZZeLx4y30+ectdL7OwbKCZ26zrKyFvvwyfC/TK5j7MPdFPmpGPoJHPupGPoJHPurWnPJhfsea37Xmdy7BWKDpIyALAAAAAACAkDK7TIyNla64wtONYihby5otjpzOFiovt1Y0AnNf5j5D2dqJfNQf+agZ+ag/8lEz8lF/4ciH+Z1qfrea37Hmdy3dFAOXhhbl5eV1/n1GaWkpA/ACAAAAAAA0giNHjigyMtJaCo2SkhJdf/311lLjOnXK7E7RM1Zfhw7n1batJ1AbjK++8vy+y9XCPX8xmcdus51X69bkg3yEDvkgH+FAPppXPsxA7IkTLdy/b36lt2tnfQg0wCfGQ1pUVJS1FBqHDh0ipugHAVkAAAAAAIAmpLkFZCuYgVnjMPT5556XyGaLnjZtzqtVK8+L6RZW75FmN4zmi2dzOneuhc6elXtqisxjN6eWLc+780A+Li7y0bSQj6aFfDQtgeTDPPbycrN7Zc936Ne/LplxMwKxCCUCso2HgCwAAAAAAEAT0lwDst6cTumLLzwvmM1uHM2XzubLZwAALndmcNYM1tpsnuDr177GGLEIHwKyjYeALAAAAAAAQBNyOQRkAQAAcPERkG08V1g/AQAAAAAAAAAAAAAhRkAWAAAAAAAAAAAAAMKEgCwAAAAAAAAAAAAAhAkBWQAAAAAAAAAAAAAIEwKyAAAAAAAAAAAAABAmBGQBAAAAAAAAAAAAIEwIyAIAAAAAAAAAAABAmBCQBQAAAAAAAAAAAIAwISALAAAAAADQzLVo0UJfffWVtQQAAIDLnflsaD4jonEQkAUAAAAAAGjmrrjiCp07d85aAgAAwOXOfDY0nxHRODjTAAAAAAAAzVzr1q115swZawkAAACXO/PZ0HxGROMgIAsAAAAAANDMtWnTRqdPn7aWAAAAcLn78ssv3c+IaBwEZAEAAAAAAJo5m82m8vJynT171loDAACAy5X5TGi2kDWfEdE4CMgCAAAAAABcBq666iqdOHHCWgIAAMDl6vPPP3c/G6LxtCgvLz9vzdeotLRUHTt2tJYax1dffaXz589XTgAAAAAAAI2lRYsWldMVVzTu37MfOXJEkZGR1lJoHT9+XG3bttXXvvY1aw0AAAAuJ1988YXKysp09dVXW2tC69ChQ40eU7wUNLkWsmYg1mwmfe7cucqgLAAAAAAAQGMy30eY7yXM9xPmewpzvjlo3769Tp486c4TAAAALi/mEBbms6D5TIjG1WQCsuY/dMw+q81/6AAAAAAAADQl5vsK873Fpf6H461atVJERIT+9a9/yeVyWWsBAADQ3J0+fVqfffaZ+1nQfCZE42oSAdmKYCytYQEAAAAAQFPVXN5ftGnTRh06dHCPJ2tOzaX1LwAAAKozn/XMZz6n0+l+BjSfBdH4LnpAtuIfMwAAAAAAAJeC5tJStmLcsJKSEn3++efuLuwAAADQPJi9oZjPeOaznsl89qNl7MXTwnjYrvNfEKWlpWEbgJeWsQAAAAAA4FLTokWLsL3QOnLkiCIjI62lxmG+sDMDshXj5fKuBgAA4NJkPqdeccUVat26tbs1rM1msz5pHIcOHQpbTPFSdlEDsuYDPmPGAgAAAACAS1HLli3dL7tC7WIEZAEAAIBQICDr30XtsphgLAAAAAAAuFTxXgMAAABAIC5aQNZsHQsAAAAAAHAp4/0GAAAAgLpctIAsY5EAAAAAAIBLHe83AAAAANSFgCwAAAAAAEA98X4DAAAAQF0IyAIAAAAAANQT7zcAAAAA1OWiBWQBAAAAAAAAAAAAoLkjIAsAAAAAAAAAAAAAYUJAFgAAAAAAAAAAAADChIAsAAAAAAAAAAAAAIRJi/Ly8vPWfI1KS0vVsWNHayk0zpw5Y80BAAAAAABculq3bm3NhcaRI0cUGRlpLTWOs+ekr76ypjrfFAEAAKApu6KFMV3hmVq1tFY2kkOHDoU8ptgc0EIWAAAAAADgMnXmrPSlSyo/YwVlCcYCAABc8sxnOvPZznzGM5/1zGc+XFwEZAEAAAAAAC4zZkvY0+Wel3PnCcICAAA0W+aznvnMZz77mc+AuDgIyAIAAAAAAFxGzlnBWF7IAQAAXD4q/iDPfBZE4yMgCwAAAAAAcJkwX8S5yq0FAAAAXHbMZ0H+MK/xEZAFAAAAAAC4TJQzfhgAAMBlj2fCxkdAFgAAAAAA4DJgjh1GawgAAACYz4TmsyEaT7MKyLoOF6pgl0MuaxkAAAAAAAAeZ89ZMwAAALjs8WzYuJpRQNahvJkpSh05T/lHrVUXW5lTTifhYQAAAAAAcHGZL9zOn7cWAAAAcNkznw0JyjaeZhSQjdaAqYs1Z8kkJV5nrbrI7C90U7cn8lVqLQMAAAAAAFwMdFUMAAAAXzwjNp5m1WWx7ZZEDekXI5u1DAAAAAAAAF62AQAAoDqeERtPswrIFq0cpVFzCy60SH03V6Menq+Co07js+ka1b+XOvVK0qipK2Q/bqUxlRZo/sOjlPuu5HxrhaYP66tOnfoqeeJsrX3XaSXyqLYPS+nW+ca+clXkXvBsb956Y373M8ow5is/AwAAAAAAaGRf0V0xAAAAfPCM2HiaVUDW5dypnUe9Aqhnndq542MVPPsLzd8fq+FPZGrp1ETZts9T8s9XXAiQGuk+3rFTxQXZ+sWiYsWmPq2clY9pYESxsv7jAU3fciH8Wm0fFco+NvbllHvE2PZdNGB8mgbGG/OdEjXcmE8bH69o8zMAAAAAAAAAAAAAl41mFZD1L197rv6lnn9quBK7xyuh/yT97/+kKXbvchXstZJYVuWf1i+ffVrD+8Urvnuihj/1vBZPjNSamStV6I60BsgWqVhjX7HmWLYRt+ouYz6+e4wiPJ8CAAAAAAAAAAAAuExcBgHZWA1MjKsyrqzt+72VoBK956ja8XCP4UMV19ZacLMp7sERSizJVsHuYCKyAAAAAAAAAAAAAHBZBGSjFXW1NevlSuunt64xfjoVvi5aXYwfHx8/6VkGAAAAAAAAAAAAgABdBgHZwF3Z0poBAAAAAAAAAAAAgBAgIOvlvYMOa86L06kS48c1bdt4lk1npdPWLAAAAAAAAAAAAADUpEV5efl5a75GpaWl6tixo7UUGmfOnLHmQse+pJOS92fqjUUDFGmu2JutTsPeU+b2xRpwnTuJxa7sTsl6b+EbWtzfSHk0T+n3ZCg/YY62Lh0i746LHa+mq89/dtDiXU8r8erqyx4O5U3so4xNk7R6f5rirLXu49ltbPOFqtsEAAAAAADNR+vWra250Dhy5IgiI91vNkKm7DL7y3Kn87hOGpPrdJm++uora239XXHFFbJd2VbtI65WhDEBF0Ooy7W3QMp4MPunzgDh4XJ9qXLXaZ09e0bnz9ce2mnRooVatWqtNrYrZbNdZa0Fqmvrb4zPBjh06FDIY4rNAQFZr4CsBg/QyfY99MvRiYppXy7H9mc0a/IqKWO9cn4eK5v5qwfXaly/aXovfowmjU1QtEpkX/eM7GXXaFtBfJWArHPrbHUb/55GzH1EiTExiusa7dkGAAAAAABoNgjINh3my+mjnxxUefmXuu666/S1r31Nbdu2tT6tv7KyMp08eVKffvqp2rS5Stddf5P7RTfQGMJVrr3VVsbrs3/qDBB6J52f69y5M+46aLO1MZ4/vHr19OPMmXK5XOX64osv1LJla7WP+Lr1CVAVAdnGQZfFXro8NEe/vCZP6T/upm7demrw5AJFPbFeSyuCsaabhujXL0xSlyPLNW1silKmrpWz32I9Nqi9leCCiD6jtfThK7V5aqpShuXK7rI+AAAAAAAAQMiZQaMrr2yt7373u7rmmmtCFrQyt3Pttde6t2uztXLvB2gs4SrX3mor4/XZP3UGCC0zGNuq1RXuemUGZOsKxprMNGZa83fM3zW3AeDiaVYtZOvNaiHb5eX9SutqLLuccrokW7sI2Vp6kvjjMhLZIgJo83rOJedZmwJJCgAAAAAALi20kG0azO5UTxw/pi5duoS1JZ7ZWvC9995Th6uvoStWhF1jlWtv3mXc1ND9U2eAhjG7KT795Sn3H0Q0pB4eO3ZMV17Vju6LUQ0tZBsHLWT9sUUYDwe1B2NNAQVjTS0JxgIAAAAAAISTObblDTfcEPaglbn966+/3r2/cDv5Xp5yXirQ4XPWClx2Gqtce/Mu46HYf0jqjMupkyc9k4v60LjOlert13K1eOF8LX4hV2+WWuvRaMwxY814RUPrYUT79u5t1ZcZ1HW5XDp9+nTTanBXC7P79PfefUcnTtA6GBcfAVkAAAAAAABc8lyny8LSlas/5n7M/QXl0zxNvqOT7qw29VXKE9n6y4dOK2GFIr3yaIYy56Zq6Tbfz5q4irz+Kk/EbhqmMcu1t4oyHqr916vOmI7blfNYkvp266Yf9fRMP+zaV+kL83SgHptrvkr12q/M+0m6XvvUWhUSpfrLE4OU8tgsLX1huZbmOGWr6MChzAqQW4sIn7Nnz4SkN47WbVq7txWss2fP6u9/36vcVS9qxfLn9cKKpVq29Flt/tNrKi0tsVIF563db+rll3+nzz8P7x83ffDBPm3fvk3vvPO2zp3z/DVHRWD5Ugkqo/kgIGtqG63ej05RLD1mAAAAAAAAXJK++uor2WyBdFHm1J7n0zQ8ZXgA0xxt8/Ou+corr3Tvr17uHqGMyVM80/gR6vvDNjq8PkuTH3hAM/MdViJTrB54ao4ypi5WSo8Iax0uN4GX63o4ukFpt9yitLzqhbyijNe1/5KdyzRleKK6G9u55ZbuSkx9WR9an3mrV505XqC5/5GszNfK1Tl5iuZm52jpb+Yo5V7p9RcylPpfeTpsJUWYfLpTfzTLx91z9No7+/X2X9N0p/XR2yvNAPk0/SWkAWD4YwYQW7VqZS3VX6tWrd3bCoYZxHzzzULt+Nvr+sY3v6m+fftpwIBBuuv73fTJJ4e1veCvOn78Myt103Pbbd/Rj+6+R7Gdv6uWLT1dopqtZV999Q/6+9t29zLQWAjImiLiNGTsaCXcZC0DAAAAAACgGXJqz/+maXGrFKX3tsnZKUXzFmUre3HVadYDN8oZlaxBd3wsZ6i7R71zgFIeHu2ZJjyphcs36bU/LtZP7vxYr2RkaOl7F9qbtb9riFIeStQtjd9AEpe4j1+bobQHl2mPtRwOzr/MUP/hS/Vx57Gan5ur3NzZGhnlClmLyfc3Zun3pVLfOS9q8eOjdf+P4vXDvkOU8evXtPThKJXmzdNrf7cSI7zujNEN1iwuL5999i99+I/9io3ton797lOn79yu6Bu/pe7de+jf+t1rfP6ZDhwotlI3PV/72td0xx13uoPJwMVGQBYAAAAAAACXASsY226askf3UI/R2Zp3/WpNWfWhFBHhHp/PnPT3pZrxt556ZsFA3Xql9athZvtWoqY+PkW3y67Fvy/QSWv9+y+NUuq4+Xrdu9/fk8X6y3PTlfofvXTnHb30wJjpyvE3qGOVdH2V8qvZ+r2fdCc/zNfSJ0bpgR930p0/TlKqb/fJpQXKHGccx0tFOrlnhWaO6GtsL1tvWx+b+3ltYbpS/t34/X9P1swX7DrJGJ8XXUnxSm22h7cz2Q+LVqrkRxma9/gw9e5h1Kke92rknJHqYn3eUK6yIuP/cfrhd6M9KyrZdOfwpVq6PFN3X+uVx3OlevOl2ZrsLqOddP+IdM19qVClVnkszZ9t1KdRmvuX6vXg/dXp7s9yvAK8pW/mau6vknW/sa2+/zHO2FaBDgfSTXIdx1Ep0LpcjVMHXptvbd/s8nyF3j7uZ1zQ93Ldecrc5nCnTzf349WNeO11v1Sv/7dR76c946nrG+a5t5X63wUqte4JmRvMD+xaOs3PfQoXzSeffKJdu3ZZSw1ntpA9deqUvhkZWa3b5Ouu66h/7z9QN910s7vlrdN5Qlvy/+TuHtib2T3wtm1b3ZM57+2rc1/pvffe1e9eWqlVK3+rHTted3eFXaGiha75uydOnNCbu3a60+VteEWHDzvc+zV//nHjBuW8uEJ/3rJZx49f6Aa5pOSYNua9qn/+84B72Ty2bX/dKqexrf37P3B/5nu8QLgQkAUAAAAAAEAz5x2M7SJPB6w2dRmdrWntFivtf/cYKYxUf8tU2iu3ad6CgbrR07Nh47k9UT/pYfxcX6i9VkTWdXKn3tz58YUAp9mF60+SNHlxodr/aIwyJg/RndqmzDGDNDXfKxrySb5mutNtU+kN9yr14Xhp3yrNNdO9dqFb5NL8DA1+IF2L99j0wyFTlDHkLulvZvfJqRda6p5z6vBO4zj2PKMZo+bpTUXrhz+0ec5hmV1L05I09YV8lV49VCn3d1FpXromGPutCCojvNxdBj+YoFvMLoN/PFov7y/RhvRbNCTL/DRTQ8z1Rvmu7J44d7NWppvplzS49aytXRejvLysDbvDM8axrW2s8X+7XttQUC2Yabs21iiH8br9Wqs7ZVeRlo7qqdS5m/XPGxLdXYL3vW6ffj83RclPGOXTSBJ5Z5zaG2X595t2VgYlPYr05tp8vfmPrrr9O+ayS28vG6XkMbP05wPR6mts6/7bPtaf56bq/nHZeru2oGwAx+EWaF2uxji251L1wGPL9ZfjkXrg4f7q/PkaTf5Fll73vQxG3X3TyO/7G+dp6mMbdPjqW/XDr3vOV0B1HzCY3fy2a9dOhw4edAdcvZkB2o4dr1dkZJRatGjh7pb8+OfHVe4TdDWDpl98cdI9Veky2Zh///0id9fBZlA3MipK+4recwd1K7pBNtOf/vJLffavUncw1gw4R0R0UGlpqf669c/aa9+jHX/b7t7319q31z/+sV9/e71AZWWn3L9vBnQ//viQzjJeLJoAArIAAAAAAABoxvwFYyt4BWXT0y5eMNYtWrd83/y5R/+sYWDM0v/boN8fkh74zStaONns9niSZi5fqqn33irbPz+0gj1Ovb5ill45FKWf/GaTXvnfJ5U++WnlrFmt9DtL9NpjK/S6O1rq0NtvuXTL3ZOMz57X1AlmF8pPa2m21VJ3s71q17ObS9T5xd16bdWLWrp8tJHGbFU4S4vflvo+tdVY/7QyJjypxX9YrZ+oUG96fgthVPLaL91dBh/7t2nK275L+TN66kpXlO6ds1cr0swUE7Ri717tHXOXO71p8/9sUocpBTpwYIIurK2fLj+Zp1n3lyhzWFclpC/R5v2hDcze/uAMpf8wSm8vS1Xff0vS1IW5eu3NYpX6CYi6PrTrcNs4PTBntV6Z/5i7S/CMXxv1ZLBRb/Jy9bpRb3Rtgv7dWNbmzXrTe9zT9wv1x/elyME9dKd5g3g/V5mLdkoDMpXzh0xlmNuav0nrl6fp9rezNGe12XLXv4COwxBYXfbDOLY5i+0yLrJe27BaMydP0tT/3aSch6Q3jUP25823bBq1eYdeWW7U3ccTFRlQ3Y/U3f9ppJ/ziGfM2IFTtPR5Y/k/ExQZmaAMYz5joPlBnFLnGOuff0x3R5rLuBi+/PJLd6vYs2dDH3Q0g63f+15X93ixL6/+nbsFqtmFsdlqtkpwtR7+9a9/qfzMGQ0Z+hP17HW37rvv35XQu4+7G+QP3t9XZdxpc93N375Fgx94UAMHPWDcExJ1+vRpfXTwn7rX+L0BAwfrgQeGuMe2dTg+1ueff279ZlVm98W9f9xHER06qFOn76j/gEHudUBjICALAAAAAACA5st1Qh9+JN14U4RPMLaCTTd26iK9VyTdHK0OFyUY661IrnJrtgYHPiz2aoEaq5/8+kXN/Hm83PGQk3b9bXWJdPckpfSNcKdwaxunnzyVo6XLE3XDWXNFtPpOXaylz6TpTu8xaiOiPGNFflJStZVr8iP6yV1e2zOO8/Uc45xFpuknSd5dykbr/pQx7oAtwuk9vfrMBpWMmq/stHvVJTpKt/Yeq4F3GCXa7H7b3d32lZ6uuL2ub5efp2qgbw/A9dW2i0YuzlPBimmK+zBHaff10+gV74VsDFmzzKY+/6pynhqju6926rUXZmnqmCT17d5LDzxmdtNrpTPYugzXzOdXa+YA78xFKPI68+dOlbpjMxH6Ye+hxs98/fmtCyHP93du0PtGPRp1b7z7HvH+/23Q2+qh9PEDqoyb2v6HQ92t2N9/rdBI719gx3FBrXXZj/f/ttzYd5RShxnH5nWvuuH+MRpVQ6W7ffQY3X+9teAWZN1Hk2YGKrdt26bvfe97atWqapfCoWC2fL2za5y7a+Jv3XSTPvron9qyZbO7e+BX1//B3V1wQ9wac2uVrpC/9a2bdOON39KxY5+6A80VrrnmGl1//YUa6b63deig6zte7xluwGAe6zeu/oZ7/tQXX7h/Ak0JAVkAAAAAAAA0X7YbNeypabrx91OU+bfqLfgquyn+c36V7osvCnegtIciv+5eqibyRyOUfqf09uJk/cg95uN8/f61Qh3wCkzpUJH+bP68M6ZKMMnU/tvx7m5eb7naWmE4+c9CvfbSCmU+YY4Dmaz7783QX6zPqoiKUHtr1q3UoQNmTOv7t+oW30j3t2P1Q2sWYVLi0LtF0r13+bb6rl101DXWXKhE6MbeY/WbP21R/lN3adt/TdHKmhuQBq9lpO4c/JgW/2GH3nxjq1b/Zo5S7r1SB16bp5QRWXrTu7Wsq1Tv/2WtcpbM1mRzvNP/6KWUZ63PLO1/mKifGD//snOPFXQs0puvGQd8+0D90B3QLNXhfWYGPlTOLLNOeE/TlfMP46P3XbUHnQM4joDqcjXGsR0oMX7G6ZabfK96jG43uzz344Zv+r/mAdd9NFlmMHbTpk364IMP9Nxzz+k3v/mNXn75ZevT0DEDnWbXxImJSfrZw2P14JBh7paoZrfC+Zs3yfGx1fQ7SOa4tGY3w97atGmjr3/96zrtcunMmQt/nXRFy5bu7pN9tWrVyn18wKWAgCwAAAAAAACat7ZdNHbRNHV4MU1LvMa7rDpmbNUxZRt/FEWHDrxt/ozVDde6V1Rnthh88Q3lzJ+in3z/GpX+bbnmPpaiB+7pq5n5Viulc2bYJhBOvbkwWT8amKKpuZvdLQTv7jFUGf87RX2tFLU6V0tQymaNMYvwiYrWbVHSnvc/vAhl1Z8I3ZqQpHv1nt79yAwahp6tfbRu7ztEGb/+i155vLd0KFtLN1nl/p9rlX5fTyX/Mkuv7DmmqDsT1HdspmY+5Pm4Uvt4Y71x4tYX6E0z+Gl1V3z7wPjKVt2eFupRuv17CUadqDo9kDJFGZNja2zBGvBxBFKX/ai59bxR5wKudA2s+2gyvvGNbygpKUnf//73lZ4+Qb/85S/dU/fu3a0UoWcGQK+55lpjHz3c3f1eddVV+mD/BzoTojFazeCqv8Ar0BwQkAUAAAAAAEDzZwVlbc+laYnd6ROMtdLoQlB2dCO3lHXtWaPfm2NAJserc22BFbPF4P2jNfXXL+qVv+7X39bM0f2RH+uVDGts2MhoT1DF4afbUZdTJ0865TpnzL+/Vpkv2BWZvFh/++NqLX3KHO9yiPp2jvKkrcu10brF/HmwpHoA+FCx3LFlhFEX9f75XSrJnqJfPr9Z7xnX+8Nty7ThHc+ntlbmdXxXe+wfaqcxhV6JNs+boWV527Rz505j2qwls57W5qiBSrorwDJUK4def2GFcl4okL8hlW/pHOf++WapGfx16vXcaXq9tLcy1mzVK8sXu8dF/cn98brF03upF5vu7DFEkVqj1/c43d0Tv68e+klCrPV5pG74tvkzWncPNcd29TclVGt97hHMcRjqqsvVVBybQ6XVWtJW/EFHABpa99GkmEHZLl26GHWwMCxjyB48+JHse97SiRPVx2Rt3z7C3cL1yy/LdO6c+cXiUW1sWWP5/FfVx5t1njjhHgfWmxnYPeF06ooWLdSiBeErNC+UaAAAAAAAAFwe3EHZDOnX/dQ1ZYl2vvJLJdx2i265xXvqrAH/tU07s4ZodJb1e2FW+ma2MjKy9b56a2ZKQtWugSu59H6e2b3ofL3uFYxpf3u87r7TnDuhcrOp5PVxuvtu4+f6tfpzlV4kHXptejf9qOc0/cWMoBqJzXEwb+kcW2V/rgNFAQZTY3RnsvHj/eX6407vNpouvZ23Sm9aSwifLqNXKG9Bb7n+8KQG3NNdY/73Q7OhquezAfM1tscezXlwuGbYw9GG1qaoa1z6629naPjw4cY0R3+9OkXZL83Xve7xUhuu9P/mKXPhM3rt777H79Sbr292z/W98Ubj/+U66Y4Vxej2b3v/NYP/IKXth731k0jplW3Z+uOGIunuAfrht6wPDbf/IE2Rytfv8+xVWx+X2fX7hVnKWW+vYYzVQI8jwLrsxy1dRhj/L9KLrxVWObbKP+gIRIPrvreTcoWjeCEoZlD2buPGH44xZMvKylRY+IYOFBdXC7SWlpbos3/9SxHtI9wtZ1u2bOUeD/aTTz7RqVMXxnD92PGxPv30qLV0gRl8NQO+3ts1x449bKT/5jcj1bat9yDHoXf27NnqwWMgjAjIAgAAAAAA4PLR9i5NyN2lAwcOBDBla2CIgkuVNsyrOi7lf/RS3zFZel09lPr8r/WAV2CoKptuaO/Qa+uXa+av5uuVvxXqzTcL9Nqi2cr8ixSZPFA/dPejGq37x0/SndqmmaNGaeZL+Xrzb3la+qtRmrrZSPfwCPU1u0T+dqw7KPXm4tla+hdzW4V6ff18pS/bU0PrP18Rujtlju5WiXLG3a/Jz+Xp9Tfz9ftZ4zT1cAxdnzaKCHUZMksr/uQpzwXr5mngTdZH0b01zV3Odyl/dBfpuoHKNtJkD/BqBelvXcAidNfoecpdV2DVlQKtXTBB98aEqrPqinJs1+Lh9yv9v7KU424xO19T/yNJqc8WSXdO0ri+ZqGP1O13mS1ml2vxwrVGOTTLc75yfpWqV5wVLV+9xRll11hv1KWc96W+/XtXKfO2Hw5VhnFO3l6crvRZufqLub2/rVXmL9I194W12tf2xhr+aCLQ4wi0LlfXvvdozbxbKn0hRQ/8KluvGb/7l5emK/0Jh26510pUlwbXfY/Ia3sb/9+pxf8937gueebQumiGbr7pZn3727e4g7KbNm3Unrd2u1vM/nnLZv1p0x91xRVXqNN3bncHZM0A6rXXXqfDhx3uz97a/aY73f4P3ldEhw7WFi/oYKz7179Ktb3gr+7A7N/f3uueN7fZObaLO7gbDuY4tVddeZX+8Y/9enPXTncAGGgMBGQBAAAAAACAxnLIrjd37qycDreN008mL9bqP7yo9B5W88YatO/9mJbOH6POR5drZlqKUsekauqyYnV+OFNLJ19oWWv7XpqW/H6G7r/6Q70yN12paRlavFm6Oz1H6yfHyx0ya5+gydkz1LftNi3+pbmtFM3MceqBpybJbGAbkG8N0VxzP7ed1l8WZyh9TLpyTiZq4eMj1NlKAtSXuxy/kqkUo0C+vjpbmQvNFrPL9do/rtTdRpl/JTtNt1vx31seytTilB46/NI0oxya5Xm+3uwyRzOToz0JfNzeY6A1ZuxQ/XsP3+hntO5/arUWPtxFh9fO0mRze2nTlHO0i1Lm52hmYg3RUkOgxxFoXa4uWg/MX6+p98fItTlLU43fnZx7Qn0z5+gnt1lJ6hKKum+4YfCT7rxq23L3dXnzn9YHaFauattWvXv30V3f76ZPjx7Vrl073cFZM5h5443f0r333a/rruvoTmuO/XpX3Pd1e+dYHTt2TG++uUstW7VSj569/LZ2bdW6te66q5s7APvaH/O0Y8fr7mDpj/v8W+U2w6Ft23b6Yfd49/i3e/a8pY8OfqSvvvrK+hQInxbl5eV1tskuLS1Vx46hrQChGuQZAAAAAADgYgp1C44jR44oMrLmF/71UVZ1iLZm6cCH76pTp05q166dtSZ8vvjiC/3jH//QLbd+11rT+FwnnSo3frZpGyFb5Ri41QWSzpPGpvbt69+6MRTbQHWNWa69VZRxUyj23+A6Y45/bBZkQ5v2Rln2zFZXka5NhEJSFM+5dLLMbPoZZNkO4jgCrcvVWPuo9XzUIST11jxHLmMb4e1d9rJ2/LNj+uY3v+kOVjZEeblL//rXZ7r6G9dYa4Jjdu9bXl7u/mm2iDWnmpjdAZtqS+PNjBeZQVEzjy1atLDWhp+5X/MYG3OfTVHbK62ZEDl06FDIY4rNAQFZAAAAAACABiAg2zQcdhzQ+a/OuoNH4erm0GS+jDYDSy2uaKUbom+x1gLh0Vjl2pt3GTc1dP/UGaBhTjqP6/z5r9xBWbMVan2cO3fWHYxt0eIKtY+42loLeBCQbRwtn3jiiZnWfI3MgZvbt6+5o4T6oAk4AAAAAABoDur7crQmZksyf137NcQZT0OVZu/E55+ppKSkSouXUFwfc3unT5/W0aNHdfDgQffyN755rWy2q6wUQPiEq1x7q62M12f/tW0PQPBcp790x2nOnTvn7uLXVPGzJmZas6XqyZMndeLECXdM5qq27Yx63Dh/3IFLR+vAGjIHzCxvoY4pNge0kAUAAAAAAGgAWsg2HUcOf6RTp5zWUvi0axehjjfcbC0B4dVY5dqbdxkPxf6pM0DDnHR+rjNnzO6z6691a5vaR3zdWgIuoIVs46j9TygAAAAAAACAS8R119/kDvyEk7l9cz9AY2mMcu3Nt4w3dP/UGaDhzECqGVCtL4KxwMVHC1kAAAAAAIAGoIVs0+N0HnePuec6XRaSYbPMbiFtV7Z1j7sXwdh7uEhCXa69BVLGg9k/dQYID5frS5W7Tuvs2TM6f7720I7ZvbjZPXEb25V0F45a0UK2cRCQBQAAAAAAaAACsgAAALhUEZBtHHRZDFwmXE6nnMbkOmetQPNQ5rmuzoYNIYHLBPcBAAAAAAAAAGh8zSsg67Rr7bIVWuEz5W4sUOG+UjWZeMXxAs3u10l9p+ar1FpVF8dWMy8FcljLlwPn3rVGntfK7rRWXDROFTzVV536TVf+UWvVpaSsSLkT++qObt3UzZiSXyiyPghe07kml5F9uRrVq5dGLSvyuYc5VDB3lHp19VzXbjPzjZJqqDF9Q1zidaAO1e6v9bhHN3khvA80NZfufcmow+ZzytZL+Jvdeu5auzc8J79xn30u4esR5utw+XDKvs4oA+vsnu9TBOxy/HcKAAAAAADBal4B2TKHti2Yp3k+06zJqUoZ1FN9Uuar4LCV9mIqcei9g9LH24t1zFpVl5J9Zl6KVGItXw7KHduMPG+To8xaEW41vtAskeOdj6WD21R8yUVnXCp8NlWzNkVqxNylylm5VHOSYq3PalDLi91GvyaQs6RYH5aUaOd+h05a60yOdbOV+sKH6pKx2LiuOcpJjVeEsb6m9A1zKdeBulW7v9bjHt1w4QwE1OM+cAm5dO9LJSoyn1P2NeY3e4jLmfXctc1Rbq0IrcZ99rkY1yNEQnEdDhbI/CPGAuPed/kql2O7UQa2O4w5BONy/HcKAAAAAADBapZdFicufEP79++/MO17R1tXTlKX4uVKnbRCF71dUKfhWr13t3ZvTVPzeSXeDNT4QjNGw3/3jnbv3qq071qrLhknVXKwROo3QqMfTFB89wTF3mB9VJMwv2BHcCLueVJbd+/WO3MT5T2CVMnRbcb/hyjt54nGdY1X/C1mOLbm9A1zKdeBergo9+hwBgLqcR9AM0XACTU4XiTzjxiLjlvLAAAAAAAACKnLYwzZljZFd0/Tr2cOlfbOU96OJtB5cdsIRdiseTR9RhmKuJQvWCspxONyoxHZIiJka2ktVOH/qtacvgEu9ToQrOZ4j+Y+AAAAAAAAAAAXxeURkLVE3BGvROPnzn8Ue1YY7Es6qVOnbNnN8fUmJ6lXJ2N5Yp7XuIFOFW+cr3H9exnpzLR9lTw1W/kHvIO6pcqbaHw2qIbWt0fzlG787uBlFZ/alW1ua4ndWr7AuT9P88dbx9Gpl5Imr5C91tYK/o5vhQqD6VbUWaz8JdOV3M/8/Ypt+Oaxdq4D+cqemqy+7t/vpF79x2n+xmL/Y1iWFmqFn7SBd58YZJ797G/2Su/uGq3rd0+G8o2l/Mk9Pdv1KgeV5cRarmScu7wF45TUy7PtTv2SNX1JvoqrdZ3pdc0P5/tc4+wgu9IOpExWHHNPZWwyFjZlqKc7bbryahwDtO7zcIHLcwwVZaZXkjKWVe8Cs+76Zex11wpNH9bXsx3zfIyfr7z9NZQGf+d7WaFKz1mfByCgsmrV2fSNpUZ6o06mVhxfHWUt2OOrs2wavI7FVLox3Z02eZG5lKVk63ez97o/rpbeW/VzPVu5bwVW86rXgfqV6ZrucbVt37UvVxlWea+SryDPd+D315rv0YHevzzXyahvh50qWul1f+1nXON1RVXSe9LWXleDusd6Ceg+UI/7WI3XpAalu3I1u/Lc11DW6+Jz7vumGveKOr6nGnx/8XseDMax5M70SmvcA8fNzK2hPPncs2u4X1YRYNkOdTmr0blSFS6ruv1ay59x/IE9V9SvTDnfynbf+5KN3wuoDAVyr/V23K4VFd9ZxlRrWQt228GkD6ZM+hPQdbCuwbAs91LWMCut7/0vwDJZk7qfB4x6siXbq74a533YdGVv8VfOjGeQKmmtuu1zjSrrx1GfZ5ZAjt37OM1jSa3l+zLQc1P5/eyQY+uF46n4/q7tHNmXmHVjuvJr+s4y9z3VGku+LkGUwYbeu2uqq0HdmwEAAAAAaCYuq4BshZJqb3YcyluQqhUne2jIo1M05Z5otbHW5099QEmTN8gVN0aZy3K0eG5/3Xp4ldLvS1H23ooNRSqh/1Bp33IVVARFvDh25ClfsRrYq/bOL117s5XaP0MbHEbauYuVs2yKhrYrUPrPV8he/W2UoVQFT6X6HF+ionbPU8qgUV7HV4syu7LHJil9UaGi+s3R4pU5WrpwiLGNLKWPnKb8QF7U7luhlPvSterwrRq9JMc9PuGkXi5tmJyklN9WDVGbL1zHDUrRvN1RSnTnMVNj4jxpH5iab5zxugSXZ/OcjvKzv81PJSvp0Txrf20UfY9x3ccPcHdPGjs4TVOqlIMaHM7X9AeTlPGqS3c9nKmlKxdrTv9b5XgpXUk/M1+oWem8fZav+T/L0rFbxmiGmX5snMo3Zil12HwVBvSCNdAyKUV1NvLwaJoGdDYWOg9QmpmnR3sruq3n8+oCPw8frpumcS87FT9xqXKWzNGYbuVGHUpW6nNFfl6c1lS/XCpaOU6DRs5TYcdEzTHKztKFY3RX2QZl9H9A0zf5lIajBZptlNUq57tflAoXpGjQwzWcb19BlFW3wxs0f+Rv9PFtaUbdWKrMRxPUwV3WMpTnG3AM8vgCK5vVtYnu7b4uIxLMpd4a4b6uUxR7tfvjGrhkf26Un3O9WbN+ahzzxrprXo2CKNM13+OyVfiZlciXI0/zx67QyW5D3PnsHW2Vxnqc7+Dur9XV5/5VlPsr/WK7TfcadWXpQmOfHd/TqqmD9auXL6T2XNNa6mqw5dZLnfeB+tzHaromNXBszDDK3ixtLrtLYxaaY9gu1iNWWfd/z/DjcJ4y3Oe+gxIe9Rxn2m0f6zcj52uD3+B/kPcXf+fBLE+L/JwH61hmbalIa9yHx98l15ZZSjbKclGVDBl1b4nnO+vjTgM9xzF1qK7cnq7UZXadtlJVUY97XUjKWY2Me/jUQUpZUKgOvaZ4vnfGx+jjRSma7+/eUZ/niiDKlBngSf1pljRxtZZOiHOPnV2boO+1nxUq++e/0p7rzHuaed8fquii5crwc+z+tv3IPW2M5xT/2w7qWOpTN70FfB2iFGuWhYd6u5d6P2SWC2PqHOVedqtHmfSv5ucBdz2ZkFVZX81zM6RjobImpGjapqoB+qLfphhpV8nxndHufOUsm6TeZt02noNW7LMSeXFsnK+URR8rZrznnE/p1cFz7FNr+K49+6HWzDSO81xvTXLfO6Yo3mV+X4bo2WT3CmU8sU3t+3nOddXvb//nKK7PGOPZbI027Kj+xwquXdu0qkQa0c8zlnxtgimDDb13+6+rQd6bAYTcFS2sGQAAAMDCM2IjKi8vP1/X9Mknn5wPNX/7afB0aN35cTfffH7cHz7x+/nJvz51/gfG54//qbRy3a6sm8/fbKx7IGvX+ZNeac2p9E+PG+l/cP4XfzhQZX35lwfOv5Rm/N4P5p/fftJaV7rl/OPGdn5gbKdK2nIj7Sgj7aiXzh+oXLfr/CIj7c3eaU8a65KMdYMXnd/1eUU6z3RgzTj3Md58s/GZ13rP8d1//qk/X8iPe/rc2NZg3336nz758/zzP0v86flFb56s+tk/Pefy/uf3Vl3vZ9r138a+fvDU+e1VjvukcW5/dv5n09ad31dxjsr3nn/WPK60F87v883jH37hPtfzX79wHJ/8wcz3uPPrDl1IF1yerf3VeE6r7q+28uMpJ97nv/T8lmk/MPL9i/Pr/lk1bfk/X3Jv5wfztnuVKeua3/xAtXPtydPN53/xqv9y6z0FVSbd0yfn15nr09ad/8Q7fW1TLefBc02MvP1ynU/ZOuDZz82Pn99SemF9bfWr/O1nzz9g7ue3+3w+M7b1S/PceufFOt9JT53f8ql3WqNev7nIvZ2f/c7nnPiZAi6r1jm42Shr81/3KWufbjz/+A+Mz6qUtWCPL4iyWcP1qF4mrclfeutcV78O1nWrVm6qT9X3F2SZPrn9/HzzvPnLs7v+B779oM930PdXa99V7uf1uX/5qyvWdn6w6PzeKutrrquB32NrmmradujuYzVOJ/edfynjgfN9q50H4/j/+35jW1XvGf4n6/j9HOfJnfPP3+8+pqrfFfW6v9Sy/Qvl6eT5fav+8/wDiTWn9X7GMMujua7Gumcee5VyFlzZDmU5q2ny7MPP947xvTvfrFfG/r3vN8E9V9RepnzvOxXnwDyfpV7pap6CeQ6o+Vgqrm3VY69526Wv+5ab2tNXP5Yg66af+37Qz3fGuTWv5aI3vda5pyDvtzVMtT4PfLLl/PzRfc//tKZ6kvSsVzk2yp2xnR/8l/e9yZjM58BRPzv/+JoLdb6iftycZNR3n/tM6R8931NVj92qH36Ps+LeYdyzKs9DkOem4tnC33U1plrPkVl+zPpWre6ePL99nnlcdX+PB1UGg7x3B1xXg7o3MzFdelOome9h/O2nIdMXp8rPf+5kYmJiYmJiYmJiujCZz4j+nh0bMn344YfnT506xeQzXTYtZJ3712r2zOUqiUpTYi/fvx8foUdGxqnqcIEO5f9ulUp6PaJH+kdb6ywtozVk/BTFlmQrf4fVvVZEvBLHR6nkpW0q9P6T8YOFyi+Qet8XL5+tVOHana+sfVFKyxitOJ/WKtGDxmiSV0MFj1IVvGoc34OPKO0en/y0jdPoiWOkglXK99NSwFvkPZP0/MYXldbVZ7DEG6LVxfhRdKLOv3+X0919WoRsVY7bprgJz+v5mQMUU7HpvQVavjdWU8YPV4xvHvtP0qReJcreVFhLN2jB5dm1a7OxP+Pqpvs5p/fN1PqVmep9XUBts6o7mK/cl0rUY8IjGnCDta7CDUP0yKOxKnk2X4W+mUkaoaE+5zqiV6IGGj/zDnzsWVGjIMtk2ERpxEMDfMpztBIGjTB+7lFxtdZq/uqXZN+6XPbOU/TIQzE+n0VrwIRJ6uGdl6MFWmOc76HpaUrwaQlq6zpak8ZK23Ly/XcZXimIslohaYxGdvcpa1cnavTk3kZZy1PhQWtdkMcX1rJZjUuFm4xzbV6Hh32vQ7QSp65XzsLeiq7v7gIs067dBcouqeEe13+Mxpit9vx56BEN970/BXu+g76/+lGv+5e/uhKrxCE9pJL3VBxIDwT1KbeBqu99zN81qYktRkPmrtamBb7nwaYbY8w1x+Q86VlTo4PbtHaT8T06eVK147R9f6TGJFkLXoK6v9RyHmzfH6PMlTkaHVsx+q5NMcOe1uqNmdXT3nCrO4/HTlacMJfs+VkqMp47Jo2tXvcGPDzJKCE+6nWvC0U5q4lD29blSwlGGff93jG+d0emmgNBVFWv54oAypTZsi/F7FY3wJaxpnrda/3c02zfv1cDjXtU0UcllXW8tm1HdB+jRx5swH2/vnXTS8Of7ywh+f6t4P95QJEJmvTsJr1oXNeqn0UrupPxY9+JC60xnU65bxntbFXTGuUxbenzenKQb52XElNHKt6nwET0M449wTj2jYVVWoV6GN8LfuvsGOM5a5UK7NaJr+e5iU0dU/26VqrhHJl1OsV49tiUp20Vzx4ml10715Uo6sEeiqv+S1UEVQYbcO+ura4GdW8GEBZXXJZ9pAEAAKA2PCM2nmZ5qu3PZmjUw6MqJ3NMp279p2lNWW9NWfaI4qu9sIhShO+bPZdDxQXGJ/FxirFWVdE5TmaPoav2VYxHa1NcryGKKlmrnV7dxjp25WmbEjWgl8+LTB/F/9hp/D9eXfy+WY9V3CBrtoLrQxVtkmIinCraVahCn8l+1PhMRXIcCfylhstZquK9xu9vz1PuguVaa6484HCPXVWzCMXdM8LId5bSU6Yrd4tdxaX+X/I59heqxHytU1L9eAt3FctpXgN7sZ8XY5Yg81xycK+xvwGKj/VzTm2Riu0er7ibAnmlW53LUWxc1yjFf89v6VBsnLt0qOiAZ7lSp2hFWrOVbLaAXiwHXybDJU7R11mzXiK+YYYWiuSqdvn91C/jKhfvLpFuNq6Tn2tZeNCp9kaqPYc8pcFVXKR8I9cRzqLqaXfZ5ThnnJF9DpXUWtwDL6sVYuNiql8vQ3RsvFErd6qo2LPDYI8vnGWzuhI53jHO9WDj/uLzAtZkuy5W8d2Na1rf3QVYpj33uHt1V2d/97gYxfayZn1FRVTbVrDnO+j7qx/1u3/5rytXtjVLd6CCL7eBqvd9zM81CYjLKedhzzXLX5elrJfNMSrz5TCKZ22cxvXeaRxn3Hf8fY9GGt+9Paz5CkHeX2o9DxGKMepjfGd/dwKXnE6H5/toy1plLVkrd44qM1Ssoh3Gj15ddKu/omfcs80/XPBWv3tdKMpZDZyePER1i/UJynhE3tFbvmffW8DPFXWUKacV4HGOXBpwMNZUr3utv3uarlGUUZ503Klyz4rat20cYWx8onGt9lQGxIM5lnrXzRrU7/nOIzTfvxX8PQ/4KHOq9IDd2HaB8lbO1/L15krj3lrxhwURxrPOQ1EqWZSuUU/kKn9vsUpr7TI5VnfF+P0mN753YqUdRbK+yi9Iiq2xzno/Z9X33ERHXmPN+VPzOYrulqjeRsnI333hm8bzx06xGpMU7yeIW1W9nz2CuHfXXleDuzcDCI9WLaUWdEkHAAAAi/lsaD4jonE0y4BsVGxXJfRKqJyGPjxFc5as1xtbn9dov8EAP46XyGzbFXdDzS9NKtrLVLB1v1djOpdo7Q679Zf8DhVu2ik9OFAJfl6WenOdMv9+/lZF+XtnJJts7azZCtbxFb8wTSkjU6pPU5fLfF10rKzi1WFNnLIvy3AHre/o1lNJw8zffUb5x80QSWAi+jypV1dOUfxn2zRrQrKSet6hTr2SlLEkX8VeL8lKSsygSL7mjfU5VveUqnmbjI/3uS60gvAVZJ49+6vpnDbMyePu0qHomrbd0rd0hEA9ymTTVaISM1CxaZ5S/V3LsfOMkiIVnfKUBs/5LtbyqX7SGtO0F9xXXs46xrELtKxWqPGl6dVR7uBERVkL9vjCWTars871TVF+g8uNxXOPq+lFs597XC2CPd9B31/9aPD9qwGCLbeBaqz7mOtAnuan9lWnO7qp248Hu8/Z/NXFOt02kKbJUnnZMeP/NR9n9cBjfe4vtZwHX2XFylswTn073aFu3fposLnNBWtUfMpmlHBvLrnMHhtqqnt+/nAhVPe6kClzGnur5XvHyEP1sG/DnyuqMsekXiWHcXKL3ykKqsyH815b17av9PnHTDDHEpq6GZrr0Fhl0vnWCmX076VOXbup533Jxran6ZktTnfwrqoIJTzxqnIejdexrbOUPixJPbt2Uq/+GcreUuznHhytKJ/WqxWuiXR/k1c/9lv8BeU9vM98o9fXm3prQJK07U8VrXpdsu9YLnUeqPiaepnwEmx9CP7eXVddDe7eDCB8eOEGAACACjwbNq5mGZCNvmekRo8dXWUa0i9WkQHGYt3aRsh8/egoNV9FBipW8QPMbuQKZDffJRwsVN4OaUS/+Dpbc9jaxRr/LzF7YvPDJdcpa7aCdXxx01Zr9+7dNU5z+tX21sWloudSlbygUDemLNb6vxq/885+7d+xSS/OHaM4K1UgIruPVubGHXpn91atX5apKf1u1N5F6UqauLayxZgnjyO0eHv147wwja55v0HmufZz2jBt2rpLh0rcXYk2knqVyabKJpv58vChxXrDzzWsnB72lAbP+Y7TlJf9pKmc5iixjj98MAVSViucLDttzflwudxdJtqsL6xgjy+cZbM661yXOCu72rwYPHn+UCV+m2T5ucfVIrTnO7B9N/j+1UDBlNtANcp97Gi+po3M0PITCZqzcpNR39/R/v379ZeXF2uqbxe4NajrOE+X+fabWZ/7S6DnoVT5M1OUseyEEubmaNMbu/XOPuN7c8tqLX60eteetdY94z7iuz7Ysh12dX3vWPfCC0L3XHHBjRq6cLU2PTdJcXuzlD4zL+AyH857bbDbDiZ9w+tm6K5DY5RJ17vZSv3pPBVGG/fYV7ca2zPvEzu0KedpjelqJfLWMlLxYzO1acc72v3X9Vq6cIru7bhXWROS9IuXq32T++m5w8Nz7zDqaSvPcqVaWg97PxU0fn2NVEL/oReGTHDZVbBM6jE80fgXSN2CKrP1unfXVVeDuzcDCJ/Wxn2PbukAAABgPhOaz4ZoPDyG1yQiStGdpSJ7sf+XMgeLVWj8SLzpRs+yJbbfCPXQchXsdqnor6u00++YtdVFf+su4/+ba+h+zur20Jt1fPYPSoz5COO/GqZag9DFKsixSw/O0K9/nqjYG+pKXzdbRLRi7xmg0TPNsQ17VBnT1ZPHPXIc9znGKlMtBxBknms/p2ZXk856t1qI6GjkU0XaU+z/lZ3ZvalROvx2I1lv9SyTTVO0Ysz3bXaHjvm7hhWT1cWu53zbVey+9H7SWVMwxbe2slphp73IbyCl9J1t2mkcUZebPcH/YI8vnGWzOutcbykyarwfZleExv5c56zlMIm5zezYNE+FRX7ejJtj4L1qzQcgtOfbz/3Vjwbfv0IkkHIbqMa4j5XaNyuvJFZTZj2pId1jFFmPc1T7cTqNe6LZ6stbfe4vNZ8Hl1kfnVa5Ld2jzetLFPvoDD35YLxiIo1yVuNfEtZR9w6YXTFXFWzZDrs6vnec+426a817hP65QhqiIf2jFfHdNGUuHCCtz1DGkoqeSGoXznttXdv+sChfiupSWX+COZaG183QXYfGKJPFO1YZexiqGXONZ+bOxrUO+GBtirghVgn9R+vJpc9rRi9pW67vmK07Zd/v95tc9h1G6e1sXCPfv13c/aE+9FfA9tlVYPyoeM66GPU1onuiRhh5ytvlkHNHvvEvjt4a0D2wP24JpgzW795dV10N7t4MILza8OINAADgssczYeMjIFujWCWm9JY2rdIarzFhPVwqXJ2lnRqqgb183uLcFK8BCdLyjb9R3itFinqwh+ICeIcREZegEVElynqhesuP0i1rtbzaC3fr+NYtV26145McL6creWq2Cv2/y6tkq6EBrWtHvlZZ87VyFSl3YrJG+Xk56mlx0OHCS+9eiUqLKtJyP3lUWaGyho3T7Ff9dTdXIbg8e/bn/5y6dvxGSd266TeFfl7SnauhVaS3zokaYVzn/Jw1svu+zDXykrtoZ0BdVQennmWyvgI5D/UWofikNEXtW27UlWqlwbg+WUoeP1t5+618Wud7zdLc6ufbuLprjTI4fUlhjS1a3IIoq5X8lbUyu9bk5EtdvboIDPL46l0268U61yVZWv5qtb2pcFGSunX7jQqDaKFaH7ZeAzSlq7Rq8TMqrNLqy+xWM0vZJdZiIII930HfX6tr+P0rQGertsCqV7kNVCPcx9rYOlhzvhza9qrZOWUAOsdroFF28peurH6c+4zrt86ar1S/+4vf7R9cq18Y9THlD1ZItY3NOOP+ObbnubvbvODC+L/V616p8lcv9wkcGUJxrwuEbzmrUaziH4gzvneWa+VbPiXwXJHWLl1jLVzQ4OeKWkT3n6PFE+NkX5SuaX6ura9w3msrtr3qJT/3hIN5WrHMOHsPJ1S2Rg3qWEJQN+t7HU77/nFOY5RJWw1d4Bp5zX/Jmre43s1V+rBRyq72HGTzBD6/EVGtVxp/x+7au0arNklxD5hjwvsoydaqP1W7SirMM+tsou7tZp3cxqqv3iLilTg+Sjtzc5W9xbiSCYmKv8n6rA7BlMGG3rv919Ug782mc6UqMsfjDdUjEYBKZmsIWxtrAQAAAJcd81mQXlMaH6e8FtH9f6kp8Q5lTRin+esKVHS4VMV785VrjhW1TBqwME2J1calilbvQYnuQM7yfbEakxQf2F/GX52g0VMHKGpThkZNXKH8vcVyHLArf+V0TZgp3ZtspfNiHt+krnb38U1fmS/7gVI59hUob+E4JT+eL4ctVrG1xuasF63rZulXz+Ub+XPKebjIvc+URXuMnATAFqO4WGnnonT9wmsbBetmK+PxnYoaPFy9K14U2eI18nHPX8yPmpitvO1FcpQWy74lV9N/lqLsvScU3Smm1vMVVJ6t/ZnnNHl8lmd/7mObr3GPLldJ1yka0sfrtd3VUYqJkvIXzDaud5679UHNojVg4hT1OJyl9PHztdYnL8s1QJnpidVeCjZU/cpkkII6D/Vn6z5SMwZLeZNHKX1Jngr2OVRqlfmUh7Nl/yxaMZ0qSoN5vq0u8MZPV+4Wu4pLHSranqes8cmatskhW+fY2sdIDaasWnqMvUvvVZ5rc39rNX98urL2xmnStOFeL3GDPL5gy2YDec51lPL/M1njFnrOtVlv1s4dp4xlJYqbNkQJoS6s1cRq+Kwp6n04Wynd+yp56nytWDBdo/onKf3gCGVOsJIFJMjzXY/7azUhuH/Vrr2ibjIq3pZ5mj13rfI2WmME1qPcBi789zFPMLxI82bM1tpdxSp1GvesXeZ1GqU1J6qFQWpglJ1pxvXel33hOM1zsDFL48YWqstDZuvrqup1fzG2n/wzqzwdNs/DCqWPnaZtUSM0aZB1rBFxSngoSkULZmn2ukKj3DmN7Ra6v4NGrT1RLbAT0We0prjrnnEcy8zvLId1z56gWbpXQ610F4TgXlerGspZLWKHTTG+d4uU/f+874XG8UxIVWGs2SuItxA8V9TKprgJmcp0X9t5yjtsra5JOO+15rZnDtWV7nuC575SWlEuHzLKTddJmvGQV4kI6lgaWjfrcR2M7/7exo/s+dO1YqNRZ/ZWRMDCXSaNo+0+UHFao1lTs5Vv1FWn09i+O69Z2nODlchiuy1OXbTTKH+/UPYW47w4nZ7vs6cyNG1HlAYM6+2Tvx4a0+29qvcO85xPyJLduEZThvm5DyWnKSbXt86az1nm9+UjGlAZCA//uanOqAO9hniCmuukocMS/V9Pf4Iogw2/d/uvq8Hdm6WilWM1eGSy+iws8N/1O4AGaXmFdCUv4gAAAC4r5rOf+QxoPgui8XHaa2OL1ehnc5Q5yKb8qaka/OOeShqWrlm7O2jMktXKrGEMpcheAz0vWTt7taALQHT/TK1eMkYxRfOUPixJfe5LVnqONHTlY14vf7wYx5f2203u4yt8Kl3J9/VUn0Gpylj3seIfXa1NMxPqfJEe+7OlypnYRcWZ6Ub+uqnbjwdr1pYIPZI1xf1irm42xf58qVY/GldlG6lTC9RhbKZyZiZWeREVmZSpTb+boq7Fq5QxdrD69ExS8oRZKuwwRpl/ytHous5XkHmu2F+8Y61nf+5j2yAZ53rTb0dXfXlui9cjK+do6NXvafnUDGU8W/uLatt3R+v5lZkaaMvXNJ+8LH45UwN8XiKGRD3LZFCCPA/1F6nEBZuMstNVxS9lKHVQH/U0y/xThe6y43t9bN9NU86fzPNdqFkTkpXUs48Gj83QWke8pvxuk56s86V6cGXV1D52uOYs6Kqihea5Nvc3TcuPxBn7W6q0rlVDb8EeX1Bls8EqznW8Pl7nOddmvZm2URq4cJNyfhbavdXE1tmoM5s2afGjCYo6WqSCfScUk5ypV+cOUHSQXWQEe76Dvr/60eD7V61sih+foznJEXrvhWnKmJztGSOwHuU2GGG/j12doMfM+0nZZk0bmaSe3Yx71sjfqLjX/2pOSuD3K1vXNC39wwzFf7bBc5zmOZi7V50X/Fqju7W3Unmr3/1lTAerPP3YPA/ztC92ilZvfFIJlX/oEqGER83r5NTmqSlGuetmbDdFvzmYoP+dN8JPYCRaA+au1uKxMdq3wPzO6uO+Z68wnhJyqo0569Hwe11taipntWgbp7Rl6zWj+zFtcH/vmMczT3s7Z+rXqXHyPfsNf66oi3FOJ8/QgKh8ZUzKlr2OKE0477WR/Z7WK+57wnL3faWnue3Ja/Vx9xlavyxNcT6t14M5lobWzaCvw01D9OsXJqn38TWaN9moM/lFla3yw1smDcZ3w1Jj312Ks5Ru1NVu3Yztz8xXxPhMTUmw0lQwnwOfW60p3YqVNcE4L926eb7PthvPQQuNsp1U7ZtcscPnKPP7RcqqPOfL5ehm1O3nql8jt+t6a1LWk7px+6zKOjtr+5XG9qt/X4b93Phh636vxri/b4YqoVtw2w+4DIbk3u2vrgZ3b77m2hiZ7afjOkYZdy8A4VDxQs4cO6xFC2slAAAAmh3zWc985uMP8i6uFuXl5eet+RqVlpaqY8eO1lJonDlzxpq7RJjjLLrfTNkU/nECzXGcPK/BbBEBjj11zvidU0H+jrdQ5M/7GNoZx1DjuHoe5rh87tSt6jleVJB5rtyfzdhfHYnNtAogDxUanJf6aIQyGex5qD+vMh/I/sqMvJ81Z+qZ97rK6tE8pd+TIS18Q4v7R3qlD3B/QR5fMGWzwRp6rwgT+5JOSl40Sav3p1V28RmwoM63V1lrQP7DWufNun3Oz3aDvMcGK9z3sVCV84rtBH4OvK55AL8T8HkI9j5Un3t2Q+91tampnNWm4ngCKSON8B0VrFCVQX+C3XYw6QMuk/7U4zqY+zMSG7/hRzjLpJHLUD4LlG5MV8/JUub2xZ4/vAmm/Foqzn1A3xdhPTfeirRi0GDN65Wjdx4NsCcePwItg8GU1eAEeb2BS0Dr1q2tudA4cuSIIiMb8qd3wTt7TvrqK2uq800RAAAAmrIrWniCr+bUqpH/zXXo0KGQxxSbAwKyAODLNyCLkHC+u1b5ZwdoiE/r4sqXyzdn6o1FAxrU4hMAAFO1gGwz4doxX30e3qAhK7dqUvdwBn4BBKs5BGQBAACAUCAg6x+NkwEAjaBIa2dP07RhKZq9zu4e989pTKUHCrRi4i80b1+URgxKIBgLAEA1LhXtyHePUfwLc7zXhEkaSjAWAAAAAIBLCgFZAEAjiNVoc/znh6/U5qnJ7nH/uhlTz/tSNa+oc9jG2gMA4NJXpIJH05U6OVvF5vi3C4b4HYMaAAAAAAA0XXRZDABoXOaYhidLVFxiU8wNUWEeaw8AAAAIP7osBgAAADzostg/WsgCABqXLUIRkTGK6xxNMBYAAAAAAAAA0OwRkAUAAAAAAAAAAACAMCEgCwAAAAAAAAAAAABhQkAWAAAAAAAAAAAAAMKEgCwAAAAAAAAAAAAAhAkBWQAAAAAAAAAAAAAIEwKyAAAAAAAAAAAAABAmBGQBAAAAAAAAAAAAIEwIyAIAAAAAAAAAAABAmBCQBQAAAAAAAAAAAIAwISALAAAAAAAAAAAAAGFCQBYAAAAAAAAAAAAAwoSALAAAAAAAAAAAAACECQFZAAAAAAAAAAAAAAgTArIAAAAAAAAAAAAAECYEZAEAAAAAAAAAAAAgTAjIAgAAAAAAAAAAAECYEJAFAAAAAAAAAAAAgDAhIAsAAAAAAAAAAAAAYUJAFgAAAAAAAAAAAADChIAsAAAAAAAAAAAAAIQJAVkAAAAAAAAAAAAACJOLFpBt0aKFNQcAAAAAAHBp4v0GAAAAgLoQkAUAAAAAAKgn3m8AAAAAqAsBWQAAAAAAgHri/QYAAACAuly0gOwVVzB8LQAAAAAAuLTxfgMAAABAXS7qvxpatmxpzQEAAAAAAFxaeK8BAAAAIBAXNSBr/hUpXfsAAAAAAIBLjfk+g9axAAAAAAJx0f/lwF+TAgAAAACASw3vMwAAAAAE6qIHZM2/KG3VqpW1BAAAAAAA0LSZ7zHo8QsAAABAoJpE3zoVQVn+MQMAAAAAAJoq3l8AAAAAqI8mM9hJxT9q6PIHAAAAAAA0Neb7CoKxAAAAAOqjyQRkK1xxxRVq3bq1+x865jz/0AEAAAAAAI3NfB9hvpcw30+Y7ynMeQAAAACojxbl5eXnrfkalZaWqmPHjtYSAAAAAAAAwuXIkSOKjIy0lgAAAIBLx6FDh4gp+sGfdwIAAAAAAAAAAABAmBCQBQAAAAAAAAAAAIAwISALAAAAAAAAAAAAAGFCQBYAAAAAAAAAAAAAwoSALAAAAAAAAAAAAACECQFZAAAAAAAAAAAAAAgTArIAAAAAAAAAAAAAECYEZAEAAAAAAAAAAAAgTAjIAgAAAAAAAAAAAECYtCgvLz9vzdeotLRUHTt2tJYax1dffaXz589XTgAAAAAAAI2lRYsWldMVVzTu37MfOXJEkZGR1hIAAABw6Th06FCjxxQvBU2uhawZiD1z5ozOnTtXGZQFAAAAAABoTOb7CPO9hPl+wnxPYc4DAAAAQH00mYCs+Q+ds2fPuv+hAwAAAAAA0JSY7yvM9xb84TgAAACAYDWJgGxFMJZ/1AAAAAAAgKaK9xcAAAAA6uOiB2Qr/jEDAAAAAABwKSAoCwAAACAYFz0gSxfFAAAAAADgUsP7DAAAAACBuqgB2a+++oq/KAUAAAAAAJcc832G+V4DAAAAAOpyUQOy/DUpAAAAAAC4VPFeAwAAAEAgLlpAlr8iBQAAAAAAlzrebwAAAACoy0ULyNJVMQAAAAAAuNTxfgMAAABAXQjIAgAAAAAA1BPvNwAAAADUhYAsAAAAAABAPfF+AwAAAEBdLlpAFgAAAAAAAAAAAACaOwKyAAAAAAAAAAAAABAmBGQBAAAAAAAAAAAAIEwIyAIAAAAAAAAAAABAmBCQBQAAAAAAAAAAAIAwISALAAAAAAAAAAAAAGFCQBYAAAAAAAAAAAAAwoSALAAAAAAAAAAAAACECQFZAAAAAAAAAAAAAAgTArIAAAAAAAAAAAAAECYEZAEAAAAAAAAAAAAgTAjINiOuw4Uq2OWQy1oGAAAAAAAAAAAAcHERkL0kueR0OuU6Zy26OZQ3M0WpI+cp/6i1qklzqnjjbCV36qROnbJlt9YCAAAAAAAAAAAAzQkB2UvR0XxN69ZNK96xlt2iNWDqYs1ZMkmJ11mrmqrSQmWPT1LS3GJd2dVaBwAAAAAAAAAAADRDBGSbEdstiRrSL0Y2a7lpKlXeUylae/Ukbdr0on6ZYK0GAAAAAAAAAAAAmqHmF5AtK1b+kulK7tdJnXoladyCPBWXlapg7iiNWllkJbI4PWlH9e/lTjtqarby9zutD01ev3c4X/MnJqtvp07qOyxd8zcWVx+r9VypClfOVvqwvurUqa+SJ85W7q5S60PLu7ka9fB8FRx2KH/BOCX1Mo5zyYUOe53785U9dZRnfb9kpc/MVaHXJopWGsfz6DPuLn7XzjHmHx6l+Vs9CdyfzS0wjrqq0l25mm0de6/+ozR9WaFKq3R3HFw+q2/PLu+zVrs2ipvwhv4yd4hiIqxVAAAAAAAAAAAAQDPVvAKyZXZl/yxJ6etPqPfEpcpZOEkJJ9dq3Mw12uPYqZ1Or9CimXZskmbtkhInZrrTJrYq1Kz+qcreeyGd86jxe0VrNfvnGxTR7xE9vXKxRseUaPnkFM3f6h2GdChv6iCl5BxTl5QnlbPySY3odEwrRg5SxkaHlcZw1qmdO4q0ZkGGso7GaMzMxZrTOcr9UemmDCX1T9c2JeiRuTnKeWKEYo4+o5RBs1Vw3J1E0b3SlPbTRN1qzMcPNubHp2lAbHv3Zy6ncaxHq4ZGHRszNGjkCh3rNEJPrszRnPHxOrE6RT1/mi17mZXIEGg+zWN0b++OMUaaHGVOTDC2l6ykBYXVA9R+RSi6U6Q1DwAAAAAAAAAAADRvLcrLy89b8zUqLS1Vx44draXQOHPmjDUXOsUrk5X0bLQyX87UgBuslQbHy+PU5/Ft0sTV2j8hzljjUuHCPkopHKHVv01TXFtPOnO9fVGykrcO1PpXRyvW7F53Yk9lbEpU5l8Xe23TYazvowxl6o1FA2SGFx3rjH0sbF9936+mq89/dtDiXU8r8Wpjxd5sdRqWpTjjWHKMY7nQvbBTxZtylXs4Xo+N9VpfVqDZXVN1YtEbykyyAplH85R+T4a6vLxfaV5jsNqXdFLy/gvHpINrNa7fNLX5761aPCjancatNF+zB6XrvdT1Wv2zWHNFgPk0licYy52M8zjRPI+WfXnKKorSyMHximxprQuQ+5gXTdLq/cZ1sNYBAAAAAHApad26tTUXGkeOHFFkJH/MDAAAgEvPoUOHQh5TbA6aUQvZIhWstSv24TFVAqKm6PuGa4Q17+ayq+DZEo2ZONorGGuyKW7wCPXYt0GF+6xVpoeGKqHKNqMV1ydR2uTQx+5lhwo3blOPiZP87HuExmiNCu3eLVd7aGh/72CsKUIxSWl60jsYa2obrZheUt4Bz56C4diVp21RkzTGOxhrikzUkNRY2V8pNM6alzrzeaVs7YwfB4rl8O7yuPMATXrwQjDWeaBQhbt8p+IgujUGAAAAAAAAAAAAmodmFJB1ybVPir7uGmvZS0SMYntZ86bjJe4AY/6ice4xWKtMTyzXhyqSy7v/3agI+Q53emWVlqAlKtkhfZgzvfr2xmcp30hxrKzck9StvWxVo7GVXEeLVLAxVysWzVa68fvJ/ZI0y9h2fZSU7JS6RetGa9lb7B0J0r735PAecLbOfEYq4aFJ6rF7mvrck6RxM7O0dkuRHF5dH5uKN6UoZaTvlK9i63MAAAAAAAAAAADgctG8xpANUkxsghJ6+Uz3DNWYR6co1uxeOEhRsV2rb6/XvRpubK93dBsrVU1csj83Sn3uGazZOUUqaRetHg+O1pTn1mtOkpUklFpeafzPJddZz2KgbF3T9OLGTVo6OVHRx/dq+czB6tO1r9JXFhlb84ibsF/79/tOdEkMAAAAAAAAAACAy08zCsjaZOssOY4es5a9OItV5N3KtG2EzHa0Mf2Ga/TY0X6nhJs8SQPj2XeHbkP9bsuchnT1bXvqo7RAqzJ3Ku6/t+ovLz+tx4zfGd4/QXG3RMgWZNC0gq1drPRRifycETkOvmf8P0bR13mWg3J1jBIenKQnF72oTTt2a9PMzsp/ar7yDlqfAwAAAAAAAAAAAHBrRgHZWMU/EKeiF5Yr77C1ylK8MVerrHm3iDjFPyht2FJYfVzTAwXK3WhXqXeXxXUy9j0gVjvX5lcdk9V03K616/JVfNxarslZl7uFaZebfMZ7PWrX5i3WvA/nqdoPMrb7QMXu26DNb/mmM8e8zVfU+B7GkQfBVarCdVnK8x5f1xz7tldv9dBOldSVRwAAAAAAAAAAAOAy06y6LI4dNkWTYgqVMWyUpi9aoRXLVmj+5CSNc8RohJXGI0KJKVMU/VKqUp9aK/thp5xOpxx712r2lFQ9s92h0zWM8VqT2AcnacTheUodn62CA6Xu7ZUeKFD21HRNW10sZ13buy5Gd3WWVr2UW3k8pfvyNPvRVSox1ldhpd2wcoXydxXWHOztPESTHipR9v/7hbJ3OdzbdB62K3fqKE0rGqApyfEKKpu2Yypana2MGVnKt/LoPFyo7LlZ2tl5kuJ9jxMAAAAAAAAAAAC4zDWvMWTbxinthVeVMzlW2luggh175Iqbo1ceTVSUlaRS59HK+VOm7vpHlpJ/3E3dunVTn2FZKo7LVM7MAfJpp1q3qxP05MbVGmNbq9T7erq31/O+VK21jdHq59IU19ZKV6NYDc/K1MCjz1QeT8//t1kxU+doxM1WkkpG2nkzFFecpfSRKZq9xWGt9xWhhJmbtPrhNlo7so97m91+nKwVpYla/HKmBtxgJQtYrEY/t1pTOm5UupXHbj9O0dpzA7X4GSOPQQaxAQAAAAAAAAAAgOauRXl5+XlrvkalpaXq2LGjtRQaZ86cseYag13ZnZK1edp6rf+Zn056y5xynjXHXI2QraW1riFcxvbMXoJtEYqoR5DS5XS6uy+2RRjH41lVI5exI1sgOznn8nRx3Mo4pjqDwwGwzlnItgcAAAAAwCWqdevW1lxoHDlyRJGRkdYSAAAAcOk4dOhQyGOKzUHzaiFbWqCsuXlynLOWKxwokt34cde3amj32jZCEWbwMxTBWJMZiDW2V59grMkMxLqPx1quTUDBWFNLm+eYQhU8tc4ZwVgAAAAAAAAAAACgZs0rIOtyyrExQ8kPT9eKjQUq3JWvtYuma9TIWXpvcKZG94mwEgIAAAAAAAAAAABA+DW/LoudxcpfuUK5u61xVSNilNBvgAYmxSkyVC1gAQAAAAAALHRZDAAAAHjQZbF/l8kYsgAAAAAAAOFBQBYAAADwICDrX/PqshgAAAAAAAAAAAAAmhACsgAAAAAAAAAAAAAQJgRkAQAAAAAAAAAAACBMCMgCAAAAAAAAAAAAQJgQkAUAAAAAAAAAAACAMCEgCwAAAAAAAAAAAABhQkAWAAAAAAAAAAAAAMKEgCwAAAAAAAAAAAAAhAkBWQAAAAAAAAAAAAAIEwKyAAAAAAAAAAAAABAmBGQBAAAAAAAAAAAAIEwIyAIAAAAAAAAAAABAmBCQBQAAAAAAAAAAAIAwISALAAAAAAAAAAAAAGFCQBYAAAAAAAAAAAAAwoSALAAAAAAAAAAAAACECQFZAAAAAAAAAAAAAAgTArIAAAAAAAAAAAAAECYEZAEAAAAAAAAAAAAgTAjIAgAAAAAAAAAAAECYEJAFAAAAAAAAAAAAgDAhIAsAAAAAAAAAAAAAYUJAFgAAAAAAAAAAAADChIAsAAAAAAAAAAAAAIQJAVkAAAAAAAAAAAAACBMCsgAAAAAAAAAAAAAQJgRkAQAAAAAAAAAAACBMCMgCAAAAAAAAAAAAQJgQkAUAAAAAAAAAAACAMCEgCwAAAAAAAAAAAABhQkAWAAAAAAAAAAAAAMKEgCwAAAAAAAAAAAAAhAkBWQAAAAAAAAAAAAAIEwKyAAAAAAAAAAAAABAmBGQBAAAAAAAAAAAAIEwIyAIAAAAAAAAAAABAmBCQBYAGc8npdBqTy1oGAAAAAAAAAADwICDbFDntWrtshdbudVor/HNsXaEVywrksJaNX1TBU33Vqd905R+1VtVD9e02L9Xyd7xAs/t1Ut+p+Sq1VjU11a+JQwVGGVmxtblepUuHa1+u0vvdoW7duhlTslbs86xv7vUIAAAAAAAAAAAEhoBsU1Tm0LYF87TNUW6t8K9k3zzNW1CkEmvZWCPHOx9LB7epuAGRxerbbV6q5a/EofcOSh9vL9Yxa5XbwQKtWLZCBcZnF5u/a11klJF5+5rrVbpEuAr1zNhZyr96hOYsy7rwJL0AAE0cSURBVFHOsjlK7Oz5qLnXIwAAAAAAAAAAEBgCss1KjIb/7h3t3r1Vad+1VqFunYZr9d7d2r01TbHWKrfjRZq3YJ6KjlvLgK/jJSoukRKHj9aQe+IVf0+soq2PAAAAAAAAAAAATARkm5uWNkVE2KwFBKxthDhtqLeWV1ozAAAAAAAAAAAAVRGQbWbsSzqpU6ds2a3lSqWFWjE1WX07mZ93Ut/U+co74FLpxnRjOV15fsecdcq+LENJvTy/06nfOM3fWCyX9WnQzpWqcNl0Jffz2d7RPKUby+kbL/SzXNtx1ZTH0l25mj0+Sb2sPPbqP06zV9qNXNTFrmzzd5ZUbNFaHpblXsoa5tlexef2Jb2M5enK99ty1vhd83xNzQ9gv04Vb8nW9GF9Pds3pr7Dpit7SwPOcV28zrXrQJ7mp1bsu6+Sp65QYbWurn3PjRc/1+3COoccW+drnHWts/eaH3pt67hdKyZXXKteShpvlMf9NZ0x4zxtNLbV3zzvFcearXyj/PrjOpCvbK+ybpaDGsutT72oSBtwmbknQ/nGUv7knp5jm5hX9zjEzmLlLRjnVa+SNX1JvorLrM8r+Du/FfZmu3/Xc149KuvMYYcKjO178uTnXgAAAAAAAAAAABoVAdnLweE8ZQxK0bzdHZTwaKaWrlystNs+1m9GTtOaYitNNSUqXJKqX71zjcbMzNHShVM0tON7Wj45RdM21Rly8sOhvKmDlLKgUB16TVHmshwtHh+jjxelaP5Gh5Wm/hwbMzRo5CxtLrtLYxYuVY6Rx0fiXNr8VLJSnysKMsAZpdhHp2jKQ73dS70fMubN5c5R7uW4PmMUqzXasKP6eXDt2qZVJdKIfvGKsNb555LdOL9JE7JU2DFRc5aY449makjHQmVNqO85DsLhDZo/8jf6+LY0LV65VJmPJqjD7nlKGZShvMNWmobYvUIZT2xT+36ecxd7tbXe5LJrxc/TVdBuqKaY5WDuQMU6Niijf6qy9/peKYfypz6gpMkb5Iob4yk3c/vr1sOrlH5fSvX0+1Yo5b50rTp8q0ab59TI26ReLm2YnKSU3xZZiTxc+3I1zl0vopQ4d7H7/I8xyoyZ9oGp+caea2OVkfED3N1cxw5O85SRe6LVxpPAv8P5mv5gkjJedemuhz11cU7/W+V4KV1JP8uW3TcoWw/2pRmatr29Es3jeTTWOFIAAAAAAAAAAHAxEZANkVmzZikuLs49mfNNh0NrZ2YoTwOU+dvn9eTYAUronqghjy7Wa0tu1bYlZvs+f1Zpm6botUWPaUi/eCX0H62nn12stM4lynt2g6qGtupWunGeMtZLAxa+qOdnjtaAe+KV+OBjWvzqYrXPy3K3Mqw3V7EKdzgUMThTq3Oe1uj+CYo38jj8qee1eEKs7JlrVVh3k0cv0UoYO1qjB8e5l+IGG/Pmch9rdNDO8RrYWcrfstOnNaRL9h1rVRKVpsRetYdjzZaZ295xqsfE1ZXnOP6eAUpb9KIyk+p3joORn7lB7Re+osWPDlFi9wQNGPuknn95sUYYJSVj5to6gpF1y99yQiNe3qTMRz3nLuEm6wPTs/O0J3m1XnzqQjnIfHmppiTYlTXhGRV6xVidW1do1rrTRrnxTj9JT7+wWnOSqqe358+TPWqMMp99WsPNc2rkbchUoxxM7K0OHxWruDJtkXJnzNK2bjO0ySiDjz2Y6D7/o596UasXDtDpdbO0ZpdvcNibVUYe6u0eMzb6npGeMvJgXC2BeKcKlhrbLTPq4ssv6umKujjxab348hwl7s1S+rOFDWwdna/NZSO0emOmHjOPZ2wCY9oCAAAAAAAAAHCREZANATMAm5ubq1OnTrkncz4UQdnKblBrmJIXWQlrc7BQeQVS78mTNOAGa53F1nW4xjxoLVSTqBEPxqnKsKpt43TvA7HSPodKggpwOrRtXb6UMEmT+vuEh4xtjkxNtBbqyRajIXNXa9OCAT7BJ5tujDHXHJPzpGdNaMQqMaW3tClP2w5aq0wuu3auK1HUgz0UV9d4tJEJmvTsJr04weccGzmI7mT82HeigYG5OiSN0cjuPqHDqxM1erKRr4I8FXrnqx5iU8dUK2+VoiYZ5c63HMRq+Ng0RZVkq2B3Rc4dyv/dKpX0ekSP+JabltEaMn6KYo30+TsqCqNTTnc30hGytXWvsNgUN+F5PT9zgGIqTvbeAi3fG6sp44crpkpa4wr0N8pprxJlbyoMoOviIBzMV+5LJeox4ZHq5+aGIXrk0ViVPJsf5B8P+IrVmId96wEAAAAAAAAAALiYCMiGwPr16625C/ytC1ZlN6g1TCMSrIS1cBYXaadiFR/rL0QTodi4Hta8ry6Kvs6a9XJNpBXgrOxa1RpL089UOb6ls1hFO6SobrF+A0WRd/RWTUcRNJdTzsNFKtxVqPx1Wcp62RxBM1+OEs/HoRLdLVG9tU35uy+0JXXtLlB2SazGJMX7BFnrUOZU6QG7ccwFyls5X8vdRadYDr/j+tbCGnO0+rWoPhZvbFyMIq15b9Gx8UZp2ami4oaFIqMjr7Hm/OgXqxhr1put81261/i58x9WP9ouh4oLjHITH+c3vTrHyawCq/ZV9Lsdobh7RiiqJEvpKdOVu8Wu4lL/YW3H/kKVmKWxpNBdVqpOxXKasWq7cQ08yUPC5Sg2SkyU4r/nNzfGNXHnRkUHPMv1E60o7+6hAQAAAAAAAADARUdAtgmr7Aa1hmlAVythLcrLjhn/rzlIc2Xb9tZcfVljafqZKscNLXPKPIq4G2oI0tlsauhRuA7kaX5qX3W6o5u6/XiwUkamaP7qYp1uG6YRNG/qrQFJ0rY/FVpBO7O74uVS54GK7+xeUSfnWyuU0b+XOnXtpp73JRvHPE3PbHFKN1sJgtU2Wr39XIcpj/ZWtG8r0JoCpldHuYPmx8rKPcvhEBXhv1vfiAj3eKdFp6wg6vESfWz8qLHcGK60flaI6POkXl05RfGfbdOsCclK6nmHOvVKUsaSfBV7jc9aUrLT+H++5o1NcZeVqlOq5m0yPt7nCmkr5ZPH3bkxzr1nuZqWvrkBAAAAAAAAAADNAQHZEBg8eLA1d4G/dRdDm7ZmMMsuR9XBTiudLmtoX77WWJp+pspxQ9tGyDwKR6kZlvXD5VKDjuJovqaNzNDyEwmas3KT3tj9jvbv36+/vLxYU327ug2ZSCX0H3qhe1+XXQXLpB7DExXrSVAr17vZSv3pPBVGj9DiV7dqt/uYd2hTztMaE0Cg3a+IOA3xcx1Gjx2iOJ8I6Mmy09acD+ta2Fp6FsPiVA2BTmPfZrvcqFZW++K6yk0NIruPVubGHXpn91atX5apKf1u1N5F6UqaeGFsXFs78yoZ5377buPc1zSNlmcU4dDw1EWHStzdKgMAAAAAAAAAgMsFAdkQmDFjhoYPH6527dq5J3PeXNcURMTEqodKVPj3im5dvTlUuMVsKRhmEVGK7iwV2YvlLy7s3G+X/6M4acbofLjkOmXNWkrtm5VXEqsps57UkO4xiowIqsPgeovonqgRxpHn7XLIuSNfy9VbA7oHFgAu3rFKdg3VjLlpSuwcrYhGOuYKO+1FfsdHLX1nm7uL6y43+zTj9BdErW8gfUeR/JVG7bNrg/Hj3tusc1hHudHBYhUaPxJvutGz7MMWEa3YewZo9Exz/NgeUsEq5e/zfBb9rbuM/++R43iEce5rmkJ7TSI6GsejIu0p9v/XEWY3yubYzb5dhfsLnrtONaxLaQAAAAAAAAAA0HgIyIaIGYC12+3uqakEY91uStToh6K0c8kzWnugakjN8WqWsgqshbCKVfwDcdKm5Vr5lk9Y71yR1i5dYy1cEHlzFxlHrTUb7VUCga59uVqxzFqwtLF1sOZ8ObTt1Xxrvv5On7NmfEXEK3G8cZS5ucreskpKSFR8Ravguthq6Eq5rFD5L1nz4bRuuXL3+lyLMrvW5Bjnq6t3t8s3KsZs7P3qGuUf9qzxcCr/hawaAul12Ldcyzf6js7qUN5Lq1QSNUIJlc15Y5WY0tsoN6u0xvdYjVJRuNrc/1AN7GUFj11Fyp2YrFFLqpYZk62V+f8OirC6bo7olai0qCItfyGvstVsJeMaZA0bp9mvFlcPQjdE50T3uM/5OWtk9+o+2c3YZ+4i42w+OFAJFQHZ62LUxSgmO9fmVU1fZuTzt8utBQAAAAAAAAAA0NQRkG32IpSQOkcjbsjTtPv6KGn8bGUtmq30YX3VJ/dWTZmZaKULr9hhUzSpa5Gy/984zV9XoKLDDhVtz1PWhFQVxo5QDytdpe8muLvutS9K17gnsrR2Y55yF6Tr/rEORT9opbFExCVoRFSR5s2YrbW7ilXqLFXxLmPb40dpzYlAOhCuwdVR6m38yJ4/XSuM/Rfs9W2VaFNcryGKMgOM66ShwxLd468GIrb7QMVpjWZNzVb+PoecTuN8bMnV9J9lac8NVqIw6jH2Lr03wftarNX88enK2hunSdOGe3W7HKn4+0YoqiRPGT9L1/yVecpbl6XpKUlarntVr9KTPFDXLB2l9GX5sh9wqHhvvlZMHKWM9dKAqaOV4DXecXT/X2pKvMMoJxXHalxbI33u1BSlLDPSL0xTYkV6W4zijAPfaZSZXzyXb6R1ynm4SAXrZivj8Z2KGjxcvSsC5rZ4jXx8gLQ+Q6MmZitve5EcpcWyu69BirL3nlB0pxjjCodStAZMnKIeh7OUPn6+1vrsc7kGKDM90Wt83Vij7sZJe83005W1zjj3K+crfVCqHDcMtdIAAAAAAAAAAICmjoDs5eCGBD35uzeUM3eg7nIVa+/eYnVIeEyblqWph8/YomHTNk5py9ZrRvdj2jA1VYN/3EeDx87T3s6Z+nVqnNpbyS6I1ejnVmtK0pXauTpb0yZn6Jl3b9QvVz6mAb5Rz6sT9NjKORpatlnTRiapZ7eeShr5GxX3+l/NSWnAGLI3DdGvX5ik3sfXaJ6x/9T8ouotL7vfqzHu1qRDldAtiJPZebSWGtvuUpyl9EF91K2bcT5m5itifKamJFhpwqh97HDNWdBVRQsrrsU0LT8Spym/W6q0rlXDkBF9HlPOwjHqUZav5U9lKGPqRp24Z7GWmsHC+rguUb/MSlOH1elKNv9IYFi65u2O1piFOZrjO+avzSgHz+Yoc5BN+e5yY1xbI/2s3R00ZslqZVZJb1Psz5dq9aNxKs5MN9J2U7cfD1bq1AJ1GJupnJmJ8u6IOTIpU5t+N0Vdi1cpY+xg9emZpOQJs1TYYYwy/5Sj0ZWthEPH9t3Ren5lpgba8jXNZ5+LX87UAJ9gfOzPzPwk6srCNcqeapz7Z4t048QcPTa4AeUaAAAAAAAAAAA0qhbl5eXnrfkalZaWqmPHjtZSaJw5c8aaw8VUujFdPSdLmdsXa4DP2JVhU+aU86zxs1WEpwvZo3lKvydDWviGFvf3GbvU5DLSn7PS1sHldHqCpjYjfQibN5rbVUSEnxaTRVoxaLDm9crRO4/G16NFpUtOpyfMa2tnbL+lezZ8fM/1OWP/p8z92wIaM7Xm8xAIu7I7JStr4mrtn2AGc73yHsg2zXLgubh1H2tlvgI7r5XlpqJMNoLg9mmeK/PU1+/MAwAAAAiv1q1bW3OhceTIEUVG+vn3MQAAANDEHTp0KOQxxeaAFrKXg8P5yt1abaRMg1N7duRLUV0U3VjBWFPbCEVEBBH4MoOrAaY1A3vubYc4blVTwNC1I0/L90UpLSGunkFKM7joOeawB2P9aVmx/8COPqDAacC88m6tqZVZDgI91sp8BXZeK8tNIwVjTcHtM4AgNAAAAAAAAAAAaJIIyDZ7ThUsnaVZ45M17rkCFZc65XSaY2vatXbuLzRrnRSXmqB6dj57mXKpaEe+CjZm6RePLldJwiQN7U6wDAAAAAAAAAAAANURkG32IpQwc5M1rmaqknp2U7du5tiayZq2URq4cJNyfhZrpUVgilTwaLpSJ2eruNsUrV4wRIzoCQAAAAAAAAAAAH8YQ/Zy4h5Xs0SOAy5dc0uU2pvduVofAQAAAACA+mEMWQAAAMCDMWT9o4Xs5cQ9rma0YrvGKJJgLAAAAAAAAAAAABB2BGQBAAAAAAAAAAAAIEwIyAIAAAAAAAAAAABAmBCQBQAAAAAAAAAAAIAwISALAAAAAAAAAAAAAGFCQBYAAAAAAAAAAAAAwoSALAAAAAAAAAAAAACECQFZAAAAAAAAAAAAAAgTArIAAAAAAAAAAAAAECYEZAEAAAAAAAAAAAAgTAjINkVOu9YuW6G1e53WCv8cW1doxbICOaxlXNpCdT3DWy4cKjDK5oqtlLrLToD3JQAAAAAAAAAAUBUB2aaozKFtC+Zpm6PcWuFfyb55mregSCXW8mXtYIFWLFuhgoPW8iUoVNczvOWiREVG2Zy3j1J32QnwvgQAAAAAAAAAAKoiIIvm4XiR5i2Yp6Lj1jIAAAAAAAAAAADQBBCQBQAAAAAAAAAAAIAwISDbzNiXdFKnTtmyn3Mof8E4JfUylzupV/8MZW/3N+6nS8VbsjV9WF93uk6deilp/HzlHXBZnxuO5ind+GzUy76/79Dah83fSVfeUWtVhX0rNNj4ndlbvcebdKp443yN69/L2ldfJU9docJS62NfzmLleeWhU79kTV9WqNJz1ududmWbnw3Lci9lDbPSLrG7lyuVFmrF1GT1de/XPB/jNH9jsXFEVZVuTDc+N/Jz2KmildOV3M/aXr9xmr2uqFp6j+Dy5dyfp/njk9TLndY435NXyF6Plr1Bb8c4B7kzvc5nrySNm5lb7XcunAOHCozz7zlnRpmyPvfPaZS9ZCNdsrLfCmyM0dJdK3zK3Wzl1vS7fq7f7JX2Gq5HOLdtXOsq9aWT+g6bruwtxUZNqlvluT1q1DuzzFSWL39l20sgx7g3210W5u/wORJXoeabv9er+jV0bp1tbG+wVuyzVpjOlapwWdWyb9aVWvMXYP2qvD+VFSl3slV2J+applsAAAAAAAAAAADNAQHZZqlE+ZmjlHU0RmNm5mjx3DGKc+Upa2xytWBN0W9TlDRhlRzfGa3FK3OUs2ySepdtUMZ9KReCNNfFqXcvaecOe9XAyVG7tu0wZ/JlL6oaeinatUFFGqr4uAhrTakKnkpV0uQNcsWNUeYy87gSFbV7nlIGjVL2Xp9wz9ECzR6bpIxXXbrr4UwtXblYc/pFqXBBigY9bAZ0rHSKUuyjUzTlod7upd4PGfPmcuco97LJtS9X4walaN7uKCXOXWzkMVNj4lzaMDlJD0zNl78wdVHur/SL7TbdO3Gpli6coqEd39OqqYP1q2pB6eDy5dqbrdT+GdrgiNVA97EY225XoPSfr5C91ohXVUFv53CeMoxzMGtLxfk0jnP8XXJtmaXkn2eryM/v2JdmaNr29ko0z+ejscaZrokZjE1V8iJp0u+WKu37Fde8Ji7ZnxulQSPnqbBjouYsyTHO8RjdVbZZs35qXPONVc+xmddRPtfvkXvaGOc9WUmP5vlcvzBv28hn0oSsym2b6Yd0LFTWhBRN2xR4WNGxcb5SFn2smPGefU7p1cFTtqf67jOIY+wcp4HGjw17izzLFfbZtcH8WbJZdu/Aq3ndtq8yfm+g4jtbq4yt5U0dpJQFherQa4qnPI+P0ceLUjTf59xVCL5+GftYkKoVJ3toiFm27olWG+sTAAAAAAAAAACaoxbl5eXnrfkalZaWqmPHjtZSaJw5c8aaax5mzZql9evXu+cHDx6sGTNmuOfrxWyRek+GtPANLe4faa2szmxtlrxoklbvT1NclXVS3MTVypkQJ5u1XscLNLt/qlb1Wqw3FiTKs1W7sjola+3YHG19NP5C2jK7sidmq6T/Y3psUIx7vePlUerzeIyW7n5SCVa8zWxd1238e4rrape9W47eqdyG2XK2j6ZFZOqNRQPc+zLTJo3fo4HLcvTYPV4BO3NfP0tWVoc52rp0iKLdK50qmJmkVPtALf3tY0q42r3SzQxOpQzLUoe5W/X8g57UbsZ6s5XspJf3K62rtc6tSCuGDda8jjO0ae5wxbS1VhscGzOUPLlQQ1Zu1aTuniM3WzD2nJyvqMGZWr1ggHU8Jms7hydp/Y40xVprg8qXy1g3zFhnM67Zb41r5n0sr6arz3/mG3NVr6dfQW/HpeKXZ2tazmmNeC5TA25wr3RzvZWl5J9m665nd+vJPp7jr/kcmIx9G2Umyyhf+43yZW7bviQliGCsYd8KJQ+aJ/mWUTNQN7GPMnanKWfrJMW7P7DOu5kfn7w6d2UpZWS2rvEuC+HcdmmBsh6fp713zNHz/rb90RStf3V0Zdnwp+LcqrNxHCuN4/A6Xc4tRlmasEpdqpTtYI7RpcIFdyhlR9XjKPrtYA1+xaa4UruunLhVLw6ztm22nL0jRRuMc7XDfS0rjs+uAQtXK7N/xTEYjPKc9dNkZe+TEqvcl4KrXzXenwAAAIBLXOvWra250Dhy5IgiI2t+HwAAAAA0VYcOHQp5TLE5oIVsCJjB2NzcXJ06dco9mfPmuosnUSMe9Al2XB2vxEHGz/XF+tizRnI6ddL82c5WNW3bOKUtfV5PWsFYU/QdCYrVKhW+U9GU0qWi3aukhx7RlCE9pB1FKrY+qWg52/ueOCvwW6qCV1ep5MFHlOYdtDQZ+xo9cYxUsEr5Fa33jhZozUslGpqeViUYa7J1Ha1JY6VtOfnyaQfo394CLd8bqynjqwaLTNH9J2lSrxJlbyr06Vo1SiMe8g1ExirRzGfJeyqu7J45uHy5ducra1+U0jJGVwmsmaIHjdGkmpugVhH8dmyKGfa0Vm+sGow12W641Z3PYyd9O5eN1ZiHfc+Br3oEY82g4ablsmuEHnnYNyAXrcSp65WzsLeirWLm2rXZuH7SiPTqeY3oPkaPPOhdFsK5bUNkgiY9u0kvVgskRiu6k/Fj3wnjCAKTmDqySjDWFNHPKNsJxj43FqqiVWlwx2hTbLcRxnEUqOige4XBoaKCIsU+MEWTjPq/s8irG2F3y9koDelWEbp1aNu6fCnBqBfewViTUZ5HpiZaC17qVb+M6zOSYCwAAAAAAAAA4PJBQDYEKlrGevO3rvF0UfR11mwlm2ztrNkKEXFKeChKJYvSNeqJXOXvLVZpZVfAPjrHa2Bn7+5Qi2R/VUrs1kVxZrDWKwjkLLIrXz2Mz6ygjutDFW2SYiKcKtpVqEKfyX7U+MzYnuOIJ2zjKi4yfj9GEc6iamkLd9nlOBcj7XOoxDeG6Idjf6FKzLBiie92zKlYTjMoZi+uDIB5xPk5f9KVbdtbc5Yg81X8j53G/+PVJcZfKCpWcWbAPAAN245LTqfDc7xb1ipryVr3uKL5jhLPx5WiFeUTDK/K7KbYDMY6NeLZQIOxphI53jH2Ndg4fp8Ansl2Xaziuxvn39pcycG9xm8MUHysv7xGKDY+0SgLe6wgeTi37aPMqdIDduM6Fyhv5Xwtd1d3oxz5S1tNrO6K8feX7tGK7RXr+eMGq2wHe4wRcfEaqp3a9o7VfbL7jyOidG/XOE+w9qXCyu6pi/ZuNrY9UD26Wtt2FqtohxTVLdasMdVE3tHbqNVV1a9+RSki0OICAAAAAAAAAEAzQED2shahhCdeVc6j8Tq2dZbShyWpZ9dO6tU/Q9lbin1a+8UqLjFKJfl2T2u8fXZtLumh3ndEuseuvDeqIghktZztnKDYm8yEhuMl7la5xS9MU8rIlOrT1OXu1rXHysrdyU8ed6fW8ql+0hrTtBfcqeWsKXjspaTEDF7ma95Yf9tK1bxNxsf7XAG3bKwiyHy5Tpln7lZF+e11yk/AvAb12k5ZsfIWjFPfTneoW7c+Gmwe34I1Kj5lq2Vs2FosSlXySw7jd4v13j7fslKbEpWY4w7fFGW1nq6d5/rVlFfpypbWjFs4t+3hfGuFMvr3Uqeu3dTzvmTjOk/TM1uc0s1WgoDUHOy+JtIMhV4o20Ef49V3KT7JKPG733O3SvX8ccRAxXU2antsnBK1wRpH1tNyVg/FqzLWW+Y09izF3XCNZ9mXzSafP0kIb/0CAAAAAAAAAKCZICAbAuaYsb78rQvaudPWjD8uuU5Zsw3RMlLxYzO1acc72v3X9Vq6cIru7bhXWROS9IuXq7Zri+02RFFWS1jHO8bPyqBrnOIfirKCQJ6Ws7EPxKtyLM22ETJDPHHTVmv37t01TnP6eaJObdq6U2vKy/7TeaY5SvTTitWXrZ15FCO0eLu/bVRMo2sfs7UmQebLcywlZk/RfgR+PYPfTqnyZ6YoY9kJJczN0aY3duudffu1f8tqLX60rm6Ja3DTUGW+vElLM+JkX5SuaRurlpWa2WTrbPwocfp0Y+tf7Xn1Fc5tG2f23Wyl/nSeCqON8vTqVuPavqP9+3doU87TGlNl3OK6nJSrhgjl6TKzE3EjH608y8EeoxSpuHt6Wy1hK7oVt4Ku1/XQvUkl2my2cre6FR9xT5wqG6ta5dlRaoZl/TC25+7i3Ivn+MJUvwAAAAAAAAAAaCYIyIbAjBkzNHz4cLVr1849mfPmunq7Oko3Gj/yC4tqDiy5imQ3WwP2iqpfC8dqbIq4IVYJ/UfryaXPa0YvaVtu1XFabV17aKB2Km9XobHvnYpKjKsMusZ2HegJAu01W86aXaRWfGKIiFJ0Z8n+QYkxH2H8V8NktdSL6BhtbNeuYndyP+msyV8nrr6iv3WX8f89chz3vw3PFMiW/AgyX55j2ayiA57lqjzdxQYi6O2U7tHm9SWKfXSGnnwwXjGRxrnz0/ozKIOHaMANEYr9eaYyB0t5kzOUvTeQdpDRijGjc1u8xhz25nLK6XTKdc6zWHteXfqwKF+KquiiO5zbNs7sjlVGqRyqGXPTlNg52ri29Sw3Rh2y7/dXs0vd9UqdjX1aLWKDPUZTdLdE9dByFeyyV3Yr7gm6RiquVw93y1i7u+VsouJivfoOtspzkb3YOJLqnPvtxpFX5Tm+MNUvAAAAAAAAAACaCQKyIWIGYO12u3tqUDDWZItT4sRYad0szXrVX8tDp+zL5ilrn5T4YO/6tXA0uN7NVfqwUX4CaTZPsPMbERdaz5lssYp/SNq5NkurNkkDvYKutjviNUIblDVng4qiRii+SovBWCWm9Dbys1y5foJ2jpfTlTw1W4UVUaDOiRqRIK1Zmit7tW6JHVo7MVnTlxT6DRqdtoJtFSJ6JSotqkjLX8jzGcfSUFaorGHjNPvVYLrc9RZcviLiEjQiqkRZfo6ldMtaLXd3JVu3oLfTxqYO1qwvx/Y85Vvz9ROtATMXa1JXu7ImTFPeYWt1jSIUn5SmqJIsLa9Wtl0qXJSkbt1+o0Krla/n+pVo1Ut+rt/BPK1YZlyFhxOsFpjh3LbBVsOfPhjlKP8laz5A/sq2a+8ad72K82pdHvQxmm6KVUJnacPirAvdiluizfGed6zRvGdXSUn3qkeVVuZG/X7A2NKm5Vr5lk95PlektUvXWAsXhLd+AQAAAAAAAADQPBCQbZJsint4hibFS3n/2Ud9J87X2i2FKtxVqIKNKzQ9JUnJi+y68cHFmtK/hsElA2C7LU5dtFNZE36h7C1Fcjidcuwr0NqnMjRtR5QGDPMN9kYo7p4R0l677Bqh+Du8Wr5FdFFcUonsZneogy60nK0Q3f+XVtBunKavzJf9QKl7X3kLxyn58Xw5bLGKrcxKtAZMnKS4vVlKHz9duVvsKi51qGh7nrLGJ2vaJodsnWOrjhN6dZR6Gz+y50/Xio15KthrtUC0xWvk4wOk9RkaNTFbeduNfP7/9u4GOqv6TvD4DwGjWOMwJa2MuHZkhhnSOmO6dAXZFWuPVEZQO2o5q4itCFsqU6vMKi9tBa0ITJF2B4utgBXUORbsqKFlGma74tQad6mhtY1T2tARsViTKRoFTYRxn/vkRiAJkgB/DfTzOefxufc+r/cFz8n9PvfehrqoWXtfzPzU+Fi84eUYMGhgp4627UiX5qvviLhq+pgoW5N9l2VRtaEutmyqiaoVM+OaWREfH5s/b3+6+j6lFTHisrKonT87bn6wurAsG6NhU3XxO1656uV266rL+lTE5IULYkxUxtT5HYS5NkrOuCJuuqgsqv7n2Jh0e2FdPbOlZbu7bVJMXVIfFTMuiRGtvwTI1t+sS+OY4vprmdeG52sL/w4WxqTLZsSjp18XN122xw8DEr53+RkXREWsjNnTF0dV4X0bGwvbZHE7WhhPnZQ/qVOGxYQhPy9s24V/19n2mH3mg/Ni0jULo6bwmdM+ucca6eJ3bJGF1fKoL/w73X1a8Vzxes+Ff78bCt9ieEW7a+2Wf3JaYXuujcWfmxTzHlwXtc/n/+6umRjV5eMK37yNxP++AAAAAADgSNCjubn5zXx4nxoaGqJ///752KHxxhtv5EPs066GqL77tph9d2Xx9L1vOeXsmHDtjTF59MC9j2AtqLljUIz92nXxwMbJ7a7b2OFj22pi2ay/jblrnssnFOTv//nC+7cLKS9UxpSzpkbVZXfF+lkj9vr8Ld++Ms75whMx4e6n48bhHSSYHXVRuWhefHXJo/HWp5UNjDGfnhM3Xb3HtSxzTZsq46u3fTWWrtv93coGjYkJs2+Kq/5z22dHND6+OP521sJ49NnCyNXL4+kbhr71/Rt/vCxm37Q0KjfuXpAnj5gQn5/++Rhz6u7v2rB6Spx5fcSCxxbFmDbXqN3nY12cry1r58XN85e2fM/MKZfGnG98KQauOW2f664jXXqfwndcdduUWPhAXbQugZNH3RR/f21pfP28wvq89oHYeE3Ls99uGRS2olg8aGws3OP5rRrWTI0Lr62MAYXH7io81n4N7Sk7ynt2zNhz2y4bFhOmf6nD7a79+iuLgaM/GwtmXR57nnW3Rbr33msby2Tve8utMfKZcwrLfOQ+ltluby3b/zMnylb9TUy944k91se0+Mqsq6Kibz5hD12b/4INi2P4JxdG2YyH4qFP7Rlsm6J6/mkxfsmwmLP2nrhkz1jbqrE27ps1Nb6+unVbKYth1yyIv7+kPmZ8dGrE7T+KRW1+CNLZf19v9/8nAAA4nPXu3TsfOjS2bt0a/fq1/QklAAB0f5s3bz7kTfFIIMgeFpqisbH1pJ8laa7JuKMxGndmA4nef0+7CvOzvWV+Sko7cS3YLn63psbGKDyxw/fNHit+cq/SKO1TnHTodGm+dq/TTi2Dferi+7yT67kzurgtvLX+Sgrrb39PTvbeeyzz4wrv24Xr8baL3a3ro5PbY5fm/2B18btlkv77AgCAbkyQBQCAFoJsxwRZgHfI2x99DAAAHK4EWQAAaCHIdsw1ZAEAAAAAAAASEWQBAAAAAAAAEnHKYgAAAICD4JTFAADQwimLO+YIWQAAAAAAAIBEBFkAAAAAAACARARZAAAAAAAAgEQEWQAAAAAAAIBEBFkAAAAAAACARARZAAAAAAAAgEQEWQAAAAAAAIBEBFkAAAAAAACARARZAAAAAAAAgEQEWQAAAAAAAIBEBNnubldj1D22KpbNnxlXfvrKmDl/WaxaWxsNTfnjh6nGDYV5WrIqahrzCd1VY02sWlJY5hvSf9GuLZPGWHfLx2LQuTOj6oV8EgAAAAAAAN2OINuNNW1aFTPPGxKjrp4Rc5esjCcefyJWLpkbM665KM4858pY+Hh3r5n71rzl0Zg7/9HYsiOfcAC2/GBZLFuyLrbk40ns2BKPzp8bj25pziek07VlUh9bnn4u4tlHo64hn5R5BwMyAAAAAAAA+yfIdlfPV8aMK2bEyhgZ01b8KJ7euDE25rf1Dy+IcSc9EYs/PTEWbzjMD5U9CPXPzI2582ujPh///TIwLv+Hp2P9+h/E5A/lkzLvYEAGAAAAAABg/wTZbmlLrJo1NSpjTCz41qK46ox+UZI/kikdPCa+9K3lMaGsJhZe8/Wo/v1tsr/fepZEaemeWwYAAAAAAADdjSDbHT1TFfeuizj7+utizEn5tLb6DI3Jsy6NqF8c69bvLrI1dwyKQYMWR82O2rjv+lExfFBh/NrK2H1W28aoW7s4Zn7yY4XnZc8dFB/75MxYvLYu9u66NbE4e/yOmojnq2LeZ/L3GjQ8Rl1f+Mzn86e1eqEyphQen7J6z/Pn5jYsLn7O4g35+NtpqI77Zk2KUcNbvtug4aNi0qz7omZb/ngmf7+xX8tGFsbY4vdq//4NTy7bYz4L3/sz86Jy4z5O5burIaqXzIyx5+afe+6kmLe67TJ5G4XvlC2feY+3eUVTdczL3m94YZ3kk1o1/uDmwmddFMueySe8pSnqVs+LSa3fpbAMpi6pKay5vb21rotjDVF5bWH8rKlRVRiruv7Mltfute4zhfWfvffo4S2PD/pYjJ2+LKo7WG37tK1m73V07tiY2e777bH9tLXPbaXNd3trvvf1Xl3flpueuS+m5u/f4bYKAAAAAABwiAmy3VDtk49EbYyMMcMH5FM6VnrurcVTGN84vO1Rkluicv7EWPbKsLjkhmkx7awBcXRxelPU3DExRl2zMKr7j4w5dyyP5UsWxCX9q2PhNeNjxpoOAtXvqmLepxbGi6dOiJtWLIo5V1dE8+qFMfGT86L6IK7/2qHnK2PqheNj9tqm+PCnF8RdK5bHos98OJrWzo6x/2Nx1LZWtr7lMa0wX+NGZCNnx7hsHgu38r7FRwuaonbFpLjwirlvzeddt0+ID+94JKaO/kTMXNP2qrOF5TX9whg/vzpOGD4tFizJPndgPPe18TFvdSevUDu4Ii4o3D2yobZlvNUzNfFIdl///ajZK7w2Rs1j9xZed0EMHZxPyv3qwRkx6duNMfTau2L5HXNiwpDmwvocGxO/Ufs2gfjoGHBWYTl8ZkyUF8bKL5pcXCa7132mIdbdUlj/1z8STRUTWubztpFRtn5ujL/wys6d/nrburh59NiY/fjRccH0wvfL1tHYsqgufL9Rs9a1ibJdkW+bhe/23KALWtbZ9EvjmMemxMQ7qjs4LfUBbMtbKmPe1cvilSGXFJfN2QN2LxkAAAAAAIBUBNlDZPbs2VFRUVG8ZcMHrikaX8yi3gdjwIktU7puZfy8bFF8764vxXVXXxVXXVwRpdnkhup49OnGGHbtA/G9r90Yl5w7NIaeNSYmf+2eWDCqPirvzEJwGyueitK/eygW3HBJjDxjZFxyw6L4xzvHRVn90li57lAeYdgUdY9Xx5a+Y2LBt++JW68eEyPOGBojr7g1vvm/Jkf5hoWx6vE8950yIq4qzNeY07ORihiTzWPhNuKU4qMRz9wXs295NCpmrXlrPkeMvipuXf5ALLjo9Vj55ZV7nea5YfXcmPpQxJjb74lvziq871mFz734xlj08KI4vnJh8YjT/SqpiBFXR9RX1ey1DGs3fD/qBxe2i7LaWPf0HnG3qTaq748oG1lRDKi7VcWqZ8+Oe5bfGleNHhFDz70kbiyun4iaBauiep/FszQqLi4sh8vOjizjDzjriuIyeWvdFzT+4OsxY0VTTFiyJu65Zc/5fCCuO+mJWHhHZewvP295bGXcW392zFmyKCZn3y9bR1cvinv+7tIYUJin2gPcJJqe/HpM+VpNVFy7KB66fe91Nu7Ze+Pe/HlvOZBt+cGfR9kd3yus4+uKy+aS01uXDAAAAAAAQDqC7CGQBdj77rsvtm/fXrxlwwceZV+J+ux0wKMGxMktE/bS1NgYjW1v7Y5UHRefvaJir+vOFvUbEdfduSbuuabtYwNiwKDC3TMvtz8Cc9S4uPT0vZ9dOnxk8WjQyk3PtUw4JEpi4CdvjQdWL2h3muaSk/6kGBlffKVzx1/W/GBp1AyeFp+9bGC7+RxzzXUxrH5xVLXG3dgSjz5YFTHiurhudJsjkvtUxBUTR+Yj+1MS5UPGFZbhuqh9Np9UeO/adbVR/olpcd2FEU/U1u0+grR45GxZXDJk7xwbhWnjLhtTnN/dBsSICwvvHU9FXdtTRXdaQ6x7+N6ov/izMfmsNiGyMJ9XXTshYt29UdXu9Ml7a9yWJdujo6TNxjXgwsK6u21yDO2XT+iSpqhZtzjqyybHdVe33zbHfHpCm2hdcCDb8mWfjcvbbMsAAAAAAACpCbKHwEMPPZQP7dbRtC75t/p4MR/crSaWDRkSQ9re7m57bc2yKN3fwX87GqNhU01UP7kuKlfMi6XFr1sXW14oPrrboAHRrrGVlLx11GUaTdHYuCVqn6yO6rWrYuEdq4rXSa3a0v7Ete1tibr1hed9IKI+e33b27ONcXzhWU9tzo8FbayL2scLS2xIeZsI2qLfaWfHsHx4f0orhsal8UQ8+nR+mOgLNfHo42Xx8dMrWmLt/dVvnXa5eORsXBDD2gXCig6PjC79w7LCf2ujqRNnFe5Q06+idk3EwNLGluXa5lZTWO8DC++/ZevbR+/yMy4ofMOqmHrFlFi8el3UPt/YPnx2Wcs6iHM/HOUd9dJTy99+HXR2Wy4rTbzdAgAAAAAAtCfIdjv98iP86qOxXemqiKvWr4/1rbfVc6Kzx2+2avzxspg6engMOn1InHne2Bh/xYz4+trGYsB81+2oi8r5k+Jjg06LIUPOiYuuGB/j56+Muu0lkeXIzqmP+izurZkbE7PXt71dPbd4CuLa7fnC3dFYDN8VJ72vZbytkpJiwO2Uvh+OoaMiqtb/vHgkbGNtTeGzLoiKwRGl5RWFdfVIfh3ZliNn47KhHQfIFLbVR3Y8c93dM9ovk+w2fWnUFR5/cUdz8en7NPiquGv1gpjwgWdi4fUT46KPDonTBn0sJs26L2q25c/psqZoypbLvoLpPn4A0K23ZQAAAAAAgJwgewhcdNFF+dBuHU3rrIGDs9PTPhJPbGh/7GFJaWmUtt5KshMcR4w8paOTG7fX9LPFMfG/z43qAeNi0cM/iPXrn46NGx+PNctvjQnF67G+mxqiatb4mLrk5Rhx2/JY86P18fQzG2Pj2gdi0Q1tT+H7dkqiZHDh7rJF8aM943Xb26crWp7epzSyFLulof3xyEVNTcVl3Dn9ouKss/MjYZuidv29u6PricPi46Pq4/sbavMjZyPGnbX7+q7J5fNZMeOBjpdHfptz7v7POVw6aEzceNf/jo0bfhRrvr0o5lx9ejy3dnaMHT0vqtudPrsz8nX2bH1hK+hAYVm2PW63e2/LAAAAAAAAuwmyh8BNN90Ul19+eRx33HHFWzacTTtQpRUjYlxZfSy+vyryE+t2qHbtvfFElMeHB3buwp11j98bNXFp3HTb5Bg5eECUZkX3EHtlx+v50G5N29/+NLhFDU/F9x+qj/IbboovXTw0BvYrjZKe+WNdMiAGZq21Zku8uGe8bnvr0/LsKC2LAYMLy7KmrsMY2LixprCMO2/AkJExLJbGuidroubhiJFDPphH135RMXxY8cjYmuKRsyOjovwdPIFuPp81v6gvDHewPFpvXdkk+vSLgaePjEtuWBAP3TYuon5pVFW3Wdfbm9qf0rhd5B4Y5cMLdw9Vx887CLpNG56IR/LhVu/EtgwAAAAAAHAoCLKHSBZga2pqireDibFFfUfEVTeMjFgzNabevi4aduXT99Dw2MKYPb82yi67Li7Jji7sjJJ9nPh3R3VU3Z8PH6gTB8YHC2//xKrKqNkzqu2ojfu+tTQfeRtHl8QJ+WBbWx6rLJ5muGNtA3BpDB01OcqeWRpLV7fP2U2PL4yxn7k5Kje2ZsLyGPqJisKyXhorftwmHe6qjVV3rcxHOumU8hhRWB+PLFoY368fFmeftjuWDzhtRJQ/vjLm3nlvxKiPx7AOrhV7yOxqu1zKY+T4syMeXBr3dXDk9ZZvT4mx0xdHdYeHqLZqiKpbroxRN1S2j9c9W4JoSUlrGD05BmYHiT+8Mqqeb5nSojGq7l7YJnKXxNAx06Ii7o2v31m999GwjTWxbMHiaHf14JTbMgAAAAAAwCEkyHZTAy6cE8s/UxE1d06MM8+bFDd/bVVUPVkdVQ8ujJsnfizOvHpx1Jx+XSy6YUSnT3tbfsYFURErY/b0xVH1zJZobNwStWvvi5mfWhhPnZQ/6YCVx4iJFREbFsaUz8yMhQ9WRuWKeTHlwomx5aRL8+e8jdKKGHFZWdTOnx03P1gddQ2N0bCpOipvnxRXrnq58O7tlZ14duG/i2Pu9GVRuXpd1OQlr+SMK+KmiyIqr78yptxRGesK89qwqSaqVsyM8Z8uLLffDYiBg3YfUVn+yWlx3em1sfhzk2Leg+ui9vnCcnmsMhZeMzGqy8fFsPx5nZMF3vKo31ATtYNHRPkp+eTM4Ir4eFlN1GyIGDa8Ijp3XHMX9S2LgWURVfNvLsxLYR08uTtKDxj9+cJ81hTma1LMXFEVNZsaYssz64rLeOwXqmJLSXmUv+2X6hcfHtIvGh+aGtfcsiqqC69vbKiLmrWL429uWBpR2B7HDGldrv1i6Hnjoqy+MqZ+akrMW1H4LoVtd+b4UbE0Pt7+2seDL4+bZpwdW+4cH0POHRsz5y+LedOvjFGjpsSvxi+IyfnTWqXdlgEAAAAAAA4dQbbbKo2h1z8QP1oxLS7tWxf33jEjplwxPqZMXxz31h4dY25YHj/6h8lR0Xrq3c4YfFXcdfd18cG6hTHlwnNiyJBz4qJZVVH6mQUxbUT+nINQ/qm74oEbRsYx1Stj8fSpMfXO2jj52uVx40WduQJsaYwozNOcsY3x/enjY9SZQ+LM88bHV58dEX8/d1yH15AdcPFXYvm1Z0fDg3Nj6vUTo+rp1iM/+8XI+WsK3+X0qLt/akwszOuZ542NKbdUxwlXL4g137pq78DbpyImL3kobjrjxXhk+sS46KOF5XL13NgweEF8ZWJFHJ8/rbPKT/94ZMdvln9iaJuQXB4VF2b3w2LMGZ2/Km6XlAyNz66YU9hmfh5Li+ugevdpr0vKY/K31sSCC0ui+pYpMfa8M+OcCyfG1Aefi6E3PBBrZu0/7vcbNSeW3z4hjvmnGTG+8PohZ46KsdfcG8+dMS0e+Mbkluvl5krPubH43GE7qmLpLYXvMn11vHzWorgrC/ftlBS2n2/GmtWLYtrwsmIort0xMMbd/nAsGD0gjsmf9ZbE2zIAAAAAAMCh0qO5ufnNfHifGhoaon///vnYofHGG2/kQ3TKjsZo3JkNlByC62U2RWNjS7wsOe5Ar9X6drL3jwP/nl2d112Fz9u+r8/r4ry2fnav0t3XmT1MNWUrYV/zXFxm+XIpLTynONQVu5dr4Q32e+3Z4nc5oM/J1MTiQWNj4bUPxMZr2sbcLq5fAACABHr37p0PHRpbt26Nfv2SnFcJAACS2rx58yFvikcCR8geLvqURmlpdjuwpLW3LHS2vF+agHWQ0bir89rz7T6vi/Pa+tmHeYzNFEPrvua5uMzy5ZJP6prdr+/Matp/9G2M2gdX7X394VbP1MT3C3cjTzm5ZXwvXVy/AAAAAAAA7zBBFnj3PbMqZk+fEWM/dXOs2pBdE7axcGuIuseWxZTPzY3asnFx6XC/DgcAAAAAAA4/TlkMdAtNmyrjq7PmxtLq+nxKi5NHTYuvzLoqKvrmEwAAALoZpywGAIAWTlncMUEW6Fay682+0lAXL5YMjAF9j4zTRwMAAEc2QRYAAFoIsh1zymKgW8muN9vv1IooP0mMBQAAAAAADn+CLAAAAAAAAEAigiwAAAAAAABAIoIsAAAAAAAAQCKCLAAAAAAAAEAigiwAAAAAAABAIoIsAAAAAAAAQCKCLAAAAAAAAEAigiwAAAAAAABAIoIsAAAAAAAAQCKCLAAAAAAAAEAigiwAAAAAAABAIoIsAAAAAAAAQCKCLAAAAAAAAEAigiwAAAAAAABAIoIsAAAAAAAAQCKCLAAAAAAAAEAigiwAAAAAAABAIoIsAAAAAAAAQCKCLAAAAAAAAEAigiwAAAAAAABAIoIsAAAAAAAAQCKCLAAAAAAAAEAigiwAAAAAAABAIoIsAAAAAAAAQCKCLAAAAAAAAEAigiwAAAAAAABAIoIsAAAAAAAAQCKCLAAAAAAAAEAigiwAAAAAAABAIoIsAAAAAAAAQCKCLAAAAAAAAEAi71qQ7dGjRz4EAAAAcHiyfwMAANgfQRYAAADgANm/AQAA7I8gCwAAAHCA7N8AAAD2510Lskcd5fK1AAAAwOHN/g0AAGB/3tW/Gnr27JkPAQAAABxe7NcAAAA6410NstmvSJ3aBwAAADjcZPszHB0LAAB0xrv+l4NfkwIAAACHG/szAACAznrXg2z2i9JevXrlYwAAAADdW7Yfwxm/AACAzuoW59ZpjbL+mAEAAAC6K/svAACAA9FtLnbS+keNU/4AAAAA3U22v0KMBQAADkS3CbKtjjrqqOjdu3fxD51s2B86AAAAwDst2x+R7ZfI9k9k+ymyYQAAgAPRo7m5+c18eJ8aGhqif//++RgAAAAAqWzdujX69euXjwEAwOFj8+bNmmIH/LwTAAAAAAAAIBFBFgAAAAAAACARQRYAAAAAAAAgEUEWAAAAAAAAIBFBFgAAAAAAACARQRYAAAAAAAAgEUEWAAAAAAAAIBFBFgAAAAAAACCRTgXZHj16xJtvvpmPAQAAAJBCtv8l2w8DAAAcOToVZHv27Bk7d+7MxwAAAABIIdv/ku2HAQAAjhydCrK9evWKN954Ix8DAAAAIIVs/0u2HwYAADhydCrI9u7dO15//fV8DAAAAIAUsv0v2X4YAADgyNGpIFtSUlL8haajZAEAAADSaN33ku2HAQAAjhydCrKZY489Nl599dV8DAAAAIBDKdvvku1/AQAAjixdCrI7d+6MHTt25FMAAAAAOBSy/S3ZfhdBFgAAjjydDrKZ97znPdHY2Oh6sgAAAACHSLafJdvfku13AQAAjjxdCrK9evWK0tLSeOmllxwpCwAAAHCQsv0r2X6WbH9Ltt8FAAA48nQpyGZ69+4dJ5xwQmzfvj22bdsWb7zxRv4IAAAAAJ2R7U/J9qtk+1ey/SzZ/hYAAODI1KO5ufnNfLjLXnvtteIt+6PhmGOOKd5nv+bs0aNH/gwAAAAA3nzzzeI1YrMQm52iOLvPrhfrmrEAABxJNm/eHP3798/HaHVQQbZVU1NT8Q+J7A+LXbt2Ff/IAAAAAKBF9uP1nj17Fn/Inv2gvaSkJH8EAACOHIJsxw5JkAUAAAAAAAB+vwmyHevyNWQBAAAAAAAA6BxBFgAAAAAAACARQRYAAAAAAAAgEUEWAAAAAAAAIBFBFgAAAAAAACARQRYAAAAAAAAgEUEWAAAAAAAAIBFBFgAAAAAAACARQRYAAAAAAAAgEUEWAAAAAAAAIBFBFgAAAAAAACARQRYAAAAAAAAgEUEWAAAAAAAAIBFBFgAAAAAAACARQRYAAAAAAAAgEUEWAAAAAAAAIBFBFgAAAAAAACARQRYAAAAAAAAgEUEWAAAAAAAAIBFBFgAAAAAAACARQRYAAAAAAAAgEUEWAAAAAAAAIBFBFgAAAAAAACARQRYAAAAAAAAgEUEWAAAAAAAAIBFBFgAAAAAAACARQRYAAAAAAAAgEUEWAAAAAAAAIBFBFgAAAAAAACARQRYAAAAAAAAgEUEWAAAAAAAAIBFBFgAAAAAAACARQRYAAAAAAAAgEUEWAAAAAAAAIBFBFgAAAAAAACARQRYAAAAAAAAgEUEWAAAAAAAAIBFBFgAAAAAAACARQRYAAAAAAAAgEUEWAAAAAAAAIBFBFgAAAAAAACARQRYAAAAAAAAgEUEWAAAAAAAAIBFBFgAAAAAAACARQRYAAAAAAAAgEUEWAAAAAAAAIBFBFgAAAAAAACARQRYAAAAAAAAgEUEWAAAAAAAAIBFBFgAAAAAAACARQRYAAAAAAAAgEUEWAAAAAAAAIBFBFgAAAAAAACARQRYAAAAAAAAgEUEWAAAAAAAAIBFBFgAAAAAAACARQRYAAAAAAAAgEUEWAAAAAAAAIBFBFgAAAAAAACARQRYAAAAAAAAgEUEWAAAAAAAAIBFBFgAAAAAAACARQRYAAAAAAAAgEUEWAAAAAAAAIBFBFgAAAAAAACARQRYAAAAAAAAgEUEWAAAAAAAAIBFBFgAAAAAAACARQRYAAAAAAAAgEUEWAAAAAAAAIBFBFgAAAAAAACARQRYAAAAAAAAgEUEWAAAAAAAAIBFBFgAAAAAAACARQRYAAAAAAAAgEUEWAAAAAAAAIBFBFgAAAAAAACARQRYAAAAAAAAgEUEWAAAAAAAAIBFBFgAAAAAAACARQRYAAAAAAAAgEUEWAAAAAAAAIBFBFgAAAAAAACARQRYAAAAAAAAgEUEWAAAAAAAAIBFBFgAAAAAAACARQRYAAAAAAAAgEUEWAAAAAAAAIBFBFgAAAAAAACARQRYAAAAAAAAgEUEWAAAAAAAAIBFBFgAAAAAAACARQRYAAAAAAAAgEUEWAAAAAAAAIBFBFgAAAAAAACARQRYAAAAAAAAgEUEWAAAAAAAAIBFBFgAAAAAAACARQRYAAAAAAAAgEUEWAAAAAAAAIBFBFgAAAAAAACARQRYAAAAAAAAgEUEWAAAAAAAAIBFBFgAAAAAAACARQRYAAAAAAAAgEUEWAAAAAAAAIBFBFgAAAAAAACARQRYAAAAAAAAgEUEWAAAAAAAAIBFBFgAAAAAAACARQRYAAAAAAAAgEUEWAAAAAAAAIBFBFgAAAAAAACARQRYAAAAAAAAgEUEWAAAAAAAAIBFBFgAAAAAAACARQRYAAAAAAAAgEUEWAAAAAAAAIBFBFgAAAAAAACARQRYAAAAAAAAgEUEWAAAAAAAAIBFBFgAAAAAAACARQRYAAAAAAAAgEUEWAAAAAAAAIBFBFgAAAAAAACARQRYAAAAAAAAgEUEWAAAAAAAAIBFBFgAAAAAAACARQRYAAAAAAAAgEUEWAAAAAAAAIBFBFgAAAAAAACARQRYAAAAAAAAgEUEWAAAAAAAAIBFBFgAAAAAAACARQRYAAAAAAAAgEUEWAAAAAAAAIBFBFgAAAAAAACARQRYAAAAAAAAgEUEWAAAAAAAAIBFBFgAAAAAAACARQRYAAAAAAAAgEUEWAAAAAAAAIBFBFgAAAAAAACARQRYAAAAAAAAgEUEWAAAAAAAAIBFBFgAAAAAAACARQRYAAAAAAAAgEUEWAAAAAAAAIBFBFgAAAAAAACARQRYAAAAAAAAgEUEWAAAAAAAAIBFBFgAAAAAAACARQRYAAAAAAAAgEUEWAAAAAAAAIBFBFgAAAAAAACARQRYAAAAAAAAgEUEWAAAAAAAAIBFBFgAAAAAAACARQRYAAAAAAAAgEUEWAAAAAAAAIBFBFgAAAAAAACARQRYAAAAAAAAgEUEWAAAAAAAAIBFBFgAAAAAAACARQRYAAAAAAAAgEUEWAAAAAAAAIBFBFgAAAAAAACARQRYAAAAAAAAgEUEWAAAAAAAAIBFBFgAAAAAAACARQRYAAAAAAAAgEUEWAAAAAAAAIBFBFgAAAAAAACARQRYAAAAAAAAgEUEWAAAAAAAAIBFBFgAAAAAAACARQRYAAAAAAAAgEUEWAAAAAAAAIBFBFgAAAAAAACARQRYAAAAAAAAgEUEWAAAAAAAAIBFBFgAAAAAAACARQRYAAAAAAAAgEUEWAAAAAAAAIBFBFgAAAAAAACARQRYAAAAAAAAgEUEWAAAAAAAAIBFBFgAAAAAAACARQRYAAAAAAAAgEUEWAAAAAAAAIBFBFgAAAAAAACARQRYAAAAAAAAgEUEWAAAAAAAAIBFBFgAAAAAAACARQRYAAAAAAAAgEUEWAAAAAAAAIBFBFgAAAAAAACARQRYAAAAAAAAgEUEWAAAAAAAAIBFBFgAAAAAAACARQRYAAAAAAAAgEUEWAAAAAAAAIBFBFgAAAAAAACARQRYAAAAAAAAgEUEWAAAAAAAAIBFBFgAAAAAAACARQRYAAAAAAAAgEUEWAAAAAAAAIBFBFgAAAAAAACARQRYAAAAAAAAgEUEWAAAAAAAAIBFBFgAAAAAAACARQRYAAAAAAAAgEUEWAAAAAAAAIBFBFgAAAAAAACARQRYAAAAAAAAgkR7Nzc1v5sMAAAAAAAAAB2Tz5s3Rv3//fOzdVbdpW/z61y/Fjh1vxPvfd1ycfvr7o6SkV/7ovj377Mvxq7ptsX17c5SV9YnT//LEOPbY/b/u7QiyAAAAAAAAwEHrLkH22ytr4zv/+K/x5h4V9OSTS2Pm9P8affsek09pb/XqX8a99/+s8LrdLzzxxPfEF2YMj7Ky4/IpXeeUxQAAAAAAAMAR4bvf+2U8+J29Y2zmueca45Yv/0vs3Pkf+ZS9Pbru2Vhx39N7xdjMCy+8GrNv+Zd4/fWd+ZSuE2QBAAAAAACAw95LL70e99//8+Lw8DMHxJwvfzTu+sb58dnJQ6JXz6Pi+d+8Eo9Ubiw+vqfXXtsZy+7+SXH4Ix/5o7hl9ohY8s3R8bm/+S/F0xXX1++Ilatqi48fCEEWAAAAAAAAOOz94hf/Hjt3tRwBe/llp8XAgX2jtLQkRpz1n4rXkM08/bP64v2e6uq2RVNTyxGwl148OAYNem8cf/zRxaj7kSF/VJze0es6S5AFAAAAAAAADnuNrzQV7485ple7a8UOHtyveL/1N68U7/f0wm9fLd5nrzvllBOKw61OOun44n3jyy3vfSAEWQAAAAAAAOCwd/KA0uJ9dr3Xn/70xeJwqx49ehTv/6PtxWULWq8be1TLU/by5JPPF+9P+cDeobYrejQ3N7f/VAAAAAAAAIAu2Lx5c/Tv3z8fe+dlYXXmFx8tnoL46KN7xgfLy+LUU/+gGGN/+cvfxU9++tviUbCjz//T/BUtNm3aFk/VvBC9e/eMCy8YVJy2fXtzbPjJb2Pr1pajZ78487/Fhz5UVhzuKkEWAAAAAAAAOGjvdpDNvPDCq/HlOT+M+vod+ZSDkx1Ye+kl5XHxX/95PqXrBFkAAAAAAADgoHWHIJtpbt4VDz+yMdb/eGv827+9lE/tmuOO6x1/cdr7Y9SogfFng96bTz0wgiwAAAAAAABw0LpLkO3Id7/3q1i+4qdxwgkl8c07z8+ntlj7z5tiydIN0efYXnH3sgvyqYfOUfk9AAAAAAAAAIeYIAsAAAAAAACQiCALAAAAAAAAkIhryAIAAAAAAAAHrTtdQ7Zu07b49a9fim3bXi+O//KXv4uf/PS3ccwxvWL0+X9anNZqU+G5T9W8EL1794wLLxhUnHb00T3jfe/rE6f/5Ylx7LG9itMOlCALAAAAAAAAHLTuEmS/vbI2vvOP/xpvHoIKeuKJ74kvzBgeZWXH5VO6zimLAQAAAAAAgCPCd7/3y3jwO4cmxmZeeOHVmH3Lv8Trr+/Mp3SdI2QBAAAAAACAg/ZuHyH70kuvxzVT/il27vqPGH7mgDj/r/40Tj21b/TokYXaX8XyFT+NE04oiW/eeX7+ihZr/3lTLFm6Ifoc2yvuXnZBcdqr29+In/zkt3HXkqfitdd2xujz/ySuGPcXxce6yhGyAAAAAAAAwGHvF7/492KMzVx+2WkxcGBLjD0Q7zmudzHqfmTIHxXHn/5ZffH+QAiyAAAAAAAAwGGv8ZWm4v0xx/SKvn2PKQ63evnl14v3ffr0Lt7vqU+fo4v3Tc272p2a+KSTji/eN77c8t4HQpAFAAAAAAAADnsnDygt3mdR9ac/fbE43OqHjz9XvM9OYdzWfzq55XW7dr0ZP/7x1uJwqyeffL54f8oHTijeH4ieX/ziF2flwwAAAAAAAAAH5OWXX47jj285ovTd8N73Hhs/+cmL8bvfvRbrf7y1eE3Z7MjWO7/5VPzmN68WT188aeKH471/eGz+ihbZdWX/9RcN8eKLO2JD4fUNDTtix/Y3YumyDfGrum3F51w9oSLe/77jisNd1aO5ufnNfBgAAAAAAADggGzevDn69++fj707Xnjh1fjynB9Gff2OfEqLo47qEeMuPy3O/6s/yafs7d9/91p8+cs/jN9sfSWf0iKLuJdeUh4X//Wf51O6TpAFAAAAAAAADlp3CLKZ5uZd8fAjG4tHyWZHy572obIYM3pQ/PEf/0H+jI7t3Pkfsfq7v4z/+/9+E7/97fbC694Xo0YNjD8b9N78GQdGkAUAAAAAAAAOWncJst3NUfk9AAAAAAAAAIeYIAsAAAAAAACQiCALAAAAAAAAkIggCwAAAAAAAJCIIAsAAAAAAACQiCALAAAAAAAAkIggCwAAAAAAAJCIIAsAAAAAAACQiCALAAAAAAAAkIggCwAAAAAAAJCIIAsAAAAAAACQiCALAAAAAAAAkIggCwAAAAAAAJCIIAsAAAAAAACQiCALAAAAAAAAkIggCwAAAAAAAJBExP8HtBLoI4rADG8AAAAASUVORK5CYII=" - } - }, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "![image.png](attachment:image.png)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Conclusions\n", - "\n", - "In this tutorial, we followed our own approach for the methods from WizardLM and Deita to develop an evolved-instruction dataset. Using `distilabel`, we generated and evaluated new instructions, creating a dataset featuring successful instructions after applying Evol-Complexity to make them more complex and Evol-Quality to improve the quality of their responses. Optionally, we employed Argilla to verify their quality using human feedback.\n", - "\n", - "We hope you found this tutorial helpful! 👐\n", - "\n", - "Explore different ways to create new datasets by checking out these tutorials!\n", - "\n", - "* [Clean an existing preference dataset](https://distilabel.argilla.io/latest/tutorials/clean-preference-dataset-judgelm-gpt.html)\n", - "* [Create a mathematical preference dataset](https://distilabel.argilla.io/latest/tutorials/create-a-math-preference-dataset.html)" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.12" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/src/distilabel/distiset.py b/src/distilabel/distiset.py index 242b4a9773..513ccb9900 100644 --- a/src/distilabel/distiset.py +++ b/src/distilabel/distiset.py @@ -114,7 +114,7 @@ def _generate_card(self, repo_id: str, token: Optional[str]) -> None: token=token, ) if self.pipeline_path: - # If the pipeline.yaml is available, upload it to the hub as well. + # If the pipeline.yaml is available, upload it to the Hugging Face Hub as well. HfApi().upload_file( path_or_fileobj=self.pipeline_path, path_in_repo="pipeline.yaml", @@ -129,7 +129,7 @@ def _extract_readme_metadata( """Extracts the metadata from the README.md file of the dataset repository. We have to download the previous README.md file in the repo, extract the metadata from it, - and generate a dict again to be passed thoruogh the `DatasetCardData` object. + and generate a dict again to be passed thorough the `DatasetCardData` object. Args: repo_id: The ID of the repository to push to, from the `push_to_hub` method. @@ -225,6 +225,10 @@ def create_distiset(data_dir: Path, pipeline_path: Optional[Path] = None) -> Dis logger.warning(f"❌ Failed to load the subset from '{file}' directory.") continue + # If there's only one dataset i.e. one config, then set the config name to `default` + if len(distiset.keys()) == 1: + distiset["default"] = distiset.pop(list(distiset.keys())[0]) + if pipeline_path: distiset.pipeline_path = pipeline_path else: diff --git a/src/distilabel/steps/tasks/pair_rm.py b/src/distilabel/steps/tasks/pair_rm.py index 68188606f4..e7c5d9ded4 100644 --- a/src/distilabel/steps/tasks/pair_rm.py +++ b/src/distilabel/steps/tasks/pair_rm.py @@ -28,7 +28,7 @@ class PairRM(Step): Attributes: model: The model to use for the ranking. Defaults to `"llm-blender/PairRM"`. - input_batch_size: The batch size to use when processing the input. Defauls to `8`. + input_batch_size: The batch size to use when processing the input. Defaults to `8`. instructions: The instructions to use for the model. Defaults to `None`. Input columns: diff --git a/src/distilabel/utils/card/distilabel_template.md b/src/distilabel/utils/card/distilabel_template.md index fb2ebcdfc0..94c6dab37a 100644 --- a/src/distilabel/utils/card/distilabel_template.md +++ b/src/distilabel/utils/card/distilabel_template.md @@ -12,7 +12,7 @@ # Dataset Card for {{ repo_id.split("/")[-1] }} -This dataset has been created with [Distilabel](https://distilabel.argilla.io/). +This dataset has been created with [distilabel](https://distilabel.argilla.io/). ## Dataset Summary @@ -46,6 +46,15 @@ from datasets import load_dataset ds = load_dataset("{{ repo_id }}", "{{ config_name }}") ``` +{% if config_name == "default" %} +Or simply as it follows, since there's only one configuration and is named `default`: + +```python +from datasets import load_dataset + +ds = load_dataset("{{ repo_id }}") +``` +{% endif %} {% endfor %} diff --git a/tests/integration/test_pipe_simple.py b/tests/integration/test_pipe_simple.py index 2f74673b13..28388b8f77 100644 --- a/tests/integration/test_pipe_simple.py +++ b/tests/integration/test_pipe_simple.py @@ -177,7 +177,7 @@ def test_pipeline_cached(): print() ds = run_pipeline() assert isinstance(ds, Distiset) - assert len(ds["generate_response"]["train"]) == 80 + assert len(ds["default"]["train"]) == 80 if __name__ == "__main__": diff --git a/tests/unit/pipeline/test_base.py b/tests/unit/pipeline/test_base.py index ded8dc816b..f36efbefe2 100644 --- a/tests/unit/pipeline/test_base.py +++ b/tests/unit/pipeline/test_base.py @@ -1263,7 +1263,7 @@ def test_write_buffer_one_leaf_step_and_create_dataset(self) -> None: ds = create_distiset(write_buffer._path) assert isinstance(ds, Distiset) assert len(ds.keys()) == 1 - assert len(ds["dummy_step_2"]["train"]) == 125 + assert len(ds["default"]["train"]) == 125 def test_write_buffer_multiple_leaf_steps_and_create_dataset(self): with tempfile.TemporaryDirectory() as tmpdirname: diff --git a/tests/unit/test_distiset.py b/tests/unit/test_distiset.py index 4cadada17d..18de3f8769 100644 --- a/tests/unit/test_distiset.py +++ b/tests/unit/test_distiset.py @@ -28,7 +28,7 @@ def distiset(): class TestDistiset: - def test_train_test_split(self, distiset): + def test_train_test_split(self, distiset: Distiset) -> None: assert isinstance(distiset["leaf_step_1"], Dataset) ds = distiset.train_test_split(0.8) assert isinstance(ds, Distiset)