- Data Loading
- Data Exploration (EDA)
- Number of Continuous and Categorical features
- Checking for Missing values
- Checking for outliers
- Univariate analysis
- Bi-variate analysis
- Number of Continuous and Categorical features
- Data Cleaning
- Null value treatment
- Do Nothing
- Imputation Using (Mean/Median) Values
- Imputation Using (Most Frequent) or (Zero/Constant) Values
- Imputation Using k-NN
- Imputation Using Multivariate Imputation by Chained Equation (MICE) or Iterative Imputation
- Imputation Using Deep Learning (Datawig)
- Outlier Treatment
- Handling Class Imbalance
- Null value treatment
- Feature Engineering
- Converting Categorical to numerical features
- One-hot Encodeing
- Converting to ordinal feature
- Converting Categorical to numerical features
- Data Standarization/Normalization
- Feature Selection
- Correlation
- Chi-Square Test
- Feature Importance
- Model Building (using cross validation)
- Hyperparameter Tuning
- Model Evaluation
- Model Saving
- Model Serving