-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtools_general.py
executable file
·212 lines (157 loc) · 6.08 KB
/
tools_general.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
"""
Functions for input and output, and some statistics.
"""
import os.path as op
import json
import pickle
import numpy as np
def save_json_from_numpy(filename, folder, var):
"""
Save numpy array as json file
:param str filename: the name of the saved file
:param str folder: the name of the folder to save
:param var: variable to save
"""
with open(op.join(folder, filename), "w") as f:
json.dump(var.tolist(), f)
def load_json_to_numpy(filename, folder):
"""
Load json file and convert to a numpy array
:param str filename: the name of the saved file
:param str folder: the name of the folder to save
:return: var - variable
"""
with open(op.join(folder, filename), "r") as f:
saved_data = json.load(f)
return np.array(saved_data)
def save_json(filename, folder, var):
"""
Save list as json file
:param str filename: the name of the saved file
:param str folder: the name of the folder to save
:param var: variable to save
"""
with open(op.join(folder, filename), "w") as f:
json.dump(var, f)
def load_json(filename, folder):
"""
Load list from json file
:param str filename: the name of the saved file
:param str folder: the name of the folder to save
:return: var - variable
"""
with open(op.join(folder, filename), "r") as f:
saved_data = json.load(f)
return saved_data
def save_pickle(filename, folder, var):
"""
Save array as pickle file
by Mina Jamshidi Idaji ([email protected])
:param str filename: the name of the saved file
:param str folder: the name of the folder to save
:param var: variable to save
"""
with open(op.join(folder, filename), "wb") as output_file:
pickle.dump(var, output_file)
def load_pickle(filename, folder):
"""
Load array from pickle file
by Mina Jamshidi Idaji ([email protected])
:param str filename: the name of the saved file
:param str folder: the name of the folder to save
:return: var - variable
"""
with open(op.join(folder, filename), "rb") as input_file:
var = pickle.load(input_file)
return var
def eta_squared(aov):
"""
Compute effect size based on output of a model
:param aov: model (anova, lsq, ets.)
:return: aov - model
"""
aov['eta_sq'] = 'NaN'
aov['eta_sq'] = aov[:-1]['sum_sq'] / sum(aov['sum_sq'])
return aov
def list_from_many(ids, dir_read, file_ext, type_read='json'):
"""
Load several files containing participants data and convert into array
:param numpy.ndarray ids: ids of participants for whom loading is needed
:param str dir_read: directory with files
:param str file_ext: the appendix of the file, for instance, for subj000_erp, _erp is an appendix
:param str type_read: either 'json' or 'pickle', type of file the derivatives are stored in
:returns:
output (numpy.ndarray) - data from all participants in ids
not_found (list) - list of subject ids for which data were not found
"""
output = []
not_found = []
for subj in ids:
try:
if type_read == 'json':
output.append(load_json_to_numpy(subj + file_ext, dir_read))
elif type_read == 'pickle':
output.append(load_pickle(subj + file_ext, dir_read))
else:
print('please specify correct type')
except FileNotFoundError:
print(subj + ' is not found.')
not_found.append(subj)
return np.array(output), not_found
def scaler_transform(data, scaler='standard'):
"""
Scaler data according to chosen scaler
:param numpy.ndarray data: data to apply scaler to, should be samples x features (dimensions - 2D)
:param str scaler: either 'standard' or 'minmax', type of scaler, for 'minmax' scaler range is set to [-1,1]
:return: data_scale (numpy.ndarray, 2D) - data scaler-transformed
"""
from sklearn.preprocessing import MinMaxScaler, StandardScaler
# if data is one dimensional vector (1 feature), add a dimension
reshape_flag = False
if len(data.shape) == 1:
reshape_flag = True
data = data.reshape((-1, 1))
if scaler == 'standard':
scaler = StandardScaler()
data_scale = scaler.fit_transform(data)
if reshape_flag:
data_scale = data_scale.reshape((-1))
elif scaler == 'minmax':
scaler = MinMaxScaler(feature_range=(-1, 1))
data_scale = scaler.fit_transform(data)
if reshape_flag:
data_scale = data_scale.reshape((-1))
else:
raise ValueError('Scaler can be \'standard\' or \'minmax\'')
return data_scale
def scale_to_zero_one(data):
"""
Scales data in [0,1] range
:param numpy.ndarray data: data to apply scaler to, should be samples x 1 (dimnesions - 1D)
:return: data_scale (numpy.ndarray, 1D) - data transformed
"""
data_scale = (data - np.min(data)) / (np.max(data) - np.min(data))
return data_scale
def permutation_test_outcome(cluster_stats):
"""
Computes the outcome of the cluster test for further plots
Adapted from MNE-python
https://mne.tools/dev/auto_tutorials/stats-sensor-space/75_cluster_ftest_spatiotemporal.html#sphx-glr-auto-tutorials-stats-sensor-space-75-cluster-ftest-spatiotemporal-py
:param numpy.array cluster_stats: output from mne.stats.spatio_temporal_cluster_test
:returns:
F_obs (numpy.ndarray) - values of statistics;
F_obs_sig (numpy.ndarray) - values of significance
"""
F_obs, clusters, p_values, _ = cluster_stats
good_cluster_inds = np.where(p_values < 0.05)[0]
clusters = [clusters[i] for i in range(len(clusters)) if i in good_cluster_inds]
F_obs_sig = 1 * np.ones(F_obs.shape)
ch_inds = []
times_inds = []
for cluster in clusters:
time_inds, space_inds = np.squeeze(cluster)
for i, ti in enumerate(time_inds):
F_obs_sig[ti, space_inds[i]] = np.nan
ch_inds.append(np.unique(space_inds))
times_inds.append(np.unique(time_inds))
return F_obs, F_obs_sig