-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
98 lines (74 loc) · 2.79 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
def hidden_init(layer):
""" This function is used for weight initialization. """
fan_in = layer.weight.data.size()[0]
lim = 1. / np.sqrt(fan_in)
return (-lim, lim)
class ActorNet(nn.Module):
""" Actor(Policy) Model. """
def __init__(self, state_size, action_size, seed):
"""
Initialize params and build model.
params:
- state_size (int) : dimension of each state.
- action_size (int) : dimension of each action.
- seed (int) : random seed.
"""
super(ActorNet, self).__init__()
self.seed = torch.manual_seed(seed)
# input layer
self.fc1 = nn.Linear(state_size, 512)
# batchnorm layer
self.bn1 = nn.BatchNorm1d(512)
# hidden layer
self.fc2 = nn.Linear(512, 256)
# batchnorm layer
self.bn2 = nn.BatchNorm1d(256)
# output layer
self.fc3 = nn.Linear(256, action_size)
self.reset_parameters()
def reset_parameters(self):
self.fc1.weight.data.uniform_(*hidden_init(self.fc1))
self.fc2.weight.data.uniform_(*hidden_init(self.fc2))
self.fc3.weight.data.uniform_(-3e-3, 3e-3)
def forward(self, state):
""" Builds a Actor network which maps states to actions. """
x = F.relu(self.bn1(self.fc1(state)))
x = F.relu(self.bn2(self.fc2(x)))
return torch.tanh(self.fc3(x))
class CriticNet(nn.Module):
""" Critic(Value) Model. """
def __init__(self, state_size, action_size, seed):
"""
Initialize params and build model.
params:
- state_size (int) : dimension of each state.
- action_size (int) : dimension of each action.
- seed (int) : random seed.
"""
super(CriticNet, self).__init__()
self.seed = torch.manual_seed(seed)
# input layer
self.fc1 = nn.Linear(state_size, 512)
# batchnorm layer
self.bn1 = nn.BatchNorm1d(512)
# hidden layer
self.fc2 = nn.Linear(512+action_size, 256)
# batchnorm layer
self.bn2 = nn.BatchNorm1d(256)
# output layer
self.fc3 = nn.Linear(256, 1)
self.reset_parameters()
def reset_parameters(self):
self.fc1.weight.data.uniform_(*hidden_init(self.fc1))
self.fc2.weight.data.uniform_(*hidden_init(self.fc2))
self.fc3.weight.data.uniform_(-3e-3, 3e-3)
def forward(self, state, action):
""" Builds a Critic network which maps (state, action) pairs to Qvalues. """
x = F.relu(self.bn1(self.fc1(state)))
x = torch.cat((x, action), dim=1)
x = F.relu(self.bn2(self.fc2(x)))
return self.fc3(x)