-
Notifications
You must be signed in to change notification settings - Fork 0
/
secret.txt
179 lines (101 loc) · 2.94 KB
/
secret.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
# Kidney-disease-classification
## Workflows
1. Update config.yaml
2. Update secrets.yaml [Optional]
3. Update params.yaml
4. Update the entity
5. Update the configuration manager in src config
6. Update the components
7. Update the pipeline
8. Update the main.py
9. Update the dvc.yaml
10. app.py
# How to run?
### STEPS:
Clone the repository
```bash
https://github.com/atifabedeen/Kidney-disease-classification
```
### STEP 01- Create a conda environment after opening the repository
```bash
conda create -n venv python=3.8 -y
```
```bash
conda activate venv
```
### STEP 02- install the requirements
```bash
pip install -r requirements.txt
```
```bash
# Finally run the following command
python app.py
```
Now,
```bash
open up you local host and port
```
## MLflow
- [Documentation](https://mlflow.org/docs/latest/index.html)
##### cmd
- mlflow ui
### dagshub
[dagshub](https://dagshub.com/)
MLFLOW_TRACKING_URI=https://dagshub.com/atifabedeen/Kidney-disease-classification.mlflow\
MLFLOW_TRACKING_USERNAME=atifabedeen \
MLFLOW_TRACKING_PASSWORD=16016383a5473986427fdc2d8b62f8b0d26c3581 \
python script.py
Run this to export as env variables:
```bash
export MLFLOW_TRACKING_URI=https://dagshub.com/atifabedeen/Kidney-disease-classification.mlflow
export MLFLOW_TRACKING_USERNAME=atifabedeen
export MLFLOW_TRACKING_PASSWORD=16016383a5473986427fdc2d8b62f8b0d26c3581
```
### DVC cmd
1. dvc init
2. dvc repro
3. dvc dag
## About MLflow & DVC
MLflow
- Its Production Grade
- Trace all of your expriements
- Logging & taging your model
DVC
- Its very lite weight for POC only
- lite weight expriements tracker
- It can perform Orchestration (Creating Pipelines)
# AWS-CICD-Deployment-with-Github-Actions
## 1. Login to AWS console.
## 2. Create IAM user for deployment
#with specific access
1. EC2 access : It is virtual machine
2. ECR: Elastic Container registry to save your docker image in aws
#Description: About the deployment
1. Build docker image of the source code
2. Push your docker image to ECR
3. Launch Your EC2
4. Pull Your image from ECR in EC2
5. Lauch your docker image in EC2
#Policy:
1. AmazonEC2ContainerRegistryFullAccess
2. AmazonEC2FullAccess
## 3. Create ECR repo to store/save docker image
- Save the URI: 533267053056.dkr.ecr.us-east-1.amazonaws.com/kidney
## 4. Create EC2 machine (Ubuntu)
## 5. Open EC2 and Install docker in EC2 Machine:
#optinal
sudo apt-get update -y
sudo apt-get upgrade
#required
curl -fsSL https://get.docker.com -o get-docker.sh
sudo sh get-docker.sh
sudo usermod -aG docker ubuntu
newgrp docker
# 6. Configure EC2 as self-hosted runner:
setting>actions>runner>new self hosted runner> choose os> then run command one by one
# 7. Setup github secrets:
AWS_ACCESS_KEY_ID=
AWS_SECRET_ACCESS_KEY=
AWS_REGION = us-east-1
AWS_ECR_LOGIN_URI = demo>> 566373416292.dkr.ecr.ap-south-1.amazonaws.com
ECR_REPOSITORY_NAME = simple-app