-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathedge.py
124 lines (115 loc) · 4.74 KB
/
edge.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import cv2 as cv
import argparse
import numpy as np
parser = argparse.ArgumentParser(
description='This sample shows how to define custom OpenCV deep learning layers in Python. '
'Holistically-Nested Edge Detection (https://arxiv.org/abs/1504.06375) neural network '
'is used as an example model. Find a pre-trained model at https://github.com/s9xie/hed.')
parser.add_argument('--input', help='Path to image or video. Skip to capture frames from camera')
parser.add_argument('--prototxt', help='Path to deploy.prototxt', required=True)
parser.add_argument('--caffemodel', help='Path to hed_pretrained_bsds.caffemodel', required=True)
parser.add_argument('--width', help='Resize input image to a specific width', default=256, type=int)
parser.add_argument('--height', help='Resize input image to a specific height', default=256, type=int)
parser.add_argument('--savefile', help='Specifies the output video path', default='output.mp4', type=str)
args = parser.parse_args()
class CropLayer(object):
def __init__(self, params, blobs):
self.xstart = 0
self.xend = 0
self.ystart = 0
self.yend = 0
# Our layer receives two inputs. We need to crop the first input blob
# to match a shape of the second one (keeping batch size and number of channels)
def getMemoryShapes(self, inputs):
inputShape, targetShape = inputs[0], inputs[1]
batchSize, numChannels = inputShape[0], inputShape[1]
height, width = targetShape[2], targetShape[3]
self.ystart = int((inputShape[2] - targetShape[2]) / 2)
self.xstart = int((inputShape[3] - targetShape[3]) / 2)
self.yend = self.ystart + height
self.xend = self.xstart + width
return [[batchSize, numChannels, height, width]]
def forward(self, inputs):
return [inputs[0][:,:,self.ystart:self.yend,self.xstart:self.xend]]
# Load the model.
net = cv.dnn.readNetFromCaffe(args.prototxt, args.caffemodel)
cv.dnn_registerLayer('Crop', CropLayer)
kWinName = 'Holistically-Nested_Edge_Detection'
cv.namedWindow('Input', cv.WINDOW_AUTOSIZE)
cv.namedWindow(kWinName, cv.WINDOW_AUTOSIZE)
cv.namedWindow("Canny", cv.WINDOW_AUTOSIZE)
cap = cv.VideoCapture(args.input if args.input else 0)
WRITE_VIDEO_FLAG=True
if WRITE_VIDEO_FLAG:
# Define the codec and create VideoWriter object
w = int(cap.get(cv.CAP_PROP_FRAME_WIDTH))
h = int(cap.get(cv.CAP_PROP_FRAME_HEIGHT))
print(w,h)
# w, h = args.width,args.height
fourcc = cv.VideoWriter_fourcc(*'MP4V')
writer = cv.VideoWriter(args.savefile, fourcc, 25, (w, h))
while cv.waitKey(1) < 0:
hasFrame, frame = cap.read()
if not hasFrame:
cv.waitKey()
break
#cv.imshow('Input', frame)
# width,height = frame
inp = cv.dnn.blobFromImage(frame, scalefactor=1.0, size=(args.width, args.height),
mean=(104.00698793, 116.66876762, 122.67891434),
swapRB=False, crop=False)
net.setInput(inp)
# edges = cv.Canny(frame,args.width,args.height)
edges = cv.Canny(frame,frame.shape[1],frame.shape[0])
out = net.forward()
# print(out.shape)
# print(frame[0][0][0])
# print(out)
out = out[0, 0]
out = cv.resize(out, (frame.shape[1], frame.shape[0]))
# print(frame.shape[1], frame.shape[0])
# cv.imwrite("ouuut.jpg",out)
# f=cv.cvtColor(f,cv.COLOR_BGR2GRAY)
print(out.shape)
out=cv.cvtColor(out,cv.COLOR_GRAY2BGR)
# blur = cv.GaussianBlur(out,(5,5),0)
# ret,out = cv.threshold(out,0.5 ,255,cv.THRESH_BINARY)
# frame = cv.medianBlur(frame,5)
# cv.imwrite("ouuut.jpg",frame)
# ret,frame=cv.threshold(frame,127,255,cv.THRESH_BINARY)
# frame = cv.adaptiveThreshold(frame,255,cv.ADAPTIVE_THRESH_MEAN_C, cv.THRESH_BINARY,11,2)
# cv.imwrite("ouuut.jpg",frame)
# print(out[0][0][0])
#out = (out < 100) * out
#np.clip(out, 0, 1, out=out)
#out=out *255
#out[out >= 1000] = 255
#info = np.finfo(out.dtype)
#print(info.max)
#print(out)
#out = out.astype(np.float64) / info.max
out = 255 * out
# print(out)
out = out.astype(np.uint8)
# out = cv.fromArray(out)
print(type(out))
print(np.max(out))
print(np.min(out))
print(out.shape)
print(frame.shape)
# frame = frame.astype(np.uint8)
# out=cv.cvtColor(out,cv.COLOR_GRAY2BGR)
# print(out.shape)
#concated=np.hstack((out,f))
#con=np.concatenate([edges,out],axis=1)
con=np.concatenate((frame,out),axis=1)
##cv.imshow("Canny", con)
cv.imshow(kWinName, out)
if args.input:
writer.write(np.uint8(con))
#else:
# cv.imwrite("out.mp4",out)
#gt = cv.imread("gt-"+args.input)
# print(frame.shape)
# cv.imshow('Input',frame)
#cv.imshow('Human Annotated',gt)