-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy patheval_fewshot.py
146 lines (119 loc) · 5.16 KB
/
eval_fewshot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import torch
from torch import nn
import random
import numpy as np
from datasets.data import *
from models.dgcnn import DGCNN
import argparse
from sklearn.svm import SVC
from tqdm import tqdm
parser = argparse.ArgumentParser(description='Point Cloud Recognition')
parser.add_argument('--num_points', type=int, default=1024,
help='num of points to use')
parser.add_argument('--emb_dims', type=int, default=1024, metavar='N',
help='Dimension of embeddings')
parser.add_argument('--k', type=int, default=5, metavar='N',
help='Num of nearest neighbors to use')
parser.add_argument('--dataset', type=str, default='modelnet40', metavar='N',
choices=['modelnet40', 'scanobjectnn'],
help='Dataset to evaluate')
parser.add_argument('--n_runs', type=int, default=10,
help='Num of few-shot runs')
parser.add_argument('--k_way', type=int, default=5,
help='Num of classes in few-shot')
parser.add_argument('--m_shot', type=int, default=10,
help='Num of samples in one class')
parser.add_argument('--n_query', type=int, default=20,
help='Num of query samples in one class')
parser.add_argument('--model_path', type=str, default='', metavar='N',
help='Pretrained model path')
parser.add_argument('--rank', type=int, default=-1, help='the rank for current GPU')
args = parser.parse_args()
device = torch.device("cuda:%d" % args.rank)
#Try to load models
model = DGCNN(args).to(device)
# saved DDP model should be loaded in this way
# reference: https://discuss.pytorch.org/t/missing-keys-unexpected-keys-in-state-dict-when-loading-self-trained-model/22379/9
pretrained_dict = torch.load(args.model_path)
pretrained_dict = {key.replace("module.", ""): value for key, value in pretrained_dict.items()}
model.load_state_dict(pretrained_dict)
model.inv_head = nn.Identity()
print("Model Loaded !!")
if args.dataset == 'modelnet40':
# ModelNet40 - Few Shot Learning
data_train, label_train = load_modelnet_data('train')
data_test, label_test = load_modelnet_data('test')
n_cls = 40
elif args.dataset == 'scanobjectnn':
# ScanObjectNN - Few Shot Learning
data_train, label_train = load_ScanObjectNN('train')
data_test, label_test = load_ScanObjectNN('test')
n_cls = 15
label_idx = {}
for key in range(n_cls):
label_idx[key] = []
for i, label in enumerate(label_train):
# if label[0] == key:
if label == key:
label_idx[key].append(i)
acc = []
for run in tqdm(range(args.n_runs)):
k = args.k_way ; m = args.m_shot ; n_q = args.n_query
k_way = random.sample(range(n_cls), k)
data_support = [] ; label_support = [] ; data_query = [] ; label_query = []
for i, class_id in enumerate(k_way):
support_id = random.sample(label_idx[class_id], m)
query_id = random.sample(list(set(label_idx[class_id]) - set(support_id)), n_q)
pc_support_id = data_train[support_id]
pc_query_id = data_train[query_id]
data_support.append(pc_support_id)
label_support.append(i * np.ones(m))
data_query.append(pc_query_id)
label_query.append(i * np.ones(n_q))
data_support = np.concatenate(data_support)
label_support = np.concatenate(label_support)
data_query = np.concatenate(data_query)
label_query = np.concatenate(label_query)
feats_train = []
labels_train = []
model = model.eval()
for i in range(k * m):
data = torch.from_numpy(np.expand_dims(data_support[i], axis = 0))
label = int(label_support[i])
data = data.permute(0, 2, 1).to(device)
data = torch.cat((data, data))
with torch.no_grad():
feat = model(data)[1][0, :]
feat = feat.detach().cpu().numpy().tolist()
feats_train.append(feat)
labels_train.append(label)
feats_train = np.array(feats_train)
labels_train = np.array(labels_train)
feats_test = []
labels_test = []
for i in range(k * n_q):
data = torch.from_numpy(np.expand_dims(data_query[i], axis = 0))
label = int(label_query[i])
data = data.permute(0, 2, 1).to(device)
data = torch.cat((data, data))
with torch.no_grad():
feat = model(data)[1][0, :]
feat = feat.detach().cpu().numpy().tolist()
feats_test.append(feat)
labels_test.append(label)
feats_test = np.array(feats_test)
labels_test = np.array(labels_test)
from sklearn.preprocessing import MinMaxScaler, StandardScaler, RobustScaler
# scaler = MinMaxScaler()
scaler = StandardScaler()
scaled = scaler.fit_transform(feats_train)
model_tl = SVC(kernel ='linear')
model_tl.fit(scaled, labels_train)
# model_tl.fit(feats_train, labels_train)
test_scaled = scaler.transform(feats_test)
# accuracy = model_tl.score(feats_test, labels_test) * 100
accuracy = model_tl.score(test_scaled, labels_test) * 100
acc.append(accuracy)
# print(f"C = {c} : {model_tl.score(test_scaled, labels_test)}")
# print(f"Run - {run + 1} : {accuracy}")
print(f'{np.mean(acc)} +/- {np.std(acc)}')