diff --git a/harmonic_methods.html b/harmonic_methods.html
index 0745e9d1c..b5447ca30 100644
--- a/harmonic_methods.html
+++ b/harmonic_methods.html
@@ -32,24 +32,6 @@
Module sleplet.harmonic_methods
-
-def compute_random_signal(L: int, rng: numpy.random._generator.Generator, *, var_signal: float) ‑> numpy.ndarray[typing.Any, numpy.dtype[numpy.complex128]]
-
--
-
Generates a normally distributed random signal of a
-complex signal with mean 0
and variance 1
.
-
Args
-
-L
-- The spherical harmonic bandlimit.
-rng
-- The random number generator object.
-var_signal
-- The variance of the signal.
-
-
Returns
-
The coefficients of a random signal on the sphere.
-
def invert_flm_boosted(flm: numpy.ndarray[typing.Any, numpy.dtype[numpy.complex128]], L: int, resolution: int, *, reality: bool = False, spin: int = 0) ‑> numpy.ndarray[typing.Any, numpy.dtype[numpy.complex128 | numpy.float64]]
@@ -149,7 +131,6 @@ Index
-compute_random_signal
invert_flm_boosted
mesh_forward
mesh_inverse
diff --git a/index.html b/index.html
index d64c6f1a5..bd72c274f 100644
--- a/index.html
+++ b/index.html
@@ -75,9 +75,7 @@ Sifting Convolution on the Sphe
for ell in range(2, 0, -1):
f = sleplet.functions.HarmonicGaussian(128, l_sigma=10**ell, m_sigma=10)
flm = f.translate(alpha=0.75 * np.pi, beta=0.125 * np.pi)
- f_sphere = s2fft.inverse(
- s2fft.samples.flm_1d_to_2d(flm, f.L), f.L, method="jax", sampling="mwss"
- )
+ f_sphere = s2fft.inverse(flm, f.L, method="jax", sampling="mwss")
sleplet.plotting.PlotSphere(
f_sphere,
f.L,
@@ -93,9 +91,7 @@ Sifting Convolution on the Sphe
f = sleplet.functions.Earth(128)
flm = sleplet.harmonic_methods.rotate_earth_to_south_america(f.coefficients, f.L)
-f_sphere = s2fft.inverse(
- s2fft.samples.flm_1d_to_2d(flm, f.L), f.L, method="jax", sampling="mwss"
-)
+f_sphere = s2fft.inverse(flm, f.L, method="jax", sampling="mwss")
sleplet.plotting.PlotSphere(f_sphere, f.L, "fig_2").execute()
Sifting Convolution on the Sphere: Fig. 3
@@ -111,9 +107,7 @@ Sifting Convolution on the Sphe
g = sleplet.functions.Earth(128)
flm = f.convolve(f.coefficients, g.coefficients.conj())
flm_rot = sleplet.harmonic_methods.rotate_earth_to_south_america(flm, f.L)
- f_sphere = s2fft.inverse(
- s2fft.samples.flm_1d_to_2d(flm_rot, f.L), f.L, method="jax", sampling="mwss"
- )
+ f_sphere = s2fft.inverse(flm_rot, f.L, method="jax", sampling="mwss")
sleplet.plotting.PlotSphere(f_sphere, f.L, f"fig_3_ell_{ell}").execute()
Slepian Scale-Discretised Wavelets on the Sphere
@@ -134,9 +128,7 @@ Slepian Scale-Di
# a
f = sleplet.functions.Earth(128, smoothing=2)
flm = sleplet.harmonic_methods.rotate_earth_to_south_america(f.coefficients, f.L)
-f_sphere = s2fft.inverse(
- s2fft.samples.flm_1d_to_2d(flm, f.L), f.L, method="jax", sampling="mwss"
-)
+f_sphere = s2fft.inverse(flm, f.L, method="jax", sampling="mwss")
sleplet.plotting.PlotSphere(f_sphere, f.L, "fig_3_a", normalise=False).execute()
# b
region = sleplet.slepian.Region(mask_name="south_america")
@@ -264,9 +256,7 @@ Slepian Scale-Di
# a
f = sleplet.functions.Earth(128, smoothing=2)
flm = sleplet.harmonic_methods.rotate_earth_to_africa(f.coefficients, f.L)
-f_sphere = s2fft.inverse(
- s2fft.samples.flm_1d_to_2d(flm, f.L), f.L, method="jax", sampling="mwss"
-)
+f_sphere = s2fft.inverse(flm, f.L, method="jax", sampling="mwss")
sleplet.plotting.PlotSphere(f_sphere, f.L, "fig_9_a", normalise=False).execute()
# b
region = sleplet.slepian.Region(mask_name="africa")
@@ -545,12 +535,7 @@ Fig. 2.1
for ell in range(5):
for m in range(ell + 1):
f = sleplet.functions.SphericalHarmonic(128, ell=ell, m=m)
- f_sphere = s2fft.inverse(
- s2fft.samples.flm_1d_to_2d(f.coefficients, f.L),
- f.L,
- method="jax",
- sampling="mwss",
- )
+ f_sphere = s2fft.inverse(f.coefficients, f.L, method="jax", sampling="mwss")
sleplet.plotting.PlotSphere(
f_sphere,
f.L,
@@ -575,16 +560,12 @@ Fig. 2.2
# a
f = sleplet.functions.ElongatedGaussian(128, p_sigma=0.1, t_sigma=0.1)
-f_sphere = s2fft.inverse(
- s2fft.samples.flm_1d_to_2d(f.coefficients, f.L), f.L, method="jax", sampling="mwss"
-)
+f_sphere = s2fft.inverse(f.coefficients, f.L, method="jax", sampling="mwss")
sleplet.plotting.PlotSphere(f_sphere, f.L, "fig_2_2_a", annotations=[]).execute()
# b-d
for a, b, g in [(0, 0, 0.25), (0, 0.25, 0.25), (0.25, 0.25, 0.25)]:
glm_rot = f.rotate(alpha=a * np.pi, beta=b * np.pi, gamma=g * np.pi)
- g_sphere = s2fft.inverse(
- s2fft.samples.flm_1d_to_2d(glm_rot, f.L), f.L, method="jax", sampling="mwss"
- )
+ g_sphere = s2fft.inverse(glm_rot, f.L, method="jax", sampling="mwss")
sleplet.plotting.PlotSphere(
g_sphere,
f.L,
@@ -611,12 +592,7 @@ Fig. 2.5
for j in [None, *list(range(4))]:
f = sleplet.functions.AxisymmetricWavelets(128, B=3, j_min=2, j=j)
- f_sphere = s2fft.inverse(
- s2fft.samples.flm_1d_to_2d(f.coefficients, f.L),
- f.L,
- method="jax",
- sampling="mwss",
- )
+ f_sphere = s2fft.inverse(f.coefficients, f.L, method="jax", sampling="mwss")
sleplet.plotting.PlotSphere(
f_sphere,
f.L,
@@ -646,15 +622,11 @@ Fig. 3.1
# a
f = sleplet.functions.Gaussian(128)
-f_sphere = s2fft.inverse(
- s2fft.samples.flm_1d_to_2d(f.coefficients, f.L), f.L, method="jax", sampling="mwss"
-)
+f_sphere = s2fft.inverse(f.coefficients, f.L, method="jax", sampling="mwss")
sleplet.plotting.PlotSphere(f_sphere, f.L, "fig_3_1_a", annotations=[]).execute()
# b
glm_trans = f.translate(alpha=0.75 * np.pi, beta=0.125 * np.pi)
-g_sphere = s2fft.inverse(
- s2fft.samples.flm_1d_to_2d(glm_trans, f.L), f.L, method="jax", sampling="mwss"
-)
+g_sphere = s2fft.inverse(glm_trans, f.L, method="jax", sampling="mwss")
sleplet.plotting.PlotSphere(g_sphere, f.L, "fig_3_1_b", annotations=[]).execute()
Fig. 3.2
@@ -669,15 +641,11 @@ Fig. 3.2
# a
f = sleplet.functions.SquashedGaussian(128)
-f_sphere = s2fft.inverse(
- s2fft.samples.flm_1d_to_2d(f.coefficients, f.L), f.L, method="jax", sampling="mwss"
-)
+f_sphere = s2fft.inverse(f.coefficients, f.L, method="jax", sampling="mwss")
sleplet.plotting.PlotSphere(f_sphere, f.L, "fig_3_2_a", annotations=[]).execute()
# b
glm_trans = f.translate(alpha=0.75 * np.pi, beta=0.125 * np.pi)
-g_sphere = s2fft.inverse(
- s2fft.samples.flm_1d_to_2d(glm_trans, f.L), f.L, method="jax", sampling="mwss"
-)
+g_sphere = s2fft.inverse(glm_trans, f.L, method="jax", sampling="mwss")
sleplet.plotting.PlotSphere(g_sphere, f.L, "fig_3_2_b", annotations=[]).execute()
Fig. 3.3
@@ -692,15 +660,11 @@ Fig. 3.3
# a
f = sleplet.functions.ElongatedGaussian(128)
-f_sphere = s2fft.inverse(
- s2fft.samples.flm_1d_to_2d(f.coefficients, f.L), f.L, method="jax", sampling="mwss"
-)
+f_sphere = s2fft.inverse(f.coefficients, f.L, method="jax", sampling="mwss")
sleplet.plotting.PlotSphere(f_sphere, f.L, "fig_3_3_a", annotations=[]).execute()
# b
glm_trans = f.translate(alpha=0.75 * np.pi, beta=0.125 * np.pi)
-g_sphere = s2fft.inverse(
- s2fft.samples.flm_1d_to_2d(glm_trans, f.L), f.L, method="jax", sampling="mwss"
-)
+g_sphere = s2fft.inverse(glm_trans, f.L, method="jax", sampling="mwss")
sleplet.plotting.PlotSphere(g_sphere, f.L, "fig_3_3_b", annotations=[]).execute()
Fig. 3.4
@@ -714,12 +678,7 @@ Fig. 3.4
for ell in range(2, 0, -1):
f = sleplet.functions.HarmonicGaussian(128, l_sigma=10**ell, m_sigma=10)
- f_sphere = s2fft.inverse(
- s2fft.samples.flm_1d_to_2d(f.coefficients, f.L),
- f.L,
- method="jax",
- sampling="mwss",
- )
+ f_sphere = s2fft.inverse(f.coefficients, f.L, method="jax", sampling="mwss")
sleplet.plotting.PlotSphere(
f_sphere,
f.L,