diff --git a/harmonic_methods.html b/harmonic_methods.html index 0745e9d1c..b5447ca30 100644 --- a/harmonic_methods.html +++ b/harmonic_methods.html @@ -32,24 +32,6 @@

Module sleplet.harmonic_methods

Functions

-
-def compute_random_signal(L: int, rng: numpy.random._generator.Generator, *, var_signal: float) ‑> numpy.ndarray[typing.Any, numpy.dtype[numpy.complex128]] -
-
-

Generates a normally distributed random signal of a -complex signal with mean 0 and variance 1.

-

Args

-
-
L
-
The spherical harmonic bandlimit.
-
rng
-
The random number generator object.
-
var_signal
-
The variance of the signal.
-
-

Returns

-

The coefficients of a random signal on the sphere.

-
def invert_flm_boosted(flm: numpy.ndarray[typing.Any, numpy.dtype[numpy.complex128]], L: int, resolution: int, *, reality: bool = False, spin: int = 0) ‑> numpy.ndarray[typing.Any, numpy.dtype[numpy.complex128 | numpy.float64]]
@@ -149,7 +131,6 @@

Index

  • Functions

      -
    • compute_random_signal
    • invert_flm_boosted
    • mesh_forward
    • mesh_inverse
    • diff --git a/index.html b/index.html index d64c6f1a5..bd72c274f 100644 --- a/index.html +++ b/index.html @@ -75,9 +75,7 @@

      Sifting Convolution on the Sphe for ell in range(2, 0, -1): f = sleplet.functions.HarmonicGaussian(128, l_sigma=10**ell, m_sigma=10) flm = f.translate(alpha=0.75 * np.pi, beta=0.125 * np.pi) - f_sphere = s2fft.inverse( - s2fft.samples.flm_1d_to_2d(flm, f.L), f.L, method="jax", sampling="mwss" - ) + f_sphere = s2fft.inverse(flm, f.L, method="jax", sampling="mwss") sleplet.plotting.PlotSphere( f_sphere, f.L, @@ -93,9 +91,7 @@

      Sifting Convolution on the Sphe f = sleplet.functions.Earth(128) flm = sleplet.harmonic_methods.rotate_earth_to_south_america(f.coefficients, f.L) -f_sphere = s2fft.inverse( - s2fft.samples.flm_1d_to_2d(flm, f.L), f.L, method="jax", sampling="mwss" -) +f_sphere = s2fft.inverse(flm, f.L, method="jax", sampling="mwss") sleplet.plotting.PlotSphere(f_sphere, f.L, "fig_2").execute()

      Sifting Convolution on the Sphere: Fig. 3

      @@ -111,9 +107,7 @@

      Sifting Convolution on the Sphe g = sleplet.functions.Earth(128) flm = f.convolve(f.coefficients, g.coefficients.conj()) flm_rot = sleplet.harmonic_methods.rotate_earth_to_south_america(flm, f.L) - f_sphere = s2fft.inverse( - s2fft.samples.flm_1d_to_2d(flm_rot, f.L), f.L, method="jax", sampling="mwss" - ) + f_sphere = s2fft.inverse(flm_rot, f.L, method="jax", sampling="mwss") sleplet.plotting.PlotSphere(f_sphere, f.L, f"fig_3_ell_{ell}").execute()

      Slepian Scale-Discretised Wavelets on the Sphere

      @@ -134,9 +128,7 @@

      Slepian Scale-Di # a f = sleplet.functions.Earth(128, smoothing=2) flm = sleplet.harmonic_methods.rotate_earth_to_south_america(f.coefficients, f.L) -f_sphere = s2fft.inverse( - s2fft.samples.flm_1d_to_2d(flm, f.L), f.L, method="jax", sampling="mwss" -) +f_sphere = s2fft.inverse(flm, f.L, method="jax", sampling="mwss") sleplet.plotting.PlotSphere(f_sphere, f.L, "fig_3_a", normalise=False).execute() # b region = sleplet.slepian.Region(mask_name="south_america") @@ -264,9 +256,7 @@

      Slepian Scale-Di # a f = sleplet.functions.Earth(128, smoothing=2) flm = sleplet.harmonic_methods.rotate_earth_to_africa(f.coefficients, f.L) -f_sphere = s2fft.inverse( - s2fft.samples.flm_1d_to_2d(flm, f.L), f.L, method="jax", sampling="mwss" -) +f_sphere = s2fft.inverse(flm, f.L, method="jax", sampling="mwss") sleplet.plotting.PlotSphere(f_sphere, f.L, "fig_9_a", normalise=False).execute() # b region = sleplet.slepian.Region(mask_name="africa") @@ -545,12 +535,7 @@

      Fig. 2.1
      for ell in range(5): for m in range(ell + 1): f = sleplet.functions.SphericalHarmonic(128, ell=ell, m=m) - f_sphere = s2fft.inverse( - s2fft.samples.flm_1d_to_2d(f.coefficients, f.L), - f.L, - method="jax", - sampling="mwss", - ) + f_sphere = s2fft.inverse(f.coefficients, f.L, method="jax", sampling="mwss") sleplet.plotting.PlotSphere( f_sphere, f.L, @@ -575,16 +560,12 @@
      Fig. 2.2
      # a f = sleplet.functions.ElongatedGaussian(128, p_sigma=0.1, t_sigma=0.1) -f_sphere = s2fft.inverse( - s2fft.samples.flm_1d_to_2d(f.coefficients, f.L), f.L, method="jax", sampling="mwss" -) +f_sphere = s2fft.inverse(f.coefficients, f.L, method="jax", sampling="mwss") sleplet.plotting.PlotSphere(f_sphere, f.L, "fig_2_2_a", annotations=[]).execute() # b-d for a, b, g in [(0, 0, 0.25), (0, 0.25, 0.25), (0.25, 0.25, 0.25)]: glm_rot = f.rotate(alpha=a * np.pi, beta=b * np.pi, gamma=g * np.pi) - g_sphere = s2fft.inverse( - s2fft.samples.flm_1d_to_2d(glm_rot, f.L), f.L, method="jax", sampling="mwss" - ) + g_sphere = s2fft.inverse(glm_rot, f.L, method="jax", sampling="mwss") sleplet.plotting.PlotSphere( g_sphere, f.L, @@ -611,12 +592,7 @@
      Fig. 2.5
      for j in [None, *list(range(4))]: f = sleplet.functions.AxisymmetricWavelets(128, B=3, j_min=2, j=j) - f_sphere = s2fft.inverse( - s2fft.samples.flm_1d_to_2d(f.coefficients, f.L), - f.L, - method="jax", - sampling="mwss", - ) + f_sphere = s2fft.inverse(f.coefficients, f.L, method="jax", sampling="mwss") sleplet.plotting.PlotSphere( f_sphere, f.L, @@ -646,15 +622,11 @@
      Fig. 3.1
      # a f = sleplet.functions.Gaussian(128) -f_sphere = s2fft.inverse( - s2fft.samples.flm_1d_to_2d(f.coefficients, f.L), f.L, method="jax", sampling="mwss" -) +f_sphere = s2fft.inverse(f.coefficients, f.L, method="jax", sampling="mwss") sleplet.plotting.PlotSphere(f_sphere, f.L, "fig_3_1_a", annotations=[]).execute() # b glm_trans = f.translate(alpha=0.75 * np.pi, beta=0.125 * np.pi) -g_sphere = s2fft.inverse( - s2fft.samples.flm_1d_to_2d(glm_trans, f.L), f.L, method="jax", sampling="mwss" -) +g_sphere = s2fft.inverse(glm_trans, f.L, method="jax", sampling="mwss") sleplet.plotting.PlotSphere(g_sphere, f.L, "fig_3_1_b", annotations=[]).execute()
      Fig. 3.2
      @@ -669,15 +641,11 @@
      Fig. 3.2
      # a f = sleplet.functions.SquashedGaussian(128) -f_sphere = s2fft.inverse( - s2fft.samples.flm_1d_to_2d(f.coefficients, f.L), f.L, method="jax", sampling="mwss" -) +f_sphere = s2fft.inverse(f.coefficients, f.L, method="jax", sampling="mwss") sleplet.plotting.PlotSphere(f_sphere, f.L, "fig_3_2_a", annotations=[]).execute() # b glm_trans = f.translate(alpha=0.75 * np.pi, beta=0.125 * np.pi) -g_sphere = s2fft.inverse( - s2fft.samples.flm_1d_to_2d(glm_trans, f.L), f.L, method="jax", sampling="mwss" -) +g_sphere = s2fft.inverse(glm_trans, f.L, method="jax", sampling="mwss") sleplet.plotting.PlotSphere(g_sphere, f.L, "fig_3_2_b", annotations=[]).execute()
      Fig. 3.3
      @@ -692,15 +660,11 @@
      Fig. 3.3
      # a f = sleplet.functions.ElongatedGaussian(128) -f_sphere = s2fft.inverse( - s2fft.samples.flm_1d_to_2d(f.coefficients, f.L), f.L, method="jax", sampling="mwss" -) +f_sphere = s2fft.inverse(f.coefficients, f.L, method="jax", sampling="mwss") sleplet.plotting.PlotSphere(f_sphere, f.L, "fig_3_3_a", annotations=[]).execute() # b glm_trans = f.translate(alpha=0.75 * np.pi, beta=0.125 * np.pi) -g_sphere = s2fft.inverse( - s2fft.samples.flm_1d_to_2d(glm_trans, f.L), f.L, method="jax", sampling="mwss" -) +g_sphere = s2fft.inverse(glm_trans, f.L, method="jax", sampling="mwss") sleplet.plotting.PlotSphere(g_sphere, f.L, "fig_3_3_b", annotations=[]).execute()
      Fig. 3.4
      @@ -714,12 +678,7 @@
      Fig. 3.4
      for ell in range(2, 0, -1): f = sleplet.functions.HarmonicGaussian(128, l_sigma=10**ell, m_sigma=10) - f_sphere = s2fft.inverse( - s2fft.samples.flm_1d_to_2d(f.coefficients, f.L), - f.L, - method="jax", - sampling="mwss", - ) + f_sphere = s2fft.inverse(f.coefficients, f.L, method="jax", sampling="mwss") sleplet.plotting.PlotSphere( f_sphere, f.L,