-
Notifications
You must be signed in to change notification settings - Fork 24
/
Finalcode.py
98 lines (74 loc) · 2.55 KB
/
Finalcode.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
import cv2
import argparse
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
s = r'C:\Users\Arnab Sinha\Documents\GitHub\Kidney-Stone-Detection-IP\images'
image_no = '\image1.jpg'
s = s + image_no
img = cv2.imread(s,0)
def build_filters():
#returns a list of kernels in several orientations
filters = []
ksize = 31
for theta in np.arange(0, np.pi, np.pi / 32):
params = {'ksize': (ksize, ksize), 'sigma': 0.0225, 'theta': theta, 'lambd': 15.0,
'gamma': 0.01, 'psi': 0, 'ktype': cv2.CV_32F}
kern = cv2.getGaborKernel(**params)
kern /= 1.5*kern.sum()
filters.append((kern, params))
return filters
def process(img, filters):
#returns the img filtered by the filter list
accum = np.zeros_like(img)
for kern, params in filters:
fimg = cv2.filter2D(img, cv2.CV_8UC3, kern)
np.maximum(accum, fimg, accum)
return accum
def Histeq(img):
equ = cv2.equalizeHist(img)
return equ
def GaborFilter(img):
filters = build_filters()
p = process(img, filters)
return p
def Laplacian(img,par):
lap = cv2.Laplacian(img,cv2.CV_64F)
sharp = img - par*lap
sharp = np.uint8(cv2.normalize(sharp, None, 0 , 255, cv2.NORM_MINMAX))
return sharp
def Watershed(img):
ret, thresh = cv2.threshold(img,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)
# noise removal
kernel = np.ones((3,3),np.uint8)
opening = cv2.morphologyEx(thresh,cv2.MORPH_OPEN,kernel, iterations = 2)
# sure background area
sure_bg = cv2.dilate(opening,kernel,iterations=3)
# Finding sure foreground area
dist_transform = cv2.distanceTransform(opening,cv2.DIST_L2,5)
ret, sure_fg = cv2.threshold(dist_transform,0.23*dist_transform.max(),255,0)
# Finding unknown region
sure_fg = np.uint8(sure_fg)
unknown = cv2.subtract(sure_bg,sure_fg)
# Marker labelling
ret, markers = cv2.connectedComponents(sure_fg)
# Add one to all labels so that sure background is not 0, but 1
markers = markers+1
# Now, mark the region of unknown with zero
markers[unknown==255] = 0
img2 = cv2.imread(s,1)
img2 = cv2.medianBlur(img2,5)
markers = cv2.watershed(img2,markers)
img2[markers == -1] = [255,0,0]
return img2
if image_no=='\image1.jpg':
img3 = Laplacian(img,0.239)
elif image_no=='\image2.jpg':
img3 = GaborFilter(img)
img3 = Histeq(img3)
elif image_no=='\image4.jpg':
img3 = GaborFilter(img)
img3 = Watershed(img)
plt.imshow(img3,'gray')
plt.title('Marked')
plt.xticks([]),plt.yticks([])