-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtensorflow_regression_model.py
83 lines (64 loc) · 2.28 KB
/
tensorflow_regression_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
# define function that add layer in NN
def add_layer(inputs, in_size, out_size, activation_function=None):
with tf.name_scope("layer"):
with tf.name_scope("Weight"):
Weights = tf.Variable(tf.random_normal([in_size,out_size]), name="W")
with tf.name_scope("Bias"):
biases = tf.Variable(tf.zeros([1,out_size]) + 0.1, name="b")
Wx_plus_b = tf.matmul(inputs, Weights) + biases
if activation_function is None:
outputs = Wx_plus_b
else:
outputs = activation_function(Wx_plus_b)
return outputs
# make up some real data
x_data = np.linspace(-1,1,300)[:,np.newaxis]
noise = np.random.normal(0, 0.05, x_data.shape)
y_data = np.square(x_data) - 0.5 + noise
# print(x_data)
# plt.scatter(x_data,y_data)
# plt.show()
# define placeholders for network
with tf.name_scope("inputs"):
xs = tf.placeholder(tf.float32, [None,1], name='x_input')
ys = tf.placeholder(tf.float32, [None,1], name='y_input')
# add hidden layer
l1 = add_layer(xs,1,10,activation_function=tf.nn.relu)
# add output layer
prediction = add_layer(l1,10,1, activation_function= None)
# error between real and prediction
with tf.name_scope("loss"):
loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys - prediction), reduction_indices=[1]))
with tf.name_scope("train"):
train = tf.train.GradientDescentOptimizer(0.1).minimize(loss)
init = tf.initialize_all_variables()
# run session
sess = tf.Session()
# log the graph data
writer = tf.summary.FileWriter('logs/', sess.graph)
sess.run(init)
# plotting the figure
fig = plt.figure()
ax = fig.add_subplot(1,1,1)
ax.scatter(x_data, y_data)
plt.ion()
plt.show()
for i in range(2000):
#training
sess.run(train, feed_dict={xs:x_data, ys:y_data})
if i % 100 == 0:
# print steps
# print(sess.run(loss, feed_dict={xs:x_data, ys:y_data}))
try:
ax.lines.remove(lines[0])
except Exception:
pass
prediction_value = sess.run(prediction, feed_dict={xs: x_data})
# plot the prediction
lines = ax.plot(x_data, prediction_value, 'r', lw=2)
plt.pause(0.4)
sess.close()
# tensorboard --logdir='logs' and see for localhost:6006