forked from jaakkopasanen/AutoEq
-
Notifications
You must be signed in to change notification settings - Fork 0
/
frequency_response.py
969 lines (871 loc) · 49.1 KB
/
frequency_response.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
# -*- coding: utf-8 -*_
import os
from copy import deepcopy
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker
import math
from pathlib import Path
from scipy.interpolate import InterpolatedUnivariateSpline
from scipy.signal import savgol_filter, find_peaks, minimum_phase, firwin2
from scipy.stats import linregress
from scipy.fftpack import next_fast_len
import numpy as np
import urllib
from time import time
from PIL import Image
import warnings
from autoeq.constants import DEFAULT_F_MIN, DEFAULT_F_MAX, DEFAULT_STEP, DEFAULT_MAX_GAIN, DEFAULT_TREBLE_F_LOWER, \
DEFAULT_TREBLE_F_UPPER, DEFAULT_TREBLE_GAIN_K, DEFAULT_SMOOTHING_WINDOW_SIZE, \
DEFAULT_TREBLE_SMOOTHING_F_LOWER, DEFAULT_TREBLE_SMOOTHING_F_UPPER, \
DEFAULT_TREBLE_SMOOTHING_WINDOW_SIZE, DEFAULT_TILT, DEFAULT_FS, \
DEFAULT_F_RES, DEFAULT_BASS_BOOST_GAIN, DEFAULT_BASS_BOOST_FC, \
DEFAULT_BASS_BOOST_Q, DEFAULT_GRAPHIC_EQ_STEP, HARMAN_INEAR_PREFENCE_FREQUENCIES, \
HARMAN_OVEREAR_PREFERENCE_FREQUENCIES, PREAMP_HEADROOM, DEFAULT_MAX_SLOPE, \
DEFAULT_BIQUAD_OPTIMIZATION_F_STEP, DEFAULT_TREBLE_BOOST_GAIN, DEFAULT_TREBLE_BOOST_FC, DEFAULT_TREBLE_BOOST_Q, \
DEFAULT_PREAMP, DEFAULT_SOUND_SIGNATURE_SMOOTHING_WINDOW_SIZE
from autoeq.csv import parse_csv, create_csv
from autoeq.peq import PEQ, LowShelf, HighShelf, Peaking
from autoeq.utils import generate_frequencies, log_tilt, smoothing_window_size, log_f_sigmoid, log_log_gradient
warnings.filterwarnings("ignore", message="Values in x were outside bounds during a minimize step, clipping to bounds")
class FrequencyResponse:
_cols = [
'frequency', 'raw', 'smoothed', 'error', 'error_smoothed', 'equalization', 'parametric_eq', 'fixed_band_eq',
'equalized_raw', 'equalized_smoothed', 'target']
def __init__(self, name=None, frequency=None, raw=None, error=None, smoothed=None, error_smoothed=None,
equalization=None, parametric_eq=None, fixed_band_eq=None, equalized_raw=None, equalized_smoothed=None,
target=None):
if not name:
raise TypeError('Name must not be a non-empty string.')
self.name = name.strip()
self.frequency = self._init_data(frequency)
if not len(self.frequency):
self.frequency = self.generate_frequencies()
self._check_duplicate_frequencies()
self.raw = self._init_data(raw)
self.smoothed = self._init_data(smoothed)
self.error = self._init_data(error)
self.error_smoothed = self._init_data(error_smoothed)
self.equalization = self._init_data(equalization)
self.parametric_eq = self._init_data(parametric_eq)
self.fixed_band_eq = self._init_data(fixed_band_eq)
self.equalized_raw = self._init_data(equalized_raw)
self.equalized_smoothed = self._init_data(equalized_smoothed)
self.target = self._init_data(target)
self._sort()
def _init_data(self, data):
"""Initializes data to a clean format. If None is passed and empty array is created. Non-numbers are removed."""
if data is None:
data = []
elif type(data) == float or type(data) == int:
data = np.ones(self.frequency.shape) * data
return np.array([None if x is None or math.isnan(x) else x for x in data])
def _check_duplicate_frequencies(self):
"""Checks if frequency array contains duplicate values and raises an error if it does."""
unique_frequencies = set()
duplicate_frequencies = set()
for f in self.frequency:
if f in unique_frequencies:
duplicate_frequencies.add(f)
unique_frequencies.add(f)
if duplicate_frequencies:
raise ValueError(f'Duplicate frequencies found {duplicate_frequencies}. Remove duplicates manually.')
def _sort(self):
"""Sorts all columns in place in ascending order by frequency."""
sorted_inds = self.frequency.argsort()
self.frequency = self.frequency[sorted_inds]
for col in self._cols:
if len(self.__dict__[col]):
self.__dict__[col] = self.__dict__[col][sorted_inds]
def copy(self, name=None):
return self.__class__(
name=self.name + '_copy' if name is None else name,
**{col: self._init_data(self.__dict__[col]) for col in self._cols})
def reset(self, raw=False, smoothed=False, error=False, error_smoothed=False, equalization=False,
fixed_band_eq=False, parametric_eq=False, equalized_raw=False, equalized_smoothed=False, target=False):
"""Resets data."""
args = locals()
for key in args:
if args[key]:
self.__dict__[key] = self._init_data(None)
def to_dict(self):
return {key: [x if x is not None else 'NaN' for x in self.__dict__[key]] for key in self._cols if len(self.__dict__[key])}
@classmethod
def read_csv(cls, file_path):
"""Reads data from CSV file and constructs class instance."""
name = '.'.join(Path(file_path).name.split('.')[:-1])
try:
with open(file_path, 'r', encoding='utf-8') as fh:
csv_str = fh.read().strip()
except UnicodeDecodeError as err:
with open(file_path, 'r', encoding='windows-1252') as fh:
csv_str = fh.read().strip()
return cls(name=name, **parse_csv(csv_str))
def write_csv(self, file_path):
"""Writes data to files as CSV."""
with open(file_path, 'w') as fh:
fh.write(create_csv(self.to_dict()) + '\n')
def eqapo_graphic_eq(self, normalize=True, preamp=DEFAULT_PREAMP, f_step=DEFAULT_GRAPHIC_EQ_STEP):
"""Generates EqualizerAPO GraphicEQ string from equalization curve."""
fr = self.__class__(name='hack', frequency=self.frequency, raw=self.equalization)
n = np.ceil(np.log(20000 / 20) / np.log(f_step))
f = 20 * f_step ** np.arange(n)
f = np.sort(np.unique(f.astype('int')))
fr.interpolate(f=f)
if normalize:
fr.raw -= np.max(fr.raw) + PREAMP_HEADROOM
if preamp:
fr.raw += preamp
if fr.raw[0] > 0.0:
# Prevent bass boost below lowest frequency
fr.raw[0] = 0.0
s = '; '.join(['{f} {a:.1f}'.format(f=f, a=a) for f, a in zip(fr.frequency, fr.raw)])
s = 'GraphicEQ: ' + s
return s
def write_eqapo_graphic_eq(self, file_path, normalize=True, preamp=DEFAULT_PREAMP):
"""Writes equalization graph to a file as Equalizer APO config."""
file_path = os.path.abspath(file_path)
s = self.eqapo_graphic_eq(normalize=normalize, preamp=preamp)
with open(file_path, 'w', encoding='utf-8') as f:
f.write(s)
return s
def _optimize_peq_filters(self, configs, fs, max_time=None, preamp=DEFAULT_PREAMP):
"""Creates optimal set of parametric eq filters to match the equalization data"""
if type(configs) != list:
configs = [configs]
peqs = []
fr = self.__class__(name='optimizer', frequency=self.frequency, equalization=self.equalization)
if preamp:
fr.equalization += preamp
fr.interpolate(f_step=DEFAULT_BIQUAD_OPTIMIZATION_F_STEP)
start_time = time()
for config in configs:
if 'optimizer' in config and max_time is not None:
config['optimizer']['max_time'] = max_time
peq = PEQ.from_dict(config, fr.frequency, fs, target=fr.equalization)
peq.optimize()
fr.equalization -= peq.fr
peqs.append(peq)
if max_time is not None:
max_time = max_time - (time() - start_time)
return peqs
def optimize_parametric_eq(self, configs, fs, max_time=None, preamp=DEFAULT_PREAMP):
"""Creates optimal set of parametric eq filters to match the equalization data"""
peqs = self._optimize_peq_filters(configs, fs, max_time=max_time, preamp=preamp)
fr = FrequencyResponse(
name='PEQ', frequency=self.generate_frequencies(f_step=DEFAULT_BIQUAD_OPTIMIZATION_F_STEP),
raw=np.sum(np.vstack([peq.fr for peq in peqs]), axis=0))
fr.interpolate(f=self.frequency)
self.parametric_eq = fr.raw
return peqs
def optimize_fixed_band_eq(self, configs, fs, max_time=None, preamp=DEFAULT_PREAMP, gain_range=None):
"""Creates optimal set of fixed eq filters to match the equalization data"""
if type(configs) != list:
configs = [configs]
if gain_range is not None:
fc_fr = self.copy()
fcs = np.array([[filt['fc'] for filt in config['filters']] for config in configs]).flatten()
fc_fr.interpolate(f=fcs)
for config in configs:
for filt in config['filters']:
target = fc_fr.equalization[np.argmin(np.abs(fc_fr.frequency - filt['fc']))]
filt['min_gain'] = target - gain_range
filt['max_gain'] = target + gain_range
peqs = self._optimize_peq_filters(configs, fs, max_time=max_time, preamp=preamp)
fr = FrequencyResponse(
name='PEQ', frequency=self.generate_frequencies(f_step=DEFAULT_BIQUAD_OPTIMIZATION_F_STEP),
raw=np.sum(np.vstack([peq.fr for peq in peqs]), axis=0))
fr.interpolate(f=self.frequency)
self.fixed_band_eq = fr.raw
return peqs
def write_eqapo_parametric_eq(self, file_path, peqs):
"""Writes EqualizerAPO Parametric eq settings to a file."""
file_path = os.path.abspath(file_path)
f = self.generate_frequencies(f_step=DEFAULT_BIQUAD_OPTIMIZATION_F_STEP)
compound = PEQ(f, peqs[0].fs, [])
for peq in peqs:
for filt in peq.filters:
compound.add_filter(filt)
types = {Peaking.__name__: 'PK', LowShelf.__name__: 'LSC', HighShelf.__name__: 'HSC'}
with open(file_path, 'w', encoding='utf-8') as f:
s = f'Preamp: {-compound.max_gain:.1f} dB\n'
for i, filt in enumerate(compound.filters):
s += f'Filter {i + 1}: ON {types[filt.__class__.__name__]} Fc {filt.fc:.0f} Hz Gain {filt.gain:.1f} dB Q {filt.q:.2f}\n'
f.write(s)
def minimum_phase_impulse_response(self, fs=DEFAULT_FS, f_res=DEFAULT_F_RES, normalize=True, preamp=DEFAULT_PREAMP):
"""Generates minimum phase impulse response
Inspired by:
https://sourceforge.net/p/equalizerapo/code/HEAD/tree/tags/1.2/filters/GraphicEQFilter.cpp#l45
Args:
fs: Sampling frequency in Hz
f_res: Frequency resolution as sampling interval. 20 would result in sampling at 0 Hz, 20 Hz, 40 Hz, ...
normalize: Normalize gain to -0.2 dB
preamp: Extra pre-amplification in dB
Returns:
Minimum phase impulse response
"""
# Double frequency resolution because it will be halved when converting linear phase IR to minimum phase
f_res /= 2
# Interpolate to even sample interval
fr = self.__class__(name='fr_data', frequency=self.frequency.copy(), raw=self.equalization.copy())
f_min = np.max([fr.frequency[0], f_res]) # Save gain at lowest available frequency
interpolator = InterpolatedUnivariateSpline(np.log10(fr.frequency), fr.raw, k=1)
gain_f_min = interpolator(np.log10(f_min))
# Filter length, optimized for FFT speed
n = round(fs // 2 / f_res)
n = next_fast_len(n)
f = np.linspace(0.0, fs // 2, n)
fr.interpolate(f, pol_order=1)
# Set gain for all frequencies below original minimum frequency to match gain at the original minimum frequency
fr.raw[fr.frequency <= f_min] = gain_f_min
if normalize:
# Reduce by max gain to avoid clipping with 1 dB of headroom
fr.raw -= np.max(fr.raw)
fr.raw -= PREAMP_HEADROOM
if preamp:
fr.raw += preamp
fr.raw *= 2 # Minimum phase transformation by scipy's homomorphic method halves dB gain
fr.raw = 10 ** (fr.raw / 20) # Convert amplitude to linear scale
fr.raw[-1] = 0.0 # Zero gain at Nyquist frequency
ir = firwin2(len(fr.frequency) * 2, fr.frequency, fr.raw, fs=fs) # Calculate linear phase FIR filter
ir = minimum_phase(ir, n_fft=len(ir)) # Convert FIR filter to minimum phase
return ir
def linear_phase_impulse_response(self, fs=DEFAULT_FS, f_res=DEFAULT_F_RES, normalize=True, preamp=DEFAULT_PREAMP):
"""Generates impulse response implementation of equalization filter."""
# Interpolate to even sample interval
fr = self.__class__(name='fr_data', frequency=self.frequency, raw=self.equalization)
f_min = np.max([fr.frequency[0], f_res]) # Save gain at lowest available frequency
interpolator = InterpolatedUnivariateSpline(np.log10(fr.frequency), fr.raw, k=1)
gain_f_min = interpolator(np.log10(f_min))
fr.interpolate(np.arange(0.0, fs // 2, f_res), pol_order=1)
# Set gain for all frequencies below original minimum frequency to match gain at the original minimum frequency
fr.raw[fr.frequency <= f_min] = gain_f_min
if normalize:
# Reduce by max gain to avoid clipping with 1 dB of headroom
fr.raw -= np.max(fr.raw)
fr.raw -= PREAMP_HEADROOM
if preamp:
fr.raw += preamp
fr.raw = 10 ** (fr.raw / 20) # Convert amplitude to linear scale
fr.frequency = np.append(fr.frequency, fs // 2) # Nyquist frequency
fr.raw = np.append(fr.raw, 0.0) # Zero gain at Nyquist frequency
return firwin2(len(fr.frequency) * 2, fr.frequency, fr.raw, fs=fs)
def write_readme(self, file_path, parametric_peqs=None, fixed_band_peq=None):
"""Writes README.md with picture and Equalizer APO settings."""
model = self.name
# Write model
s = '# {}\n'.format(model)
s += 'See [usage instructions](https://github.com/jaakkopasanen/AutoEq#usage) for more options and info.\n\n'
# Add parametric EQ settings
if parametric_peqs is not None:
s += '### Parametric EQs\n'
f = self.generate_frequencies(f_step=DEFAULT_BIQUAD_OPTIMIZATION_F_STEP)
if len(parametric_peqs) > 1:
compound = PEQ(f, parametric_peqs[0].fs)
n = 0
filter_ranges = ''
preamps = ''
for i, peq in enumerate(parametric_peqs):
peq = deepcopy(peq)
peq.sort_filters()
for filt in peq.filters:
compound.add_filter(filt)
filter_ranges += f'1-{len(peq.filters) + n}'
preamps += f'{-compound.max_gain - 0.1:.1f} dB'
if i < len(parametric_peqs) - 2:
filter_ranges += ', '
preamps += ', '
elif i == len(parametric_peqs) - 2:
filter_ranges += ' or '
preamps += ' or '
n += len(peq.filters)
s += f'You can use filters {filter_ranges}. Apply preamp of {preamps}, respectively.\n\n'
else:
compound = PEQ(f, parametric_peqs[0].fs, [])
for peq in parametric_peqs:
peq = deepcopy(peq)
peq.sort_filters()
for filt in peq.filters:
compound.add_filter(filt)
s += f'Apply preamp of -{compound.max_gain + 0.1:.1f} dB when using parametric equalizer.\n\n'
s += compound.markdown_table() + '\n\n'
# Add fixed band eq
if fixed_band_peq is not None:
s += f'### Fixed Band EQs\nWhen using fixed band (also called graphic) equalizer, apply preamp of ' \
f'**-{fixed_band_peq.max_gain + 0.1:.1f} dB** (if available) and set gains manually with these ' \
f'parameters.\n\n{fixed_band_peq.markdown_table()}\n\n'
# Write image link
file_path = Path(file_path)
img_path = os.path.join(file_path.parent, model + '.png')
if os.path.isfile(img_path):
img_url = f'./{os.path.split(img_path)[1]}'
img_url = urllib.parse.quote(img_url, safe="%/:=&?~#+!$,;'@()*[]")
s += f'### Graphs\n![]({img_url})\n'
# Write file
with open(file_path, 'w', encoding='utf-8') as f:
f.write(s)
@staticmethod
def generate_frequencies(f_min=DEFAULT_F_MIN, f_max=DEFAULT_F_MAX, f_step=DEFAULT_STEP):
"""Moved to autoeq.utils but retaining method to avoid breaking changes."""
return generate_frequencies(f_min, f_max, f_step)
def interpolate(self, f=None, f_step=DEFAULT_STEP, pol_order=1, f_min=DEFAULT_F_MIN, f_max=DEFAULT_F_MAX):
"""Interpolates missing values from previous and next value. Resets all but raw data."""
# Remove None values
i = 0
while i < len(self.raw):
if self.raw[i] is None:
self.raw = np.delete(self.raw, i)
self.frequency = np.delete(self.frequency, i)
else:
i += 1
keys = 'raw smoothed error error_smoothed equalization equalized_raw equalized_smoothed target'.split()
interpolators = dict()
log_f = np.log10(self.frequency)
for key in keys:
if len(self.__dict__[key]):
interpolators[key] = InterpolatedUnivariateSpline(log_f, self.__dict__[key], k=pol_order)
if f is None:
self.frequency = self.generate_frequencies(f_min=f_min, f_max=f_max, f_step=f_step)
else:
self.frequency = np.array(f)
# Prevent log10 from exploding by replacing zero frequency with small value
zero_freq_fix = False
if self.frequency[0] == 0:
self.frequency[0] = 0.001
zero_freq_fix = True
log_f = np.log10(self.frequency)
for key in keys:
if len(self.__dict__[key]) and key in interpolators:
self.__dict__[key] = interpolators[key](log_f)
if zero_freq_fix:
# Restore zero frequency
self.frequency[0] = 0
# Everything but the interpolated data is affected by interpolating, reset them
self.reset(fixed_band_eq=True, parametric_eq=True)
def center(self, frequency=1000):
"""Removed bias from frequency response.
Args:
frequency: Frequency which is set to 0 dB. If this is a list with two values then an average between the two
frequencies is set to 0 dB.
Returns:
Gain shifted
"""
equal_energy_fr = self.__class__(name='equal_energy', frequency=self.frequency.copy(), raw=self.raw.copy())
equal_energy_fr.interpolate()
interpolator = InterpolatedUnivariateSpline(np.log10(equal_energy_fr.frequency), equal_energy_fr.raw, k=1)
if type(frequency) in [list, np.ndarray] and len(frequency) > 1:
# Use the average of the gain values between the given frequencies as the difference to be subtracted
diff = np.mean(equal_energy_fr.raw[np.logical_and(
equal_energy_fr.frequency >= frequency[0],
equal_energy_fr.frequency <= frequency[1]
)])
else:
if type(frequency) in [list, np.ndarray]:
# List or array with only one element
frequency = frequency[0]
# Use the gain value at the given frequency as the difference to be subtracted
diff = interpolator(np.log10(frequency))
self.raw -= diff
if len(self.smoothed):
self.smoothed -= diff
if len(self.error):
self.error += diff
if len(self.error_smoothed):
self.error_smoothed += diff
# Everything but raw, smoothed, errors and target is affected by centering, reset them
self.reset(
equalization=True, fixed_band_eq=True, parametric_eq=True, equalized_raw=True, equalized_smoothed=True)
return -diff
def create_target(
self, bass_boost_gain=DEFAULT_BASS_BOOST_GAIN, bass_boost_fc=DEFAULT_BASS_BOOST_FC,
bass_boost_q=DEFAULT_BASS_BOOST_Q, treble_boost_gain=DEFAULT_TREBLE_BOOST_GAIN,
treble_boost_fc=DEFAULT_TREBLE_BOOST_FC, treble_boost_q=DEFAULT_TREBLE_BOOST_Q,
tilt=DEFAULT_TILT, fs=DEFAULT_FS):
"""Creates target curve with bass boost as described by harman target response.
Args:
bass_boost_gain: Bass boost amount in dB
bass_boost_fc: Bass boost low shelf center frequency
bass_boost_q: Bass boost low shelf quality
treble_boost_gain: Treble boost amount in dB
treble_boost_fc: Treble boost high shelf center frequency
treble_boost_q: Treble boost high shelf quality
tilt: Frequency response tilt (slope) in dB per octave, positive values make it brighter
fs: Sampling frequency
Returns:
Target for equalization
"""
bass_boost = LowShelf(self.frequency, fs, fc=bass_boost_fc, q=bass_boost_q, gain=bass_boost_gain)
treble_boost = HighShelf(
self.frequency, fs, fc=treble_boost_fc, q=treble_boost_q, gain=treble_boost_gain)
if tilt is not None:
tilt = log_tilt(self.frequency, tilt)
else:
tilt = np.zeros(len(self.frequency))
return bass_boost.fr + treble_boost.fr + tilt
def compensate(
self, target, bass_boost_gain=DEFAULT_BASS_BOOST_GAIN, bass_boost_fc=DEFAULT_BASS_BOOST_FC,
bass_boost_q=DEFAULT_BASS_BOOST_Q, treble_boost_gain=DEFAULT_TREBLE_BOOST_GAIN,
treble_boost_fc=DEFAULT_TREBLE_BOOST_FC, treble_boost_q=DEFAULT_TREBLE_BOOST_Q,
tilt=DEFAULT_TILT, fs=DEFAULT_FS,
sound_signature=None, sound_signature_smoothing_window_size=DEFAULT_SOUND_SIGNATURE_SMOOTHING_WINDOW_SIZE,
min_mean_error=False):
"""Sets target and error curves."""
target = target.copy()
target.interpolate()
target.center()
self.target = target.raw + self.create_target(
bass_boost_gain=bass_boost_gain, bass_boost_fc=bass_boost_fc, bass_boost_q=bass_boost_q,
treble_boost_gain=treble_boost_gain, treble_boost_fc=treble_boost_fc, treble_boost_q=treble_boost_q,
tilt=tilt, fs=fs)
if sound_signature is not None:
# Sound signature given, add it to target curve
if not np.all(sound_signature.frequency == self.frequency):
# Interpolate sound signature to match self on the frequency axis
sound_signature.interpolate(self.frequency)
if sound_signature_smoothing_window_size:
sound_signature.smoothen(
window_size=sound_signature_smoothing_window_size,
treble_window_size=sound_signature_smoothing_window_size)
self.target += sound_signature.smoothed
else:
self.target += sound_signature.raw
self.error = self.raw - self.target
if min_mean_error:
# Shift error by it's mean in range 100 Hz to 10 kHz
delta = np.mean(self.error[np.logical_and(self.frequency >= 100, self.frequency <= 10000)])
self.error -= delta
self.target += delta
# Smoothed error and equalization results are affected by error calculation, reset them
self.reset(
error_smoothed=True, equalization=True, parametric_eq=True, fixed_band_eq=True, equalized_raw=True,
equalized_smoothed=True)
def _smoothen(
self, data, window_size=DEFAULT_SMOOTHING_WINDOW_SIZE,
treble_window_size=DEFAULT_TREBLE_SMOOTHING_WINDOW_SIZE, treble_f_lower=DEFAULT_TREBLE_SMOOTHING_F_LOWER,
treble_f_upper=DEFAULT_TREBLE_SMOOTHING_F_UPPER):
"""Smooths data.
Args:
window_size: Filter window size in octaves.
treble_window_size: Filter window size for high frequencies.
treble_f_lower: Lower boundary of transition frequency region. In the transition region normal filter is
switched to treble filter with sigmoid weighting function.
treble_f_upper: Upper boundary of transition frequency reqion. In the transition region normal filter is
switched to treble filter with sigmoid weighting function.
"""
if None in self.frequency or None in data:
# Must not contain None values
raise ValueError('None values present, cannot smoothen!')
# Savgol filter uses array indexing which is not future proof, ignoring the warning and trusting that this
# will be fixed in the future release
y_normal = savgol_filter(data, smoothing_window_size(self.frequency, window_size), 2)
y_treble = savgol_filter(data, smoothing_window_size(self.frequency, treble_window_size), 2)
# Transition weighted with sigmoid
k_treble = log_f_sigmoid(self.frequency, treble_f_lower, treble_f_upper)
k_normal = k_treble * -1 + 1
return y_normal * k_normal + y_treble * k_treble
def smoothen(
self, window_size=DEFAULT_SMOOTHING_WINDOW_SIZE,
treble_window_size=DEFAULT_TREBLE_SMOOTHING_WINDOW_SIZE,
treble_f_lower=DEFAULT_TREBLE_SMOOTHING_F_LOWER,
treble_f_upper=DEFAULT_TREBLE_SMOOTHING_F_UPPER):
"""Smooths data.
Args:
window_size: Filter window size in octaves.
treble_window_size: Filter window size for high frequencies.
treble_f_lower: Lower boundary of transition frequency region. In the transition region normal filter is \
switched to treble filter with sigmoid weighting function.
treble_f_upper: Upper boundary of transition frequency reqion. In the transition region normal filter is \
switched to treble filter with sigmoid weighting function.
"""
if treble_f_upper <= treble_f_lower:
raise ValueError('Upper transition boundary must be greater than lower boundary')
self.smoothed = self._smoothen(
self.raw, window_size=window_size, treble_window_size=treble_window_size,
treble_f_lower=treble_f_lower, treble_f_upper=treble_f_upper)
if len(self.error):
self.error_smoothed = self._smoothen(
self.error, window_size=window_size, treble_window_size=treble_window_size,
treble_f_lower=treble_f_lower, treble_f_upper=treble_f_upper)
self.reset(
equalization=True, parametric_eq=True, fixed_band_eq=True, equalized_raw=True, equalized_smoothed=True)
def equalize(
self, max_gain=DEFAULT_MAX_GAIN, max_slope=DEFAULT_MAX_SLOPE, max_slope_decay=0.0,
concha_interference=False, window_size=1 / 12, treble_window_size=2, treble_f_lower=DEFAULT_TREBLE_F_LOWER,
treble_f_upper=DEFAULT_TREBLE_F_UPPER, treble_gain_k=DEFAULT_TREBLE_GAIN_K):
"""Creates equalization curve and equalized curve.
Args:
max_gain: Maximum positive gain in dB
max_slope: Maximum slope in dB per octave
max_slope_decay: Decay coefficient (per octave) for the limit. Value of 0.5 would reduce limit by 50% in an octave
when traversing a single limitation zone.
concha_interference: Do measurements include concha interference which produced a narrow dip around 9 kHz?
window_size: Smoothing window size in octaves.
treble_window_size: Smoothing window size in octaves in the treble region.
treble_f_lower: Lower boundary of transition frequency region. In the transition region normal filter is \
switched to treble filter with sigmoid weighting function.
treble_f_upper: Upper boundary of transition frequency reqion. In the transition region normal filter is \
switched to treble filter with sigmoid weighting function.
treble_gain_k: Coefficient for treble gain, positive and negative. Useful for disabling or reducing \
equalization power in treble region. Defaults to 1.0 (not limited).
Returns:
"""
fr = FrequencyResponse(name='fr', frequency=self.frequency, raw=self.error)
# Smoothen data heavily in the treble region to avoid problems caused by peakiness
fr.smoothen(
window_size=window_size, treble_window_size=treble_window_size, treble_f_lower=treble_f_lower,
treble_f_upper=treble_f_upper)
# Copy data
x = np.array(fr.frequency)
y = np.array(-fr.smoothed) # Inverse of the smoothed error
# Find peaks and notches
peak_inds, peak_props = find_peaks(y, prominence=1)
dip_inds, dip_props = find_peaks(-y, prominence=1)
if not len(peak_inds) and not len(dip_inds):
# No peaks or dips, it's a flat line
# Use the inverse error as the equalization target
self.equalization = y
# Equalized
self.equalized_raw = self.raw + self.equalization
if len(self.smoothed):
self.equalized_smoothed = self.smoothed + self.equalization
return y, fr.smoothed.copy(), np.array([]), np.array([False] * len(y)), np.array([]), \
np.array([False] * len(y)), np.array([]), np.array([]), len(y) - 1, np.array([False] * len(y))
else:
limit_free_mask = self.protection_mask(y, peak_inds, dip_inds)
if concha_interference:
# 8 kHz - 11.5 kHz should not be limit free zone
limit_free_mask[np.logical_and(x >= 8000, x <= 11500)] = False
# Find rtl start index
rtl_start = self.find_rtl_start(y, peak_inds, dip_inds)
# Find ltr and rtl limitations
# limited_ltr is y but with slopes limited when traversing left to right
# clipped_ltr is boolean mask for limited samples when traversing left to right
# limited_rtl is found using ltr algorithm but with flipped data
limited_ltr, clipped_ltr, regions_ltr = self.limited_ltr_slope(
x, y, max_slope, max_slope_decay=max_slope_decay, start_index=0, peak_inds=peak_inds,
limit_free_mask=limit_free_mask, concha_interference=concha_interference)
limited_rtl, clipped_rtl, regions_rtl = self.limited_rtl_slope(
x, y, max_slope, max_slope_decay=max_slope_decay, start_index=rtl_start, peak_inds=peak_inds,
limit_free_mask=limit_free_mask, concha_interference=concha_interference)
# ltr and rtl limited curves are combined with min function
combined = self.__class__(
name='limiter', frequency=x, raw=np.min(np.vstack([limited_ltr, limited_rtl]), axis=0))
# Limit treble gain
gain_k = log_f_sigmoid(self.frequency, treble_f_lower, treble_f_upper, a_normal=1.0, a_treble=treble_gain_k)
combined.raw *= gain_k
# Gain can be reduced in the treble region
# Clip positive gain to max gain
combined.raw = np.min(np.vstack([combined.raw, np.ones(combined.raw.shape) * max_gain]), axis=0)
# Smoothen the curve to get rid of hard kinks
combined.smoothen(window_size=1 / 5, treble_window_size=1 / 5)
# Equalization curve
self.equalization = combined.smoothed
# Equalized
self.equalized_raw = self.raw + self.equalization
if len(self.smoothed):
self.equalized_smoothed = self.smoothed + self.equalization
return combined.smoothed.copy(), fr.smoothed.copy(), limited_ltr, clipped_ltr, limited_rtl, \
clipped_rtl, peak_inds, dip_inds, rtl_start, limit_free_mask
@staticmethod
def protection_mask(y, peak_inds, dip_inds):
"""Finds zones around dips which are lower than their adjacent dips.
Args:
y: amplitudes
peak_inds: Indices of peaks
dip_inds: Indices of dips
Returns:
Boolean mask for limitation-free indices
"""
if len(peak_inds) and (not len(dip_inds) or peak_inds[-1] > dip_inds[-1]):
# Last peak is after last dip, add new dip after the last peak at the minimum
last_dip_ind = np.argmin(y[peak_inds[-1]:]) + peak_inds[-1]
dip_inds = np.concatenate([dip_inds, [last_dip_ind]])
dip_levels = y[dip_inds]
else:
dip_inds = np.concatenate([dip_inds, [-1]])
dip_levels = y[dip_inds]
dip_levels[-1] = np.min(y)
mask = np.zeros(len(y)).astype(bool)
if len(dip_inds) < 3:
return mask
for i in range(1, len(dip_inds) - 1):
dip_ind = dip_inds[i]
target_left = dip_levels[i - 1]
target_right = dip_levels[i + 1]
left_ind = np.argwhere(y[:dip_ind] >= target_left)[-1, 0] + 1
right_ind = np.argwhere(y[dip_ind:] >= target_right)[0, 0] + dip_ind - 1
mask[left_ind:right_ind + 1] = np.ones(right_ind - left_ind + 1).astype(bool)
return mask
@classmethod
def limited_rtl_slope(cls, x, y, max_slope, max_slope_decay=0.0, start_index=0, peak_inds=None, limit_free_mask=None,
concha_interference=False):
"""Limits right to left slope of an equalization curve.
Args:
x: frequencies
y: amplitudes
max_slope: maximum slope in dB / oct
max_slope_decay: Max slope decay coefficient per octave
start_index: Index where to start traversing, no limitations apply before this
peak_inds: Peak indexes. Regions will require to touch one of these if given.
limit_free_mask: Boolean mask for indices where limitation must not be applied
concha_interference: Do measurements include concha interference which produced a narrow dip around 9 kHz?
Returns:
limited: Limited curve
mask: Boolean mask for clipped indexes
regions: Clipped regions, one per row, 1st column is the start index, 2nd column is the end index (exclusive)
"""
start_index = len(x) - start_index - 1
if peak_inds is not None:
peak_inds = len(x) - peak_inds - 1
if limit_free_mask is not None:
limit_free_mask = np.flip(limit_free_mask)
limited_rtl, clipped_rtl, regions_rtl = cls.limited_ltr_slope(
x, np.flip(y), max_slope, max_slope_decay=max_slope_decay, start_index=start_index, peak_inds=peak_inds,
limit_free_mask=limit_free_mask, concha_interference=concha_interference)
limited_rtl = np.flip(limited_rtl)
clipped_rtl = np.flip(clipped_rtl)
regions_rtl = len(x) - regions_rtl - 1
return limited_rtl, clipped_rtl, regions_rtl
@classmethod
def limited_ltr_slope(cls, x, y, max_slope, max_slope_decay=0.0, start_index=0, peak_inds=None, limit_free_mask=None,
concha_interference=False):
"""Limits left to right slope of a equalization curve.
Args:
x: frequencies
y: amplitudes
max_slope: maximum slope in dB / oct
max_slope_decay: Max slope decay coefficient per octave
start_index: Index where to start traversing, no limitations apply before this
peak_inds: Peak indexes. Regions will require to touch one of these if given.
limit_free_mask: Boolean mask for indices where limitation must not be applied
concha_interference: Do measurements include concha interference which produced a narrow dip around 9 kHz?
Returns:
limited: Limited curve
mask: Boolean mask for clipped indexes
regions: Clipped regions, one per row, 1st column is the start index, 2nd column is the end index (exclusive)
"""
if peak_inds is not None:
peak_inds = np.array(peak_inds)
limited = []
clipped = []
regions = []
for i in range(len(x)):
if i <= start_index:
# No clipping before start index
limited.append(y[i])
clipped.append(False)
continue
# Calculate slope and local limit
slope = log_log_gradient(x[i], x[i - 1], y[i], limited[-1])
# Local limit is 25% of the limit between 8 kHz and 10 kHz
local_limit = max_slope / 4 if 8000 <= x[i] <= 11500 and concha_interference else max_slope
if clipped[-1]:
# Previous sample clipped, reduce limit
local_limit *= (1 - max_slope_decay) ** np.log2(x[i] / x[regions[-1][0]])
if slope > local_limit and (limit_free_mask is None or not limit_free_mask[i]):
# Slope between the two samples is greater than the local maximum slope, clip to the max
if not clipped[-1]:
# Start of clipped region
regions.append([i])
clipped.append(True)
# Add value with limited change
octaves = np.log(x[i] / x[i - 1]) / np.log(2)
limited.append(limited[-1] + local_limit * octaves)
else:
# Moderate slope, no need to limit
limited.append(y[i])
if clipped[-1]:
# Previous sample clipped but this one didn't, means it's the end of clipped region
# Add end index to the region
regions[-1].append(i + 1)
region_start = regions[-1][0]
if peak_inds is not None and not np.any(np.logical_and(peak_inds >= region_start, peak_inds < i)):
# None of the peak indices found in the current region, discard limitations
limited[region_start:i] = y[region_start:i]
clipped[region_start:i] = [False] * (i - region_start)
regions.pop()
clipped.append(False)
if len(regions) and len(regions[-1]) == 1:
regions[-1].append(len(x) - 1)
return np.array(limited), np.array(clipped), np.array(regions)
@staticmethod
def find_rtl_start(y, peak_inds, dip_inds):
"""Finds start index for right to left equalization curve traverse.
Args:
y: Gain data
peak_inds: Indices of peaks in the gain data
dip_inds: Indices of dips in the gain data
Returns:
Start index
"""
# Find starting index for the rtl pass
if len(peak_inds) and (not len(dip_inds) or peak_inds[-1] > dip_inds[-1]):
# Last peak is a positive peak
if len(dip_inds):
# Find index on the right side of the peak where the curve crosses the last dip level
rtl_start = np.argwhere(y[peak_inds[-1]:] <= y[dip_inds[-1]])
else:
# There are no dips, use the minimum of the first and the last value of y
rtl_start = np.argwhere(y[peak_inds[-1]:] <= max(y[0], y[-1]))
if len(rtl_start):
rtl_start = rtl_start[0, 0] + peak_inds[-1]
else:
rtl_start = len(y) - 1
else:
# Last peak is a negative peak, start there
rtl_start = dip_inds[-1]
return rtl_start
@staticmethod
def init_plot(fig=None, ax=None, f_min=DEFAULT_F_MIN, f_max=DEFAULT_F_MAX, a_min=None, a_max=None, ):
"""Configures figure and axis ready for frequency response plots"""
if fig is None:
fig, ax = plt.subplots()
fig.set_size_inches(12, 8)
fig.set_facecolor('white')
ax.set_facecolor('white')
ax.set_xlabel('Frequency (Hz)')
ax.semilogx()
ax.set_xlim([f_min, f_max])
ax.set_ylabel('Amplitude (dBr)')
if a_min is not None or a_max is not None:
ax.set_ylim([a_min, a_max])
ax.grid(True, which='major')
ax.grid(True, which='minor')
ax.xaxis.set_major_formatter(ticker.StrMethodFormatter('{x:.0f}'))
ax.set_xticks([20, 50, 100, 200, 500, 1000, 2000, 5000, 10000, 20000])
return fig, ax
def plot(
self, fig=None, ax=None, show_fig=True, close_fig=False, file_path=None,
raw=True, error=True, smoothed=True, error_smoothed=True, equalization=True, parametric_eq=True,
fixed_band_eq=True, equalized=True, target=True,
raw_plot_kwargs=None, smoothed_plot_kwargs=None, error_plot_kwargs=None, error_smoothed_plot_kwargs=None,
equalization_plot_kwargs=None, parametric_eq_plot_kwargs=None, fixed_band_eq_plot_kwargs=None,
equalized_plot_kwargs=None, target_plot_kwargs=None):
"""Plots frequency response graph."""
if not len(self.frequency):
raise ValueError('\'frequency\' has no data!')
fig, ax = self.__class__.init_plot(fig=fig, ax=ax)
if target and len(self.target):
ax.plot(self.frequency, self.target, **{'label': 'Target', 'linewidth': 6, 'color': '#7bc8f6', **(target_plot_kwargs if target_plot_kwargs else {})})
if smoothed and len(self.smoothed):
ax.plot(self.frequency, self.smoothed, **{'label': 'Raw Smoothed', 'linewidth': 6, 'color': '#dbd3cd', **(smoothed_plot_kwargs if smoothed_plot_kwargs else {})})
if error_smoothed and len(self.error_smoothed):
ax.plot(self.frequency, self.error_smoothed, **{'label': 'Error Smoothed', 'linewidth': 6, 'color': '#ffcfc7', **(error_smoothed_plot_kwargs if error_smoothed_plot_kwargs else {})})
if raw and len(self.raw):
ax.plot(self.frequency, self.raw, **{'label': 'Raw', 'linewidth': 1.5, 'color': '#251f1b', **(raw_plot_kwargs if raw_plot_kwargs else {})})
if error and len(self.error):
ax.plot(self.frequency, self.error, **{'label': 'Error', 'linewidth': 1.5, 'color': '#ff5b3d', **(error_plot_kwargs if error_plot_kwargs else {})})
if equalization and len(self.equalization):
ax.plot(self.frequency, self.equalization, **{'label': 'Equalization', 'linewidth': 6, 'color': '#ded400', **(equalization_plot_kwargs if equalization_plot_kwargs else {})})
if parametric_eq and len(self.parametric_eq):
ax.plot(self.frequency, self.parametric_eq, **{'label': 'Parametric Eq', 'linewidth': 1.5, 'color': '#807900', **(parametric_eq_plot_kwargs if parametric_eq_plot_kwargs else {})})
if fixed_band_eq and len(self.fixed_band_eq):
ax.plot(self.frequency, self.fixed_band_eq, **{'label': 'Fixed Band Eq', 'linewidth': 1.5, 'color': '#a8a000', 'linestyle': '--', **(fixed_band_eq_plot_kwargs if fixed_band_eq_plot_kwargs else {})})
if equalized and len(self.equalized_raw):
ax.plot(self.frequency, self.equalized_raw, **{'label': 'Equalized', 'linewidth': 1.5, 'color': '#146899', **(equalized_plot_kwargs if equalized_plot_kwargs else {})})
ax.set_title(self.name)
if len(ax.lines) > 0:
ax.legend(fontsize=8)
if file_path is not None:
file_path = os.path.abspath(file_path)
fig.savefig(file_path, dpi=120)
im = Image.open(file_path)
im = im.convert('P', palette=Image.ADAPTIVE, colors=60)
im.save(file_path, optimize=True)
if show_fig:
plt.show()
elif close_fig:
plt.close(fig)
return fig, ax
def harman_overear_preference_score(self):
"""Calculates Harman preference score for over-ear and on-ear headphones.
Returns:
- score: Preference score
- std: Standard deviation of error
- slope: Slope of linear regression of error
"""
fr = self.copy()
fr.interpolate(HARMAN_OVEREAR_PREFERENCE_FREQUENCIES)
sl = np.logical_and(fr.frequency >= 50, fr.frequency <= 10000)
x = fr.frequency[sl]
y = fr.error[sl]
std = np.std(y, ddof=1) # ddof=1 is required to get the exact same numbers as the Excel from Listen Inc gives
slope, _, _, _, _ = linregress(np.log(x), y)
score = 114.490443008238 - 12.62 * std - 15.5163857197367 * np.abs(slope)
return score, std, slope
def harman_inear_preference_score(self):
"""Calculates Harman preference score for in-ear headphones.
Returns:
- score: Preference score
- std: Standard deviation of error
- slope: Slope of linear regression of error
- mean: Mean of absolute error
"""
fr = self.copy()
fr.interpolate(HARMAN_INEAR_PREFENCE_FREQUENCIES)
sl = np.logical_and(fr.frequency >= 20, fr.frequency <= 10000)
x = fr.frequency[sl]
y = fr.error[sl]
std = np.std(y, ddof=1) # ddof=1 is required to get the exact same numbers as the Excel from Listen Inc gives
slope, _, _, _, _ = linregress(np.log(x), y)
# Mean of absolute of error centered by 500 Hz
delta = fr.error[np.where(fr.frequency == 500.0)[0][0]]
y = fr.error[np.logical_and(fr.frequency >= 40, fr.frequency <= 10000)] - delta
mean = np.mean(np.abs(y))
# Final score
score = 100.0795 - 8.5 * std - 6.796 * np.abs(slope) - 3.475 * mean
return score, std, slope, mean
def process(
self, target=None, min_mean_error=False,
bass_boost_gain=DEFAULT_BASS_BOOST_GAIN, bass_boost_fc=DEFAULT_BASS_BOOST_FC,
bass_boost_q=DEFAULT_BASS_BOOST_Q, treble_boost_gain=DEFAULT_TREBLE_BOOST_GAIN,
treble_boost_fc=DEFAULT_TREBLE_BOOST_FC, treble_boost_q=DEFAULT_TREBLE_BOOST_Q, tilt=DEFAULT_TILT,
fs=DEFAULT_FS, sound_signature=None,
sound_signature_smoothing_window_size=DEFAULT_SOUND_SIGNATURE_SMOOTHING_WINDOW_SIZE,
max_gain=DEFAULT_MAX_GAIN, max_slope=DEFAULT_MAX_SLOPE, concha_interference=False,
window_size=DEFAULT_SMOOTHING_WINDOW_SIZE, treble_window_size=DEFAULT_TREBLE_SMOOTHING_WINDOW_SIZE,
treble_f_lower=DEFAULT_TREBLE_F_LOWER, treble_f_upper=DEFAULT_TREBLE_F_UPPER,
treble_gain_k=DEFAULT_TREBLE_GAIN_K):
"""Runs processing pipeline with interpolation, centering, error calculation and equalization.
Args:
target: Target FrequencyResponse
min_mean_error: Minimize mean error. Normally all curves cross at 1 kHz but this makes it possible to shift
error curve so that mean between 100 Hz and 10 kHz is at minimum. Target curve is shifted
accordingly. Useful for avoiding large bias caused by a narrow notch or peak at 1 kHz.
bass_boost_gain: Bass boost amount in dB.
bass_boost_fc: Bass boost low shelf center frequency.
bass_boost_q: Bass boost low shelf quality.
treble_boost_gain: Treble boost amount in dB.
treble_boost_fc: Treble boost high shelf center frequency.
treble_boost_q: Treble boost high shelf quality.
fs: Sampling frequency
tilt: Target frequency response tilt in db / octave
sound_signature: Sound signature as FrequencyResponse instance. Raw data will be used.
sound_signature_smoothing_window_size: Smoothing window size in octaves for sound signature
max_gain: Maximum positive gain in dB
max_slope: Maximum slope steepness for equalizer frequency response in db/oct.
concha_interference: Do measurements include concha interference which produced a narrow dip around 9 kHz?
window_size: Smoothing window size in octaves.
treble_window_size: Smoothing window size in octaves in the treble region.
treble_f_lower: Lower boundary of transition frequency region. In the transition region normal filter is
switched to treble filter with sigmoid weighting function.
treble_f_upper: Upper boundary of transition frequency region. In the transition region normal filter is
switched to treble filter with sigmoid weighting function.
treble_gain_k: Coefficient for treble gain, positive and negative. Useful for disabling or reducing
equalization power in treble region. Defaults to 1.0 (not limited).
"""
self.interpolate()
self.center()
self.compensate(
target, bass_boost_gain=bass_boost_gain, bass_boost_fc=bass_boost_fc, bass_boost_q=bass_boost_q,
treble_boost_gain=treble_boost_gain, treble_boost_fc=treble_boost_fc, treble_boost_q=treble_boost_q,
tilt=tilt, fs=fs, sound_signature=sound_signature,
sound_signature_smoothing_window_size=sound_signature_smoothing_window_size,
min_mean_error=min_mean_error
)
self.smoothen(
window_size=window_size,
treble_window_size=treble_window_size, treble_f_lower=treble_f_lower, treble_f_upper=treble_f_upper
)
self.equalize(
max_slope=max_slope, max_gain=max_gain, concha_interference=concha_interference,
treble_f_lower=treble_f_lower, treble_f_upper=treble_f_upper, treble_gain_k=treble_gain_k)