-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathzh.html
212 lines (191 loc) · 8.76 KB
/
zh.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
<!DOCTYPE html>
<html lang="en">
<head>
<script async src="https://www.googletagmanager.com/gtag/js?id=G-C1CRWDNJ1J"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
gtag('config', 'G-C1CRWDNJ1J');
</script>
<link rel="preconnect" href="https://fonts.gstatic.com" crossorigin>
<link href="https://fonts.googleapis.com/css2?family=Noto+Sans+SC:[email protected]&display=swap" rel="stylesheet">
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Chinese reading task about ML</title>
<style>
body {
font-family: Arial, sans-serif;
background-color: #f4f4f9;
color: #333;
margin: 0;
padding: 20px;
}
.container {
max-width: 800px;
margin: 0 auto;
background-color: #fff;
padding: 20px;
border-radius: 8px;
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
}
h1 {
color: #0056b3;
text-align: center;
}
p {
line-height: 1.6;
}
.zh-text {
font-size: 1.3em;
font-family: 'Noto Sans SC';
font-weight: 300;
margin: 0 0 5px 0;
}
.pinyin {
padding-top: 5px;
padding-bottom: 5px;
font-style: italic;
color: #888;
}
table {
width: 100%;
border-collapse: collapse;
margin-top: 20px;
}
th, td {
padding: 12px;
border: 1px solid #ddd;
text-align: left;
}
th {
background-color: #0056b3;
color: #fff;
}
td {
background-color: #f9f9f9;
}
td.zh {
font-family: 'Noto Sans SC';
font-size: 1.2em;
font-weight: 400;
}
</style>
</head>
<body>
<div class="container">
<h1>Visual-RFT: Visual Reinforcement Fine-Tuning</h1>
<div><p class='zh-text'>1. 这篇文章介绍了一种叫做视觉强化微调(Visual-RFT)的方法。</p>
<p class='zh-text'>2. 它用于改进大型视觉-语言模型(LVLMs)在视觉任务中的表现。</p>
<p class='zh-text'>3. 这种方法通过生成多个答案并使用可验证的奖励函数更新模型。</p>
<p class='zh-text'>4. 实验结果显示,Visual-RFT在多个视觉任务中表现出色,优于监督微调(SFT)。</p>
<p class='zh-text'>5. 例如,在细粒度图像分类中,Visual-RFT提高了24.3%的准确率。</p></div>
<div class="pinyin">
<p>1. 这篇文章介绍了一种叫做视觉强化微调(Visual-RFT)的方法。
Zhè piān wénzhāng jièshào le yī zhǒng jiào zuò shìjué qiángzhù wēitiáo (Visual-RFT)de fāngfǎ</p>
<p>2.
它用于改进大型视觉-语言模型(LVLMs)在视觉任务中的表现。
Tā yòngyú gǎijìn dàxíng shìjué-yǔyán móxíng (LVLMs) zài shìjué rènwù zhōng de biǎoxiàn</p>
<p>3.
这种方法通过生成多个答案并使用可验证的奖励函数更新模型。
Zhè zhǒng fāngfǎ tōngguò shēngchéng duō gè dá'àn bìng shǐyòng kě yànzhèng de jiǎnglì hánshù gēngxīn móxíng</p>
<p>4.
实验结果显示,Visual-RFT在多个视觉任务中表现出色,优于监督微调(SFT)。
Shíyàn jiéguǒ xiǎnshì, Visual-RFT zài duō gè shìjué rènwù zhōng biǎoxiàn chūsè, yōuyú jiàndū wēitiáo (SFT)</p>
<p>5.
例如,在细粒度图像分类中,Visual-RFT提高了24</p>
<p>6. 3%的准确率。
Lìrú, zài xìlìdù túxiàng fēnlèi zhōng, Visual-RFT tígāo le 24</p>
<p>7. 3% de zhǔnquèlǜ</p>
</div>
<div><p>1. This article introduces a method called Visual Reinforcement Fine-Tuning (Visual-RFT).</p>
<p>2. It is used to improve the performance of large vision-language models (LVLMs) in visual tasks.</p>
<p>3. This method works by generating multiple answers and updating the model using a verifiable reward function.</p>
<p>4. Experimental results show that Visual-RFT performs excellently in multiple visual tasks, outperforming supervised fine-tuning (SFT).</p>
<p>5. For example, in fine-grained image classification, Visual-RFT improved accuracy by 24.</p>
<p>6. 3%.</p></div>
<h2>Vocabulary</h2>
<table>
<thead>
<tr>
<th>Word</th>
<th>Pinyin</th>
<th>Translation</th>
</tr>
</thead>
<tbody>
<tr>
<td class="zh">视觉强化微调</td>
<td>shìjué qiángzhù wēitiáo</td>
<td>visual reinforcement fine-tuning</td>
</tr>
<tr>
<td class="zh">大型视觉-语言模型</td>
<td>dàxíng shìjué-yǔyán móxíng</td>
<td>large vision-language models</td>
</tr>
<tr>
<td class="zh">表现</td>
<td>biǎoxiàn</td>
<td>performance</td>
</tr>
<tr>
<td class="zh">生成</td>
<td>shēngchéng</td>
<td>generate</td>
</tr>
<tr>
<td class="zh">可验证的</td>
<td>kě yànzhèng de</td>
<td>verifiable</td>
</tr>
<tr>
<td class="zh">奖励函数</td>
<td>jiǎnglì hánshù</td>
<td>reward function</td>
</tr>
<tr>
<td class="zh">更新</td>
<td>gēngxīn</td>
<td>update</td>
</tr>
<tr>
<td class="zh">实验结果</td>
<td>shíyàn jiéguǒ</td>
<td>experimental results</td>
</tr>
<tr>
<td class="zh">出色</td>
<td>chūsè</td>
<td>outstanding</td>
</tr>
<tr>
<td class="zh">优于</td>
<td>yōu yú</td>
<td>superior to</td>
</tr>
<tr>
<td class="zh">监督微调</td>
<td>jiàndū wēitiáo</td>
<td>supervised fine-tuning</td>
</tr>
<tr>
<td class="zh">细粒度</td>
<td>xì lìdù</td>
<td>fine-grained</td>
</tr>
<tr>
<td class="zh">图像分类</td>
<td>túxiàng fēnlèi</td>
<td>image classification</td>
</tr>
<tr>
<td class="zh">准确率</td>
<td>zhǔnquèlǜ</td>
<td>accuracy</td>
</tr>
</tbody>
</table>
</div>
</body>
</html>