-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
190 lines (150 loc) · 7.75 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import os
import streamlit as st
from langchain_community.chat_models import ChatOpenAI
from langchain.chains import ConversationalRetrievalChain
from langchain_community.vectorstores import FAISS
from langchain_community.document_loaders import PyPDFLoader, CSVLoader
from langchain_community.embeddings import OpenAIEmbeddings
# from langchain.vectorstores import Chroma
# from langchain.prompts import PromptTemplate
from langchain.prompts import load_prompt
from streamlit import session_state as ss
from pymongo import MongoClient
from pymongo.mongo_client import MongoClient
from pymongo.server_api import ServerApi
import uuid
import json
import time
import datetime
def is_valid_json(data):
try:
json.loads(data)
return True
except json.JSONDecodeError:
return False
if "mongodB_pass" in os.environ:
mongodB_pass = os.getenv("mongodB_pass")
else: mongodB_pass = st.secrets["mongodB_pass"]
# Setting up a mongo_db connection to store conversations for deeper analysis
uri = "mongodb+srv://aryashah0616:"+mongodB_pass+"@cluster0.jaxt0cw.mongodb.net/?retryWrites=true&w=majority&appName=Cluster0"
@st.cache_resource
def init_connection():
return MongoClient(uri, server_api=ServerApi('1'))
client = init_connection()
db = client['conversations_db']
conversations_collection = db['conversations']
if "OPENAI_API_KEY" in os.environ:
openai_api_key = os.getenv("OPENAI_API_KEY")
else: openai_api_key = st.secrets["OPENAI_API_KEY"]
# else:
# openai_api_key = st.sidebar.text_input(
# label="#### Your OpenAI API key 👇",
# placeholder="Paste your openAI API key, sk-",
# type="password")
#Creating Streamlit title and adding additional information about the bot
st.title("AryaGPT")
with st.expander("⚠️Disclaimer"):
st.write("""This is a work in progress chatbot based on a large language model. It can answer questions about Arya Shah""")
path = os.path.dirname(__file__)
# Loading prompt to query openai
prompt_template = path+"/templates/template.json"
prompt = load_prompt(prompt_template)
#prompt = template.format(input_parameter=user_input)
# loading embedings
faiss_index = path+"/faiss_index"
# Loading CSV file
data_source = path+"/data/about_me.csv"
pdf_source = path+"/data/resume.pdf"
# Function to store conversation
def store_conversation(conversation_id, user_message, bot_message, answered):
timestamp = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
data = {
"conversation_id": conversation_id,
"timestamp": timestamp,
"user_message": user_message,
"bot_message": bot_message,
"answered": answered
}
conversations_collection.insert_one(data)
embeddings = OpenAIEmbeddings()
#using FAISS as a vector DB
if os.path.exists(faiss_index):
vectors = FAISS.load_local(faiss_index, embeddings,allow_dangerous_deserialization=True)
else:
# Creating embeddings for the docs
if data_source:
# Load data from PDF and CSV sources
pdf_loader = PyPDFLoader(pdf_source)
pdf_data = pdf_loader.load_and_split()
print(pdf_data)
csv_loader = CSVLoader(file_path=data_source, encoding="utf-8")
#loader.
csv_data = csv_loader.load()
data = pdf_data + csv_data
vectors = FAISS.from_documents(data, embeddings)
vectors.save_local("faiss_index")
retriever=vectors.as_retriever(search_type="similarity", search_kwargs={"k":6, "include_metadata":True, "score_threshold":0.6})
#Creating langchain retreval chain
chain = ConversationalRetrievalChain.from_llm(llm = ChatOpenAI(temperature=0.0,model_name='gpt-3.5-turbo', openai_api_key=openai_api_key),
retriever=retriever,return_source_documents=True,verbose=True,chain_type="stuff",
max_tokens_limit=4097, combine_docs_chain_kwargs={"prompt": prompt})
def conversational_chat(query):
with st.spinner("Thinking..."):
# time.sleep(1)
# Be conversational and ask a follow up questions to keep the conversation going"
result = chain({"system":
"You are a Arya's ResumeGPT chatbot, a comprehensive, interactive resource for exploring Arya Shah's background, skills, and expertise. Be polite and provide answers based on the provided context only. Use only the provided data and not prior knowledge.",
"question": query,
"chat_history": st.session_state['history']})
if (is_valid_json(result["answer"])):
data = json.loads(result["answer"])
else:
data = json.loads('{"answered":"false", "response":"Hmm... Something is not right. I\'m experiencing technical difficulties. Try asking your question again or ask another question about Arya Shah\'s professional background and qualifications. Thank you for your understanding.", "questions":["What is Arya\'s professional experience?","What projects has Arya worked on?","What are Arya\'s career goals?"]}')
# Access data fields
answered = data.get("answered")
response = data.get("response")
questions = data.get("questions")
full_response="--"
st.session_state['history'].append((query, response))
if ('I am tuned to only answer questions' in response) or (response == ""):
full_response = """Unfortunately, I can't answer this question. My capabilities are limited to providing information about Arya Shah's professional background and qualifications. If you have other inquiries, I recommend reaching out to Arya on [LinkedIn](https://www.linkedin.com/in/arya--shah/). I can answer questions like: \n - What is Arya Shah's educational background? \n - Can you list Arya Shah's professional experience? \n - What skills does Arya Shah possess? \n"""
store_conversation(st.session_state["uuid"], query, full_response, answered)
else:
markdown_list = ""
for item in questions:
markdown_list += f"- {item}\n"
full_response = response + "\n\n What else would you like to know about Arya? You can ask me: \n" + markdown_list
store_conversation(st.session_state["uuid"], query, full_response, answered)
return(full_response)
if "uuid" not in st.session_state:
st.session_state["uuid"] = str(uuid.uuid4())
if "openai_model" not in st.session_state:
st.session_state["openai_model"] = "gpt-3.5-turbo"
if "messages" not in st.session_state:
st.session_state.messages = []
with st.chat_message("assistant"):
message_placeholder = st.empty()
welcome_message = """
Welcome! I'm **AryaGPT**, specialized in providing information about Arya Shah's professional background and qualifications. Feel free to ask me questions such as:
- What is Arya Shah's educational background?
- Can you outline Arya Shah's professional experience?
- What skills and expertise does Arya Shah bring to the table?
I'm here to assist you. What would you like to know?
"""
message_placeholder.markdown(welcome_message)
if 'history' not in st.session_state:
st.session_state['history'] = []
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
if prompt := st.chat_input("Ask me about Arya Shah"):
st.session_state.messages.append({"role": "user", "content": prompt})
with st.chat_message("user"):
user_input=prompt
st.markdown(prompt)
with st.chat_message("assistant"):
message_placeholder = st.empty()
full_response = ""
full_response = conversational_chat(user_input)
message_placeholder.markdown(full_response)
st.session_state.messages.append({"role": "assistant", "content": full_response})