Skip to content

Latest commit

 

History

History
31 lines (31 loc) · 922 Bytes

end-to-end-machine-learning.md

File metadata and controls

31 lines (31 loc) · 922 Bytes
  • Data Loading
  • Data Exploration (EDA)
    • Number of Continuous and Categorical features
      • Checking for Missing values
      • Checking for outliers
      • Univariate analysis
      • Bi-variate analysis
  • Data Cleaning
    • Null value treatment
      • Do Nothing
      • Imputation Using (Mean/Median) Values
      • Imputation Using (Most Frequent) or (Zero/Constant) Values
      • Imputation Using k-NN
      • Imputation Using Multivariate Imputation by Chained Equation (MICE) or Iterative Imputation
      • Imputation Using Deep Learning (Datawig)
    • Outlier Treatment
    • Handling Class Imbalance
  • Feature Engineering
    • Converting Categorical to numerical features
      • One-hot Encodeing
      • Converting to ordinal feature
  • Data Standarization/Normalization
  • Feature Selection
    • Correlation
    • Chi-Square Test
    • Feature Importance
  • Model Building (using cross validation)
  • Hyperparameter Tuning
  • Model Evaluation
  • Model Saving
  • Model Serving