-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtensorflow_classification_model.py
52 lines (37 loc) · 1.64 KB
/
tensorflow_classification_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
# MNIST data
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
def add_layer(inputs, in_size, out_size, activation_function=None):
Weights = tf.Variable(tf.random_normal([in_size, out_size]))
biases = tf.Variable(tf.zeros([1, out_size])+1)
Wx_plus_b = tf.matmul(inputs, Weights) + biases
if activation_function is None:
outputs = Wx_plus_b
else:
outputs = activation_function(Wx_plus_b)
return outputs
def compute_accuracy(v_xs,v_ys):
global prediction
y_pre = sess.run(prediction, feed_dict={XS: v_xs})
correct_prediction = tf.equal(tf.argmax(y_pre,1),tf.argmax(v_ys,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
result = sess.run(accuracy, feed_dict={XS: v_xs, YS: v_ys})
return result
# define placeholders
XS = tf.placeholder(tf.float32,[None,784]) # 28*28
YS = tf.placeholder(tf.float32,[None,10]) # 10 classification classes
# output layer - softmax for classification to predict the probability of each class
prediction = add_layer(XS, 784, 10, activation_function= tf.nn.softmax)
# error
cross_entropy = tf.reduce_mean(-tf.reduce_sum(YS * tf.log(prediction), reduction_indices=[1]))
train = tf.train.GradientDescentOptimizer(0.6).minimize(cross_entropy)
init = tf.initialize_all_variables()
sess = tf.Session()
sess.run(init)
for i in range(1000):
batch_xs , batch_ys = mnist.train.next_batch(100)
sess.run(train, feed_dict={XS: batch_xs, YS: batch_ys})
if i % 50 == 0:
print(compute_accuracy(mnist.test.images, mnist.test.labels))
sess.close()