-
Notifications
You must be signed in to change notification settings - Fork 22
/
random_forest.go
107 lines (95 loc) · 2.99 KB
/
random_forest.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
package goscore
import (
"encoding/xml"
"io/ioutil"
"strconv"
"sync"
)
// RandomForest - PMML Random Forest
type RandomForest struct {
XMLName xml.Name
Trees []Node `xml:"MiningModel>Segmentation>Segment>TreeModel"`
}
// LoadRandomForest - Load Random Forest PMML file to RandomForest struct
func LoadRandomForest(fileName string) (rf RandomForest, err error) {
randomForestXml, err := ioutil.ReadFile(fileName)
if err != nil {
return rf, err
}
err = xml.Unmarshal([]byte(randomForestXml), &rf)
if err != nil {
return rf, err
}
return rf, nil
}
// Score - traverses all trees in RandomForest with features and returns ratio of
// given label results count to all results count
func (rf RandomForest) Score(features map[string]interface{}, label string) (float64, error) {
labelScores, err := rf.LabelScores(features)
result := scoreByLabel(labelScores, label)
return result, err
}
// ScoreConcurrently - same as Score but concurrent
func (rf RandomForest) ScoreConcurrently(features map[string]interface{}, label string) (float64, error) {
labelScores, err := rf.LabelScoresConcurrently(features)
result := scoreByLabel(labelScores, label)
return result, err
}
// LabelScores - traverses all trees in RandomForest with features and maps result
// labels to how many trees returned those label
func (rf RandomForest) LabelScores(features map[string]interface{}) (map[string]float64, error) {
scores := map[string]float64{}
for _, tree := range rf.Trees {
score, err := tree.TraverseTree(features)
if err != nil {
return scores, err
}
scoreString := strconv.FormatFloat(score, 'f', -1, 64)
scores[scoreString]++
}
return scores, nil
}
// LabelScoresConcurrently - same as LabelScores but concurrent
func (rf RandomForest) LabelScoresConcurrently(features map[string]interface{}) (map[string]float64, error) {
messages := rf.traverseConcurrently(features)
return aggregateScores(messages, len(rf.Trees))
}
func aggregateScores(messages chan rfResult, treeCount int) (map[string]float64, error) {
scores := map[string]float64{}
var res rfResult
for i := 0; i < treeCount; i++ {
res = <-messages
if res.ErrorName != nil {
return map[string]float64{}, res.ErrorName
}
scores[res.Score]++
}
return scores, nil
}
func (rf RandomForest) traverseConcurrently(features map[string]interface{}) chan rfResult {
messages := make(chan rfResult, len(rf.Trees))
var wg sync.WaitGroup
wg.Add(len(rf.Trees))
for _, tree := range rf.Trees {
go func(tree Node, features map[string]interface{}) {
treeScore, err := tree.TraverseTree(features)
scoreString := strconv.FormatFloat(treeScore, 'f', -1, 64)
messages <- rfResult{ErrorName: err, Score: scoreString}
wg.Done()
}(tree, features)
}
wg.Wait()
return messages
}
func scoreByLabel(labelScores map[string]float64, label string) float64 {
allCount := 0.0
for _, value := range labelScores {
allCount += value
}
result := labelScores[label] / allCount
return result
}
type rfResult struct {
ErrorName error
Score string
}