-
Notifications
You must be signed in to change notification settings - Fork 0
/
app.py
429 lines (357 loc) · 12.1 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
#!/usr/bin/env python
# coding: utf-8
import base64
import warnings
import pandas as pd
import numpy as np
import plotly.express as px
from dash.dependencies import Input, Output
import dash
from dash import dash_table, dcc, html
warnings.filterwarnings("ignore")
# # Data Cleaning and Organization
# Read in data about candidates (including state, position, twitter username,
# ideology and leadership scores, etc).
df = pd.read_csv("./Data/pred.csv")
df = df[df["Predicted"] == 0]
df = df[["candidate_user_name", "pol_party"]]
df["Count"] = df.groupby(["candidate_user_name"])["pol_party"].transform("count")
df = df.drop_duplicates()
# Read in data from misogynistic tweets from our Classifier.
miso_df = pd.read_csv("./Data/misogynistic_tweets.csv")
miso_df = miso_df[
[
"Full Name",
"candidate_user_name",
"party",
"ideology",
"leadership",
"state",
"Position",
]
]
df = df.merge(miso_df, on="candidate_user_name")
# Merge data and count number of tweets.
df = df[
[
"Full Name",
"state",
"party",
"Position",
"candidate_user_name",
"ideology",
"leadership",
"Count",
]
]
df = df.sort_values(["Count"], ascending=False)
df["ideology"] = df["ideology"].round(decimals=3)
df["leadership"] = df["leadership"].round(decimals=3)
df = df.groupby(
["Full Name", "state", "party", "Position", "ideology", "leadership"],
as_index=False,
).agg({"Count": "sum"})
# Organize data to use in Plotly histograms.
df_log = df.copy()
df_log["Count_l"] = np.log(df_log["Count"])
df_log.head()
# Count the number of tweets (logged) by State to display in Chloropleth map
# in Dash.
state_df = df_log[["state", "Count", "Count_l"]]
state_df = state_df.groupby(["state"]).sum()
state_df = state_df.reset_index()
state_df.head()
# Then, for display purposes, we updated the column headings for aesthetic and
# readability purposes. The following data table will be included in the Dash.
df = df.rename(
columns={
"state": "State",
"party": "Party",
"ideology": "Ideology",
"leadership": "Leadership",
}
)
df.head()
# # Plotly and Dash
# ### Initalize Dash, set up server, and create application-wide variables.
app = dash.Dash(
__name__,
meta_tags=[{"name": "viewport",
"content": "width=device-width, initial-scale=1"}],
)
app.title = "Women In Politics & Misogynistic Tweets"
server = app.server
IMAGE = "./assets/wordcloud.png"
encoded_image = base64.b64encode(open(IMAGE, "rb").read())
PAGE_SIZE = 10
# ### Create Figures Using Plotly
# Note that the output in this Jupyter Notebook uses light text colors because
# the Dash has a dark background color. For maximum readibility, please view
# plots in the Dash (https://twittermisogyny.herokuapp.com/).
# Figure 1: A Histogram Comparing Number of Tweets (Logged) to Ideology Score.
fig = px.histogram(
df_log,
x="ideology",
y="Count",
log_y=True,
range_x=[-0.1, 1.1],
hover_name="Full Name",
labels=dict(ideology="Ideology Score", Count="Number of Tweets"),
)
fig.update_xaxes(
tickvals=[0.2, 0.4, 0.6, 0.8, 1.0],
tickfont=dict(color="white", size=12, family="Helvetica"),
title_font=dict(size=14, color="#dadfeb", family="Helvetica"),
showgrid=False,
)
fig.update_yaxes(
title_text="Number of Tweets",
title_font=dict(size=14, color="#dadfeb", family="Helvetica"),
showgrid=True,
tickfont=dict(color="#dadfeb", size=12, family="Helvetica"),
)
fig.update_layout(
title_font_family="Helvetica",
title_font_color="#dadfeb",
font=dict(size=14),
title={
"text": "Number of Tweets By Ideology Score of Politician",
"y": 0.9,
"x": 0.5,
"xanchor": "center",
"yanchor": "top",
},
)
fig.update_layout(
{
"plot_bgcolor": "rgba(0, 0, 0, 0)",
"paper_bgcolor": "rgba(0, 0, 0, 0)",
"yaxis": {"gridcolor": "#0c2b5c"},
}
)
fig.update_traces(marker_color="#2e75e6")
# Figure 2: A Histogram Comparing Number of Tweets (Logged) to Leadership
# Score.
fig2 = px.histogram(
df_log,
x="leadership",
y="Count",
log_y=True,
range_x=[-0.1, 1.1],
hover_name="Full Name",
labels=dict(leadership="Leadership Score", Count="Number of Tweets"),
)
fig2.update_yaxes(
title_text="Number of Tweets",
title_font=dict(size=14, color="#dadfeb", family="Helvetica"),
showgrid=True,
tickfont=dict(family="Helvetica", color="#dadfeb", size=12),
)
fig2.update_xaxes(
range=[0, 1.0001],
tickvals=[0.2, 0.4, 0.6, 0.8, 1.0],
autorange=False,
showgrid=False,
tickfont=dict(family="Helvetica", color="#dadfeb", size=12),
title_font=dict(size=14, color="#dadfeb", family="Helvetica"),
)
fig2.update_layout(
title={
"text": "Number of Tweets By Leadership Score of Politician",
"y": 0.9,
"x": 0.5,
"xanchor": "center",
"yanchor": "top",
},
title_font_family="Helvetica",
title_font_color="#dadfeb",
font=dict(size=14),
)
fig2.update_layout(
{
"plot_bgcolor": "rgba(0, 0, 0, 0)",
"paper_bgcolor": "rgba(0, 0, 0, 0)",
"yaxis": {"gridcolor": "#0c2b5c"},
}
)
fig2.update_traces(marker_color="#2e75e6")
# Figure 3: Chloropleth Map for Number of Tweets (logged) By State
fig3 = px.choropleth(
state_df,
locations="state",
color="Count_l",
color_continuous_scale="blues",
hover_name="state",
hover_data=["Count"],
locationmode="USA-states",
labels={"Tweets per State"},
scope="usa",
)
fig3.update_xaxes(showgrid=False)
fig3.update_yaxes(showgrid=False)
fig3.update_layout(
title={
"text": "Number of Tweets By State of Politician",
"y": 0.9,
"x": 0.5,
"xanchor": "center",
"yanchor": "top",
},
title_font_family="Helvetica",
title_font_color="#dadfeb",
font=dict(size=14),
coloraxis_colorbar=dict(
title="",
tickvals=[0.2, 5.481784],
tickfont={"color": "#dadfeb"},
ticktext=["Least Tweets", "Most Tweets"],
),
margin={"r": 0, "t": 0, "l": 0, "b": 0},
coloraxis_showscale=False,
)
fig3.update_layout(
{"plot_bgcolor": "rgba(0, 0, 0, 0)", "paper_bgcolor": "rgba(0, 0, 0, 0)"}
)
fig3.update_geos(bgcolor="rgba(0, 0, 0, 0)", showlakes=False)
# ### Set up Dash layout and deploy to server
app.layout = html.Div(
children=[
html.Div(
children=[
html.H1(
children="Women in Politics and Misogynistic Tweets: \
Classifying Misogyny"
),
html.H2(
children="In the run up to the 2020 election, to what \
extent is misogynistic rhetoric directed at women \
running for office on Twitter in the United \
States?"
),
],
className="app__header",
),
html.Div(
children=[
html.Div(
children=[
html.Div(
children=[
dcc.Graph(id="ideology", figure=fig),
html.P(
children="Ideology Scores from GovTrack \
USA. Scale 0: Most Liberal to 1: Most \
Conservative"
),
],
className="half graph-container",
),
html.Div(
children=[
dcc.Graph(id="map", figure=fig3),
html.P(
children="Darker colored states denote \
states with politicians with more \
tweets identified."
),
],
className="half graph-container",
),
],
className="row",
),
html.Div(
children=[
html.Div(
children=[
dcc.Graph(id="leadership", figure=fig2),
html.P(
children="Leadership Scores from GovTrack \
USA. Scale 0: Least Likely to Sponsor \
Legislation/Hold Leadership Roles \
to 1: Most Likely"
),
],
className="half graph-container",
),
html.Div(
children=[
html.H3(
children="Most Commonly Found Words in \
Misogynistic Tweets"
),
html.Img(
src="data:image/png;base64,{}".format(
encoded_image.decode()
),
style={"text-align": "center",
"max-width": "100%"},
),
],
className="half",
),
],
className="row",
),
html.Div(
children=[
html.Div(
children=[
dash_table.DataTable(
id="table-paging-and-sorting",
columns=[
{"name": i, "id": i, "deletable": True}
for i in sorted(df.columns)
],
style_cell={
"padding": "5px",
"fontSize": 16,
"font-family": "Helvetica",
"backgroundColor": "#0c2b5c",
},
style_header={"backgroundColor": "#224f99",},
data=df.to_dict("records"),
style_data={"border": "1px solid #dadfeb"},
page_current=0,
page_size=PAGE_SIZE,
page_action="custom",
sort_action="custom",
sort_mode="single",
sort_by=[],
)
],
className="full",
)
],
className="row",
),
],
className="app__content",
),
],
className="app__container",
)
@app.callback(
Output("table-paging-and-sorting", "data"),
Input("table-paging-and-sorting", "page_current"),
Input("table-paging-and-sorting", "page_size"),
Input("table-paging-and-sorting", "sort_by"),
)
def update_table(page_current, page_size, sort_by):
'''
User-defined filtration of data table
'''
if len(sort_by):
dff = df.sort_values(
sort_by[0]["column_id"],
ascending=sort_by[0]["direction"] == "asc",
inplace=False,
)
else:
# No sort is applied
dff = df
return dff.iloc[page_current * page_size : (page_current + 1) * page_size].to_dict(
"records"
)
if __name__ == "__main__":
app.run_server()