-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathset_reasoning_test.cpp
135 lines (123 loc) · 5.35 KB
/
set_reasoning_test.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
#include "higher_order_logic.h"
#include "natural_deduction.h"
#include "set_reasoning.h"
#include "theory.h"
hol_term* canonicalize(hol_term* src) {
hol_term* canonicalized = standard_canonicalizer<true, false>::canonicalize(*src);
free(*src); if (src->reference_count == 0) free(src);
if (canonicalized == NULL) return NULL;
return canonicalized;
}
template<typename Formula, typename BuiltInConstants, typename ProofCalculus, typename Stream, typename Printer>
bool print_set_sizes(const set_reasoning<BuiltInConstants, Formula, ProofCalculus>& sets, Stream& out, Printer& printer) {
for (unsigned int i = 1; i < sets.set_count + 1; i++) {
if (sets.sets[i].size_axiom != NULL) {
if (!print(*sets.sets[i].size_axiom->formula, out, printer) || !print('\n', out))
return false;
}
}
return true;
}
int main(int argc, const char** argv)
{
set_reasoning<built_in_predicates, hol_term, natural_deduction<hol_term>> sets;
constexpr unsigned int RED = 1, BLUE = 2, FLUFFY = 3, CAT = 4;
hol_term* cats = hol_term::new_atom(CAT, &hol_term::variables<1>::value);
hol_term* red = hol_term::new_atom(RED, &hol_term::variables<1>::value);
hol_term* blue = hol_term::new_atom(BLUE, &hol_term::variables<1>::value);
hol_term* fluffy = hol_term::new_atom(FLUFFY, &hol_term::variables<1>::value);
hol_term* all = hol_term::new_true();
hol_term::variables<1>::value.reference_count += 4;
red->reference_count += 3;
blue->reference_count += 3;
cats->reference_count += 5;
fluffy->reference_count += 1;
hol_term* red_cats = canonicalize(hol_term::new_and(red, cats));
hol_term* blue_cats = canonicalize(hol_term::new_and(blue, cats));
hol_term* red_blue_cats = canonicalize(hol_term::new_and(red, blue, cats));
hol_term* red_blue_fluffy_cats = canonicalize(hol_term::new_and(red, blue, fluffy, cats));
hol_term* no_cats = hol_term::new_not(cats);
hash_map<string, unsigned int> names(256);
if (!add_constants_to_string_map(names)) exit(EXIT_FAILURE);
names.put("cat", CAT);
names.put("red", RED);
names.put("blue", BLUE);
names.put("fluffy", FLUFFY);
const string** reverse_name_map = invert(names);
string_map_scribe printer = { reverse_name_map, names.table.size + 1 };
sets.are_descendants_valid();
sets.get_size_axiom<true>(cats, 6);
sets.are_descendants_valid();
sets.get_size_axiom<true>(no_cats, 9);
sets.are_descendants_valid();
sets.get_size_axiom<true>(red, 10);
sets.are_descendants_valid();
sets.get_size_axiom<true>(blue, 7);
sets.are_descendants_valid();
sets.get_size_axiom<true>(red_cats, 4);
sets.are_descendants_valid();
sets.get_size_axiom<true>(blue_cats, 2);
sets.are_descendants_valid();
sets.get_size_axiom<true>(red_blue_cats, 0);
sets.are_descendants_valid();
sets.get_size_axiom<true>(red_blue_fluffy_cats, 0);
sets.are_descendants_valid();
sets.get_size_axiom<true>(all, 15);
sets.are_descendants_valid();
nd_step<hol_term>* axiom = sets.get_subset_axiom<true>(red_cats, cats, 1);
sets.are_descendants_valid();
print(*axiom->formula, stdout, printer); print('\n', stdout);
sets.get_subset_axiom<true>(cats, red, 1);
sets.are_descendants_valid();
sets.get_subset_axiom<true>(red, red_cats, 1);
sets.are_descendants_valid();
print_set_sizes(sets, stdout, printer); print('\n', stdout);
sets.get_subset_axiom<true>(all, red_cats, 1);
sets.are_descendants_valid();
print_set_sizes(sets, stdout, printer); print('\n', stdout);
sets.get_subset_axiom<true>(cats, no_cats, 1);
sets.are_descendants_valid();
print_set_sizes(sets, stdout, printer); print('\n', stdout);
unsigned int* clique = NULL; unsigned int clique_count; unsigned int ancestor_of_clique;
find_largest_disjoint_subset_clique(sets, sets.set_ids.get(*all), clique, clique_count, INT_MIN);
print("Largest pairwise-disjoint family of subsets: {", stdout);
if (clique_count > 0) {
print(*sets.sets[clique[0]].set_formula(), stdout, printer);
for (unsigned int i = 1; i < clique_count; i++) {
print(", ", stdout);
print(*sets.sets[clique[i]].set_formula(), stdout, printer);
}
}
print("}.\n", stdout);
if (clique != NULL) free(clique);
find_largest_disjoint_clique_with_set(sets, sets.set_ids.get(*blue_cats), clique, clique_count, ancestor_of_clique, INT_MIN);
print("Largest pairwise-disjoint family of subsets: {", stdout);
if (clique_count > 0) {
print(*sets.sets[clique[0]].set_formula(), stdout, printer);
for (unsigned int i = 1; i < clique_count; i++) {
print(", ", stdout);
print(*sets.sets[clique[i]].set_formula(), stdout, printer);
}
}
print("}\n", stdout);
if (clique != NULL) {
print(" with ancestor ", stdout); print(*sets.sets[ancestor_of_clique].set_formula(), stdout, printer); print(".\n", stdout);
free(clique);
}
free(*red_blue_cats); free(*red_blue_fluffy_cats);
free(*red_cats); free(*blue_cats);
free(*cats); free(*red); free(*blue); free(*fluffy);
free(*no_cats); free(*all);
if (cats->reference_count == 0) free(cats);
if (red->reference_count == 0) free(red);
if (blue->reference_count == 0) free(blue);
if (fluffy->reference_count == 0) free(fluffy);
if (red_cats->reference_count == 0) free(red_cats);
if (blue_cats->reference_count == 0) free(blue_cats);
if (red_blue_cats->reference_count == 0) free(red_blue_cats);
if (red_blue_fluffy_cats->reference_count == 0) free(red_blue_fluffy_cats);
if (no_cats->reference_count == 0) free(no_cats);
if (all->reference_count == 0) free(all);
free(reverse_name_map);
for (auto entry : names) free(entry.key);
}