-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathargs.py
57 lines (23 loc) · 1.61 KB
/
args.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import argparse
args = None
def parse_arguments():
parser = argparse.ArgumentParser(description='PyTorch Example')
parser.add_argument('--no-cuda', action='store_true', default=False, help='disables CUDA training')
parser.add_argument('--gpu', type=int, default=0, help='gpu id')
parser.add_argument("--workers", default=False, action="store_true", help="enable workers")
parser.add_argument('--batch-size', type=int, default=128, help='batch size for training (default: 128)')
parser.add_argument('--lr', type=float, default=0.1, help='learning rate (default: 0.1)')
parser.add_argument('--wd', type=float, default=5e-4, help='weight decay (default: 5e-4)')
parser.add_argument('--epochs', type=int, default=160, help='number of epochs to train')
parser.add_argument('--model', type=str, default='resnet20', choices=['resnet20', 'mobilenet_v1', 'densenet'], help='model to train')
parser.add_argument('--sname', type=str, default='run', help='save name for run logs and model')
parser.add_argument('--ptarget', type=float, default=0.95, help='final target pruning ratio')
parser.add_argument('--pthres', type=int, default=0, help='number of minimum required parameters for sparsification (default: 0)')
parser.add_argument('--t1', type=int, default=0, help='start pruning at epoch t1 (default: 0)')
args = parser.parse_args()
return args
def run_args():
global args
if args is None:
args = parse_arguments()
run_args()