-
Notifications
You must be signed in to change notification settings - Fork 663
/
Copy pathmnist_datamodule.py
201 lines (159 loc) · 7.8 KB
/
mnist_datamodule.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
from typing import Any, Dict, Optional, Tuple
import torch
from lightning import LightningDataModule
from torch.utils.data import ConcatDataset, DataLoader, Dataset, random_split
from torchvision.datasets import MNIST
from torchvision.transforms import transforms
class MNISTDataModule(LightningDataModule):
"""`LightningDataModule` for the MNIST dataset.
The MNIST database of handwritten digits has a training set of 60,000 examples, and a test set of 10,000 examples.
It is a subset of a larger set available from NIST. The digits have been size-normalized and centered in a
fixed-size image. The original black and white images from NIST were size normalized to fit in a 20x20 pixel box
while preserving their aspect ratio. The resulting images contain grey levels as a result of the anti-aliasing
technique used by the normalization algorithm. the images were centered in a 28x28 image by computing the center of
mass of the pixels, and translating the image so as to position this point at the center of the 28x28 field.
A `LightningDataModule` implements 7 key methods:
```python
def prepare_data(self):
# Things to do on 1 GPU/TPU (not on every GPU/TPU in DDP).
# Download data, pre-process, split, save to disk, etc...
def setup(self, stage):
# Things to do on every process in DDP.
# Load data, set variables, etc...
def train_dataloader(self):
# return train dataloader
def val_dataloader(self):
# return validation dataloader
def test_dataloader(self):
# return test dataloader
def predict_dataloader(self):
# return predict dataloader
def teardown(self, stage):
# Called on every process in DDP.
# Clean up after fit or test.
```
This allows you to share a full dataset without explaining how to download,
split, transform and process the data.
Read the docs:
https://lightning.ai/docs/pytorch/latest/data/datamodule.html
"""
def __init__(
self,
data_dir: str = "data/",
train_val_test_split: Tuple[int, int, int] = (55_000, 5_000, 10_000),
batch_size: int = 64,
num_workers: int = 0,
pin_memory: bool = False,
) -> None:
"""Initialize a `MNISTDataModule`.
:param data_dir: The data directory. Defaults to `"data/"`.
:param train_val_test_split: The train, validation and test split. Defaults to `(55_000, 5_000, 10_000)`.
:param batch_size: The batch size. Defaults to `64`.
:param num_workers: The number of workers. Defaults to `0`.
:param pin_memory: Whether to pin memory. Defaults to `False`.
"""
super().__init__()
# this line allows to access init params with 'self.hparams' attribute
# also ensures init params will be stored in ckpt
self.save_hyperparameters(logger=False)
# data transformations
self.transforms = transforms.Compose(
[transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]
)
self.data_train: Optional[Dataset] = None
self.data_val: Optional[Dataset] = None
self.data_test: Optional[Dataset] = None
self.batch_size_per_device = batch_size
@property
def num_classes(self) -> int:
"""Get the number of classes.
:return: The number of MNIST classes (10).
"""
return 10
def prepare_data(self) -> None:
"""Download data if needed. Lightning ensures that `self.prepare_data()` is called only
within a single process on CPU, so you can safely add your downloading logic within. In
case of multi-node training, the execution of this hook depends upon
`self.prepare_data_per_node()`.
Do not use it to assign state (self.x = y).
"""
MNIST(self.hparams.data_dir, train=True, download=True)
MNIST(self.hparams.data_dir, train=False, download=True)
def setup(self, stage: Optional[str] = None) -> None:
"""Load data. Set variables: `self.data_train`, `self.data_val`, `self.data_test`.
This method is called by Lightning before `trainer.fit()`, `trainer.validate()`, `trainer.test()`, and
`trainer.predict()`, so be careful not to execute things like random split twice! Also, it is called after
`self.prepare_data()` and there is a barrier in between which ensures that all the processes proceed to
`self.setup()` once the data is prepared and available for use.
:param stage: The stage to setup. Either `"fit"`, `"validate"`, `"test"`, or `"predict"`. Defaults to ``None``.
"""
# Divide batch size by the number of devices.
if self.trainer is not None:
if self.hparams.batch_size % self.trainer.world_size != 0:
raise RuntimeError(
f"Batch size ({self.hparams.batch_size}) is not divisible by the number of devices ({self.trainer.world_size})."
)
self.batch_size_per_device = self.hparams.batch_size // self.trainer.world_size
# load and split datasets only if not loaded already
if not self.data_train and not self.data_val and not self.data_test:
trainset = MNIST(self.hparams.data_dir, train=True, transform=self.transforms)
testset = MNIST(self.hparams.data_dir, train=False, transform=self.transforms)
dataset = ConcatDataset(datasets=[trainset, testset])
self.data_train, self.data_val, self.data_test = random_split(
dataset=dataset,
lengths=self.hparams.train_val_test_split,
generator=torch.Generator().manual_seed(42),
)
def train_dataloader(self) -> DataLoader[Any]:
"""Create and return the train dataloader.
:return: The train dataloader.
"""
return DataLoader(
dataset=self.data_train,
batch_size=self.batch_size_per_device,
num_workers=self.hparams.num_workers,
pin_memory=self.hparams.pin_memory,
shuffle=True,
)
def val_dataloader(self) -> DataLoader[Any]:
"""Create and return the validation dataloader.
:return: The validation dataloader.
"""
return DataLoader(
dataset=self.data_val,
batch_size=self.batch_size_per_device,
num_workers=self.hparams.num_workers,
pin_memory=self.hparams.pin_memory,
shuffle=False,
)
def test_dataloader(self) -> DataLoader[Any]:
"""Create and return the test dataloader.
:return: The test dataloader.
"""
return DataLoader(
dataset=self.data_test,
batch_size=self.batch_size_per_device,
num_workers=self.hparams.num_workers,
pin_memory=self.hparams.pin_memory,
shuffle=False,
)
def teardown(self, stage: Optional[str] = None) -> None:
"""Lightning hook for cleaning up after `trainer.fit()`, `trainer.validate()`,
`trainer.test()`, and `trainer.predict()`.
:param stage: The stage being torn down. Either `"fit"`, `"validate"`, `"test"`, or `"predict"`.
Defaults to ``None``.
"""
pass
def state_dict(self) -> Dict[Any, Any]:
"""Called when saving a checkpoint. Implement to generate and save the datamodule state.
:return: A dictionary containing the datamodule state that you want to save.
"""
return {}
def load_state_dict(self, state_dict: Dict[str, Any]) -> None:
"""Called when loading a checkpoint. Implement to reload datamodule state given datamodule
`state_dict()`.
:param state_dict: The datamodule state returned by `self.state_dict()`.
"""
pass
if __name__ == "__main__":
_ = MNISTDataModule()