forked from corsix/amx
-
Notifications
You must be signed in to change notification settings - Fork 0
/
matint.c
136 lines (123 loc) · 5.27 KB
/
matint.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
#include "emulate.h"
#define MATINT_SIGNED_Z (1ull << 63)
#define MATINT_INDEXED_LOAD (1ull << 53)
#define MATINT_INDEXED_LOAD_Y (1ull << 47)
#define MATINT_INDEXED_LOAD_4BIT (1ull << 48)
#define MATINT_SIGNED_X (1ull << 63)
#define MATINT_SIGNED_Y (1ull << 26)
#define MATINT_ENABLE_MASK_IS_Y (1ull << 25)
int64_t vecint_alu_mode4(int64_t val, uint32_t satbits, uint64_t operand);
int64_t vecint_alu(int64_t x, int64_t y, int64_t z, int alumode, uint32_t shift);
void emulate_AMX_MATINT(amx_state* state, uint64_t operand) {
if ((operand >> 55) & 3) {
return;
}
if ((operand & (1ull << 54)) && !(operand & MATINT_INDEXED_LOAD)) {
return;
}
uint64_t z_row = (operand >> 20) & 3;
int32_t omask = (((operand >> 32) & 0x1ff) == 3) ? 0 : -1;
int alumode = (operand & MATINT_INDEXED_LOAD) ? (operand & (1ull << 54)) >> 51 : (operand >> 47) & 0x3f;
uint32_t shift = (operand >> 58) & 0x1f;
uint32_t xybits = 0, zbits, satbits;
if (alumode == 4) {
switch ((operand >> 42) & 0xf) {
case 3: zbits = 32; satbits = 16; break;
case 4: zbits = 32; satbits = 32; break;
case 10: zbits = 32; satbits = 8; break;
case 11: zbits = 16; satbits = 8; break;
default: zbits = 16; satbits = 16; break;
}
} else if (alumode == 5 || alumode == 6) {
xybits = 16; zbits = 16;
shift = 15;
} else if (alumode == 8) {
switch ((operand >> 42) & 0xf) {
case 10: xybits = 8; zbits = 32; break;
default: xybits = 8; zbits = 16; break;
}
} else if (alumode == 9) {
switch ((operand >> 42) & 0xf) {
case 3: xybits = 16; zbits = 32; break;
case 4: xybits = 32; zbits = 32; break;
default: xybits = 16; zbits = 16; break;
}
shift = 64 - xybits; // Not actually used as a shift
} else {
switch ((operand >> 42) & 0xf) {
case 3: xybits = 16; zbits = 32; break;
default: xybits = 16; zbits = 16; break;
}
}
uint32_t xybytes = xybits / 8;
uint32_t zbytes = zbits / 8;
if (alumode == 4) {
// z = f(z), where f is [rounding] shift followed by [saturate]
// with various options for width and signedness
uint32_t zsignext = (operand & MATINT_SIGNED_Z) ? (64 - zbits) : 0;
uint64_t col_enable = parse_writemask(operand >> 32, zbytes, 9);
for (uint32_t j = 0; j < 64; j += zbytes) {
for (uint32_t i = 0; i < 64; i += zbytes) {
if (!((col_enable >> (operand & MATINT_ENABLE_MASK_IS_Y ? j : i)) & 1)) continue;
void* z = &state->z[bit_select(j, z_row, zbytes - 1)].u8[i];
int64_t val = load_int(z, zbytes, zsignext);
val = vecint_alu_mode4(val, satbits, operand);
store_int(z, zbytes, val & omask);
}
}
return;
} else if (alumode == 7 || alumode >= 10) {
return;
}
uint8_t x[64];
uint8_t y[64];
load_xy_reg(x, state->x, (operand >> 10) & 0x1FF);
load_xy_reg(y, state->y, operand & 0x1FF);
if (operand & MATINT_INDEXED_LOAD) {
uint32_t src_reg = (operand >> 49) & 7;
uint32_t ibits = (operand & MATINT_INDEXED_LOAD_4BIT) ? 4 : 2;
if (operand & MATINT_INDEXED_LOAD_Y) {
load_xy_reg_indexed(y, state->y[src_reg].u8, ibits, xybits);
} else {
load_xy_reg_indexed(x, state->x[src_reg].u8, ibits, xybits);
}
}
xy_shuffle(x, (operand >> 29) & 3, xybytes);
xy_shuffle(y, (operand >> 27) & 3, xybytes);
// z = z +/- (f(x, y) >> s) for f being * or + or weird xor/popcnt thing
// z = sat_i16(z +/- (f(x, y) >> 16)) for f being SQRDMLAH / SQRDMLSH
// with various width/sign/shuffle arrangements for x and y
// and various width arrangements for z (interleaving of z dependent on widths of x/y/z)
// write-mask, or broadcast from y, or x=0, or y=0
uint64_t x_enable, y_enable;
if (operand & MATINT_ENABLE_MASK_IS_Y) {
x_enable = ~(uint64_t)0;
y_enable = parse_writemask(operand >> 32, xybytes, 9);
} else {
x_enable = parse_writemask(operand >> 32, xybytes, 9);
y_enable = ~(uint64_t)0;
}
if (((operand >> (32+6)) & 7) == 0) {
uint32_t val = (operand >> 32) & 0x3F;
if (val == 4 || val == 5) {
memset((operand & MATINT_ENABLE_MASK_IS_Y) ? y : x, 0, 64);
}
}
uint32_t xsignext = (operand & MATINT_SIGNED_X) ? (64 - xybits) : 0;
uint32_t ysignext = (operand & MATINT_SIGNED_Y) ? (64 - xybits) : 0;
uint32_t zsignext = 64 - zbits;
uint32_t zmask = (zbytes / xybytes) - 1;
uint32_t step = xybytes == 1 ? zbytes : xybytes;
for (uint32_t j = 0; j < 64; j += step) {
if (!((y_enable >> j) & 1)) continue;
for (uint32_t i = 0; i < 64; i += xybytes) {
if (!((x_enable >> i) & 1)) continue;
int64_t xv = load_int(x + i, xybytes, xsignext);
int64_t yv = load_int(y + j, xybytes, ysignext);
void* z = &state->z[bit_select(bit_select(j, z_row, xybytes - 1), i / xybytes, zmask)].u8[i & -zbytes];
int64_t zv = load_int(z, zbytes, zsignext);
int64_t result = vecint_alu(xv, yv, zv, alumode, shift) & omask;
store_int(z, zbytes, result);
}
}
}