-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path__main__.py
231 lines (220 loc) · 15.1 KB
/
__main__.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
import sys, os, json
from time import time
import glob
from argparse import ArgumentParser
from tqdm import tqdm
def check_valid_format(input_format, task):
if input_format == 'plaindoc':
if task in ['ssplit', 'dtokenize', 'dposdep', 'dlemmatize', 'dner', 'dall']:
return True
else:
return False
elif input_format == 'plainsen':
if task in ['stokenize', 'sposdep', 'slemmatize', 'sner', 'sall']:
return True
else:
return False
else:
assert input_format == 'pretok'
if task in ['pposdep', 'plemmatize', 'pner', 'pall']:
return True
else:
return False
def process_a_file(input_fpath, input_format, output_dir, pipeline, task):
if input_format == 'plaindoc':
with open(input_fpath) as f:
task_input = f.read()
elif input_format == 'plainsen':
with open(input_fpath) as f:
task_input = [sent.strip() for sent in f.readlines() if sent.strip()]
else:
assert input_format == 'pretok'
with open(input_fpath) as f:
task_input = [[w.strip() for w in sent.strip().splitlines() if w.strip()] for sent in f.readlines() if
sent.strip()]
if task == 'ssplit':
output = pipeline.ssplit(task_input)
elif task == 'stokenize':
output = {'sentences': [pipeline.tokenize(sent, is_sent=True) for sent in task_input]}
elif task == 'dtokenize':
output = pipeline.tokenize(task_input)
elif task == 'sposdep':
output = {'sentences': [pipeline.posdep(sent, is_sent=True) for sent in task_input]}
elif task == 'dposdep':
output = pipeline.posdep(task_input)
elif task == 'pposdep':
output = pipeline.posdep(task_input)
elif task == 'sner':
output = {'sentences': [pipeline.ner(sent, is_sent=True) for sent in task_input]}
elif task == 'dner':
output = pipeline.ner(task_input)
elif task == 'pner':
output = pipeline.ner(task_input)
elif task == 'slemmatize':
output = {'sentences': [pipeline.lemmatize(sent, is_sent=True) for sent in task_input]}
elif task == 'dlemmatize':
output = pipeline.lemmatize(task_input)
elif task == 'plemmatize':
output = pipeline.lemmatize(task_input)
elif task == 'dall':
output = pipeline(task_input)
elif task == 'sall':
output = {'sentences': [pipeline(sent, is_sent=True) for sent in task_input]}
else:
assert task == 'pall'
output = pipeline(task_input)
with open(os.path.join(output_dir, os.path.basename(input_fpath) + '.{}.json'.format(task)), 'w') as f:
json.dump(output, f, ensure_ascii=False)
# configuration
parser = ArgumentParser()
# model hyper-parameters
parser.add_argument('--lang', type=str, required=True,
help='Language(s) of the pipeline to be initialized.\n' + \
'Example use:\n' + \
'-Monolingual case: python -m trankit [other options] --lang english\n' + \
'-Multilingual case with 3 languages: python -m trankit [other options] --lang english,chinese,arabic\n' + \
'-Multilingual case with all supported languages: python -m trankit [other options] --lang auto\n' + \
'In multilingual mode, trankit will automatically detect the language of the input file(s) to use corresponding models.\n' + \
'Note that, language detection is done at file level.\n'
)
parser.add_argument('--cpu', action='store_true',
help='Forcing trankit to run on CPU. Default: False.\n' + \
'Example use:\n' + \
'python -m trankit [other options] --cpu\n'
)
parser.add_argument('--embedding', default='xlm-roberta-base', type=str,
choices=['xlm-roberta-base', 'xlm-roberta-large'],
help='Multilingual embedding for trankit. Default: xlm-roberta-base.\n' + \
'Example use:\n' + \
'-XLM-Roberta base: python -m trankit [other options] --embedding xlm-roberta-base\n' + \
'-XLM-Roberta large: python -m trankit [other options] --embedding xlm-roberta-large\n'
)
parser.add_argument('--cache_dir', default='cache/trankit', type=str,
help='Location to store downloaded model files. Default: cache/trankit.\n' + \
'Example use:\n' + \
'python -m trankit [other options] --cache_dir your/cache/dir\n'
)
parser.add_argument('--input', type=str, required=True,
help='Location of the input.\n' + \
'If it is a directory, trankit will process each file in the input directory at a time.\n' + \
'If it is a file, trankit will process the file only.\n' + \
'The input file(s) can be raw or pretokenized text. Sample input can be found here:\n' + \
'https://github.com/nlp-uoregon/trankit/tree/master/examples/commandline/sample_inputs\n' + \
'Example use:\n' + \
'-Input is a directory: python -m trankit [other options] --input some_dir_path\n' + \
'-Input is a file: python -m trankit [other options] --input some_file_path\n'
)
parser.add_argument('--input_format', type=str, default='plaindoc',
choices=['plaindoc', 'plainsen', 'pretok'],
help='Indicating that the input format. Sample input can be found here:\n' + \
'https://github.com/nlp-uoregon/trankit/tree/master/examples/commandline/sample_inputs\n'
)
parser.add_argument('--output_dir', default='trankit_output', type=str,
help='Location of the output directory to store the processed files.' +
'Processed files will be in json format, which is described in our documentation page: https://trankit.readthedocs.io/en/latest/commandline.html\n' + \
'Example use:\n' + \
'python -m trankit [other options] --output_dir some_dir_path\n'
)
parser.add_argument('--task', type=str, default='dall',
choices=['ssplit', 'stokenize', 'dtokenize', 'sposdep', 'dposdep', 'pposdep', 'sner', 'dner',
'pner', 'slemmatize', 'dlemmatize', 'plemmatize', 'dall', 'sall', 'pall'],
help='Task to be performed for the provided input.\n' + \
'Use cases:\n' + \
'-Sentence segmentation, assuming input is a single DOCUMENT string.\n' + \
' python -m trankit [other options] --task ssplit\n' + \
' Sample input for ssplit: https://github.com/nlp-uoregon/trankit/tree/master/examples/commandline/sample_inputs/plaindoc.txt\n'+\
'\n' + \
'-Sentence segmentation + Tokenization, assuming input is a single DOCUMENT string.\n' + \
' python -m trankit [other options] --task dtokenize\n' + \
' Sample input for dtokenize: https://github.com/nlp-uoregon/trankit/tree/master/examples/commandline/sample_inputs/plaindoc.txt\n' + \
'-Tokenization only, assuming input contains multiple raw SENTENCE strings in each line.\n' + \
' python -m trankit [other options] --task stokenize\n' + \
' Sample input for stokenize: https://github.com/nlp-uoregon/trankit/tree/master/examples/commandline/sample_inputs/plainsen.txt\n' + \
'\n' + \
'-Sentence segmentation, Tokenization, Part-of-speech tagging, Morphological tagging, Dependency parsing.\n' + \
' Assuming input is a single DOCUMENT string.\n' + \
' python -m trankit [other options] --task dposdep\n' + \
' Sample input for dposdep: https://github.com/nlp-uoregon/trankit/tree/master/examples/commandline/sample_inputs/plaindoc.txt\n'+\
'-Tokenization only, Part-of-speech tagging, Morphological tagging, Dependency parsing.\n' + \
' Assuming input contains multiple raw SENTENCE strings in each line.\n' + \
' python -m trankit [other options] --task sposdep\n' + \
' Sample input for dposdep: https://github.com/nlp-uoregon/trankit/tree/master/examples/commandline/sample_inputs/plainsen.txt\n'+\
'-Part-of-speech tagging, Morphological tagging, Dependency parsing.\n' + \
' Assuming input contains pretokenized SENTENCES separated by "\n\n", each sentence is organized into multiple lines, each line contains only a single word.\n' + \
' python -m trankit [other options] --task pposdep\n' + \
' Sample input for dposdep: https://github.com/nlp-uoregon/trankit/tree/master/examples/commandline/sample_inputs/pretok.txt\n' + \
'\n' + \
'-Sentence segmentation, Tokenization, Lemmatization\n' + \
' Assuming input is a single DOCUMENT string.\n' + \
' python -m trankit [other options] --task dlemmatize'+\
' Sample input for dposdep: https://github.com/nlp-uoregon/trankit/tree/master/examples/commandline/sample_inputs/plaindoc.txt\n' + \
'-Tokenization only, Lemmatization\n' + \
' Assuming input contains multiple raw SENTENCE strings in each line.\n' + \
' python -m trankit [other options] --task slemmatize\n' + \
' Sample input for dposdep: https://github.com/nlp-uoregon/trankit/tree/master/examples/commandline/sample_inputs/plainsen.txt\n'+\
'-Lemmatization\n' + \
' Assuming input contains pretokenized SENTENCES separated by "\n\n", each sentence is organized into multiple lines, each line contains only a single word.\n' + \
' python -m trankit [other options] --task plemmatize\n' + \
' Sample input for dposdep: https://github.com/nlp-uoregon/trankit/tree/master/examples/commandline/sample_inputs/pretok.txt\n' + \
'\n' + \
'-Sentence segmentation, Tokenization, Named Entity Recognition.\n' + \
' Assuming input is a single DOCUMENT string.\n' + \
' python -m trankit [other options] --task dner\n' + \
' Sample input for dposdep: https://github.com/nlp-uoregon/trankit/tree/master/examples/commandline/sample_inputs/plaindoc.txt\n'+\
'-Tokenization only, Named Entity Recognition.\n' + \
' Assuming input contains multiple raw SENTENCE strings in each line.\n' + \
' python -m trankit [other options] --task sner\n' + \
' Sample input for dposdep: https://github.com/nlp-uoregon/trankit/tree/master/examples/commandline/sample_inputs/plainsen.txt\n'
'-Named Entity Recognition.\n' + \
' Assuming input contains pretokenized SENTENCES separated by "\n\n", each sentence is organized into multiple lines, each line contains only a single word.\n' + \
' python -m trankit [other options] --task pner\n' + \
' Sample input for dposdep: https://github.com/nlp-uoregon/trankit/tree/master/examples/commandline/sample_inputs/pretok.txt\n' + \
'\n' + \
'-Sentence segmentation, Tokenization, Part-of-speech tagging, Morphological tagging, Dependency parsing, Named Entity Recognition.\n' + \
'Assuming input is a single DOCUMENT string.\n' + \
' python -m trankit [other options] --task dall\n' + \
' Sample input for dposdep: https://github.com/nlp-uoregon/trankit/tree/master/examples/commandline/sample_inputs/plaindoc.txt\n' + \
'-Tokenization only, Part-of-speech tagging, Morphological tagging, Dependency parsing, Named Entity Recognition.\n'+\
' Assuming input contains multiple raw SENTENCE strings in each line.\n'+\
' python -m trankit [other options] --task sall\n'+\
' Sample input for dposdep: https://github.com/nlp-uoregon/trankit/tree/master/examples/commandline/sample_inputs/plainsen.txt\n'+\
'-Part-of-speech tagging, Morphological tagging, Dependency parsing, Named Entity Recognition.\n'+\
' python -m trankit [other options] --task pall\n'+\
' Sample input for dposdep: https://github.com/nlp-uoregon/trankit/tree/master/examples/commandline/sample_inputs/pretok.txt\n'
)
config = parser.parse_args()
from .pipeline import Pipeline
from .pipeline import treebank2lang, get_ud_score, get_ud_performance_table, ensure_dir
assert os.path.exists(config.input), "{} doesn't exist.".format(config.input)
langs = config.lang.split(',')
assert len(langs) > 0
assert check_valid_format(config.input_format, config.task), 'Unexpected input format for {}.'.format(config.task)
ensure_dir(config.output_dir)
####################### Initialization #########################
if len(langs) == 1: # Monolingual case or auto
p = Pipeline(langs[0], gpu=False if config.cpu else True, cache_dir=config.cache_dir, embedding=config.embedding)
else: # Multilingual case with specified languages
p = Pipeline(langs[0], gpu=False if config.cpu else True, cache_dir=config.cache_dir, embedding=config.embedding)
for l in langs[1:]:
p.add(l)
p.set_auto(True)
####################### Input reading ##########################
if os.path.isdir(config.input):
fpaths = [os.path.join(config.input, fname) for fname in os.listdir(config.input) if
os.path.isfile(os.path.join(config.input, fname))]
else: # input is a file
fpaths = [config.input]
####################### Processing #############################
progress = tqdm(total=len(fpaths), ncols=75,
desc='Processing')
for fpath in fpaths:
progress.update(1)
process_a_file(
input_fpath=fpath,
input_format=config.input_format,
output_dir=config.output_dir,
pipeline=p,
task=config.task
)
progress.close()
print('Processing is done.\nOutput files are put at: {}'.format(config.output_dir))