MMDetection3D and other OpenMMLab repositories use MMEngine's config system. It has a modular and inheritance design, which is convenient to conduct various experiments.
MMDetection3D uses a modular design, all modules with different functions can be configured through the config. Taking PointPillars as an example, we will introduce each field in the config according to different function modules.
In MMDetection3D's config, we use model
to setup detection algorithm components. In addition to neural network components such as voxel_encoder
, backbone
etc, it also requires data_preprocessor
, train_cfg
, and test_cfg
. data_preprocessor
is responsible for processing a batch of data output by dataloader. train_cfg
and test_cfg
in the model config are training and testing hyperparameters of the components.
model = dict(
type='VoxelNet',
data_preprocessor=dict(
type='Det3DDataPreprocessor',
voxel=True,
voxel_layer=dict(
max_num_points=32,
point_cloud_range=[0, -39.68, -3, 69.12, 39.68, 1],
voxel_size=[0.16, 0.16, 4],
max_voxels=(16000, 40000))),
voxel_encoder=dict(
type='PillarFeatureNet',
in_channels=4,
feat_channels=[64],
with_distance=False,
voxel_size=[0.16, 0.16, 4],
point_cloud_range=[0, -39.68, -3, 69.12, 39.68, 1]),
middle_encoder=dict(
type='PointPillarsScatter', in_channels=64, output_shape=[496, 432]),
backbone=dict(
type='SECOND',
in_channels=64,
layer_nums=[3, 5, 5],
layer_strides=[2, 2, 2],
out_channels=[64, 128, 256]),
neck=dict(
type='SECONDFPN',
in_channels=[64, 128, 256],
upsample_strides=[1, 2, 4],
out_channels=[128, 128, 128]),
bbox_head=dict(
type='Anchor3DHead',
num_classes=3,
in_channels=384,
feat_channels=384,
use_direction_classifier=True,
assign_per_class=True,
anchor_generator=dict(
type='AlignedAnchor3DRangeGenerator',
ranges=[[0, -39.68, -0.6, 69.12, 39.68, -0.6],
[0, -39.68, -0.6, 69.12, 39.68, -0.6],
[0, -39.68, -1.78, 69.12, 39.68, -1.78]],
sizes=[[0.8, 0.6, 1.73], [1.76, 0.6, 1.73], [3.9, 1.6, 1.56]],
rotations=[0, 1.57],
reshape_out=False),
diff_rad_by_sin=True,
bbox_coder=dict(type='DeltaXYZWLHRBBoxCoder'),
loss_cls=dict(
type='mmdet.FocalLoss',
use_sigmoid=True,
gamma=2.0,
alpha=0.25,
loss_weight=1.0),
loss_bbox=dict(
type='mmdet.SmoothL1Loss',
beta=0.1111111111111111,
loss_weight=2.0),
loss_dir=dict(
type='mmdet.CrossEntropyLoss', use_sigmoid=False,
loss_weight=0.2)),
train_cfg=dict(
assigner=[
dict(
type='Max3DIoUAssigner',
iou_calculator=dict(type='BboxOverlapsNearest3D'),
pos_iou_thr=0.5,
neg_iou_thr=0.35,
min_pos_iou=0.35,
ignore_iof_thr=-1),
dict(
type='Max3DIoUAssigner',
iou_calculator=dict(type='BboxOverlapsNearest3D'),
pos_iou_thr=0.5,
neg_iou_thr=0.35,
min_pos_iou=0.35,
ignore_iof_thr=-1),
dict(
type='Max3DIoUAssigner',
iou_calculator=dict(type='BboxOverlapsNearest3D'),
pos_iou_thr=0.6,
neg_iou_thr=0.45,
min_pos_iou=0.45,
ignore_iof_thr=-1)
],
allowed_border=0,
pos_weight=-1,
debug=False),
test_cfg=dict(
use_rotate_nms=True,
nms_across_levels=False,
nms_thr=0.01,
score_thr=0.1,
min_bbox_size=0,
nms_pre=100,
max_num=50))
Dataloaders are required for the training, validation, and testing of the runner. Dataset and data pipeline need to be set to build the dataloader. Due to the complexity of this part, we use intermediate variables to simplify the writing of dataloader configs.
dataset_type = 'KittiDataset'
data_root = 'data/kitti/'
class_names = ['Pedestrian', 'Cyclist', 'Car']
point_cloud_range = [0, -39.68, -3, 69.12, 39.68, 1]
input_modality = dict(use_lidar=True, use_camera=False)
metainfo = dict(classes=class_names)
db_sampler = dict(
data_root=data_root,
info_path=data_root + 'kitti_dbinfos_train.pkl',
rate=1.0,
prepare=dict(
filter_by_difficulty=[-1],
filter_by_min_points=dict(Car=5, Pedestrian=5, Cyclist=5)),
classes=class_names,
sample_groups=dict(Car=15, Pedestrian=15, Cyclist=15),
points_loader=dict(
type='LoadPointsFromFile', coord_type='LIDAR', load_dim=4, use_dim=4))
train_pipeline = [
dict(type='LoadPointsFromFile', coord_type='LIDAR', load_dim=4, use_dim=4),
dict(type='LoadAnnotations3D', with_bbox_3d=True, with_label_3d=True),
dict(type='ObjectSample', db_sampler=db_sampler, use_ground_plane=True),
dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5),
dict(
type='GlobalRotScaleTrans',
rot_range=[-0.78539816, 0.78539816],
scale_ratio_range=[0.95, 1.05]),
dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range),
dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range),
dict(type='PointShuffle'),
dict(
type='Pack3DDetInputs',
keys=['points', 'gt_labels_3d', 'gt_bboxes_3d'])
]
test_pipeline = [
dict(type='LoadPointsFromFile', coord_type='LIDAR', load_dim=4, use_dim=4),
dict(
type='MultiScaleFlipAug3D',
img_scale=(1333, 800),
pts_scale_ratio=1,
flip=False,
transforms=[
dict(
type='GlobalRotScaleTrans',
rot_range=[0, 0],
scale_ratio_range=[1., 1.],
translation_std=[0, 0, 0]),
dict(type='RandomFlip3D'),
dict(
type='PointsRangeFilter', point_cloud_range=point_cloud_range)
]),
dict(type='Pack3DDetInputs', keys=['points'])
]
eval_pipeline = [
dict(type='LoadPointsFromFile', coord_type='LIDAR', load_dim=4, use_dim=4),
dict(type='Pack3DDetInputs', keys=['points'])
]
train_dataloader = dict(
batch_size=6,
num_workers=4,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True),
dataset=dict(
type='RepeatDataset',
times=2,
dataset=dict(
type=dataset_type,
data_root=data_root,
ann_file='kitti_infos_train.pkl',
data_prefix=dict(pts='training/velodyne_reduced'),
pipeline=train_pipeline,
modality=input_modality,
test_mode=False,
metainfo=metainfo,
box_type_3d='LiDAR')))
val_dataloader = dict(
batch_size=1,
num_workers=1,
persistent_workers=True,
drop_last=False,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=dict(
type=dataset_type,
data_root=data_root,
data_prefix=dict(pts='training/velodyne_reduced'),
ann_file='kitti_infos_val.pkl',
pipeline=test_pipeline,
modality=input_modality,
test_mode=True,
metainfo=metainfo,
box_type_3d='LiDAR'))
test_dataloader = dict(
batch_size=1,
num_workers=1,
persistent_workers=True,
drop_last=False,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=dict(
type=dataset_type,
data_root=data_root,
data_prefix=dict(pts='training/velodyne_reduced'),
ann_file='kitti_infos_val.pkl',
pipeline=test_pipeline,
modality=input_modality,
test_mode=True,
metainfo=metainfo,
box_type_3d='LiDAR'))
Evaluators are used to compute the metrics of the trained model on the validation and testing datasets. The config of evaluators consists of one or a list of metric configs:
val_evaluator = dict(
type='KittiMetric',
ann_file=data_root + 'kitti_infos_val.pkl',
metric='bbox')
test_evaluator = val_evaluator
Since the test dataset has no annotation files, the test_dataloader and test_evaluator config in MMDetection3D are generally equal to the val's. If you want to save the detection results on the test dataset, you can write the config like this:
# inference on test dataset and
# format the output results for submission.
test_dataloader = dict(
batch_size=1,
num_workers=1,
persistent_workers=True,
drop_last=False,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=dict(
type=dataset_type,
data_root=data_root,
data_prefix=dict(pts='testing/velodyne_reduced'),
ann_file='kitti_infos_test.pkl',
load_eval_anns=False,
pipeline=test_pipeline,
modality=input_modality,
test_mode=True,
metainfo=metainfo,
box_type_3d='LiDAR'))
test_evaluator = dict(
type='KittiMetric',
ann_file=data_root + 'kitti_infos_test.pkl',
metric='bbox',
format_only=True,
submission_prefix='results/kitti-3class/kitti_results')
MMEngine's runner uses Loop to control the training, validation, and testing processes. Users can set the maximum training epochs and validation intervals with these fields:
train_cfg = dict(
type='EpochBasedTrainLoop',
max_epochs=80,
val_interval=2)
val_cfg = dict(type='ValLoop')
test_cfg = dict(type='TestLoop')
optim_wrapper
is the field to configure optimization-related settings. The optimizer wrapper not only provides the functions of the optimizer, but also supports functions such as gradient clipping, mixed precision training, etc. Find more in optimizer wrapper tutorial.
optim_wrapper = dict( # Optimizer wrapper config
type='OptimWrapper', # Optimizer wrapper type, switch to AmpOptimWrapper to enable mixed precision training.
optimizer=dict( # Optimizer config. Support all kinds of optimizers in PyTorch. Refer to https://pytorch.org/docs/stable/optim.html#algorithms
type='AdamW', lr=0.001, betas=(0.95, 0.99), weight_decay=0.01),
clip_grad=dict(max_norm=35, norm_type=2)) # Gradient clip option. Set None to disable gradient clip. Find usage in https://mmengine.readthedocs.io/en/latest/tutorials/optim_wrapper.html
param_scheduler
is a field that configures methods of adjusting optimization hyperparameters such as learning rate and momentum. Users can combine multiple schedulers to create a desired parameter adjustment strategy. Find more in parameter scheduler tutorial and parameter scheduler API documents.
param_scheduler = [
dict(
type='CosineAnnealingLR',
T_max=32,
eta_min=0.01,
begin=0,
end=32,
by_epoch=True,
convert_to_iter_based=True),
dict(
type='CosineAnnealingLR',
T_max=48,
eta_min=1.0000000000000001e-07,
begin=32,
end=80,
by_epoch=True,
convert_to_iter_based=True),
dict(
type='CosineAnnealingMomentum',
T_max=32,
eta_min=0.8947368421052632,
begin=0,
end=32,
by_epoch=True,
convert_to_iter_based=True),
dict(
type='CosineAnnealingMomentum',
T_max=48,
eta_min=1,
begin=32,
end=80,
by_epoch=True,
convert_to_iter_based=True),
]
Users can attach Hooks to training, validation, and testing loops to insert some operations during running. There are two different hook fields, one is default_hooks
and the other is custom_hooks
.
default_hooks
is a dict of hook configs, and they are the hooks must be required at the runtime. They have default priority which should not be modified. If not set, runner will use the default values. To disable a default hook, users can set its config to None
.
default_hooks = dict(
timer=dict(type='IterTimerHook'),
logger=dict(type='LoggerHook', interval=50),
param_scheduler=dict(type='ParamSchedulerHook'),
checkpoint=dict(type='CheckpointHook', interval=-1),
sampler_seed=dict(type='DistSamplerSeedHook'),
visualization=dict(type='Det3DVisualizationHook'))
custom_hooks
is a list of all other hook configs. Users can develop their own hooks and insert them in this field.
custom_hooks = []
default_scope = 'mmdet3d' # The default registry scope to find modules. Refer to https://mmengine.readthedocs.io/en/latest/advanced_tutorials/registry.html
env_cfg = dict(
cudnn_benchmark=False, # Whether to enable cudnn benchmark
mp_cfg=dict( # Multi-processing config
mp_start_method='fork', # Use fork to start multi-processing threads. 'fork' usually faster than 'spawn' but maybe unsafe. See discussion in https://github.com/pytorch/pytorch/issues/1355
opencv_num_threads=0), # Disable opencv multi-threads to avoid system being overloaded
dist_cfg=dict(backend='nccl')) # Distribution configs
vis_backends = [dict(type='LocalVisBackend')] # Visualization backends. Refer to https://mmengine.readthedocs.io/en/latest/advanced_tutorials/visualization.html
visualizer = dict(
type='Det3DLocalVisualizer', vis_backends=vis_backends, name='visualizer')
log_processor = dict(
type='LogProcessor', # Log processor to process runtime logs
window_size=50, # Smooth interval of log values
by_epoch=True) # Whether to format logs with epoch type. Should be consistent with the train loop's type.
log_level = 'INFO' # The level of logging.
load_from = None # Load model checkpoint as a pre-trained model from a given path. This will not resume training.
resume = False # Whether to resume from the checkpoint defined in `load_from`. If `load_from` is None, it will resume the latest checkpoint in the `work_dir`.
There are 4 basic component types under configs/_base_
, dataset, model, schedule, default_runtime.
Many methods could be easily constructed with one of these models like SECOND, PointPillars, PartA2, VoteNet.
The configs that are composed of components from _base_
are called primitive.
For all configs under the same folder, it is recommended to have only one primitive config. All other configs should inherit from the primitive config. In this way, the maximum of inheritance level is 3.
For easy understanding, we recommend contributors to inherit from existing methods.
For example, if some modification is made based on PointPillars, users may first inherit the basic PointPillars structure by specifying _base_ = '../pointpillars/pointpillars_hv_fpn_sbn-all_8xb4-2x_nus-3d.py'
, then modify the necessary fields in the config files.
If you are building an entirely new method that does not share the structure with any of the existing methods, you may create a folder xxx_rcnn
under configs
.
Please refer to MMEngine config tutorial for detailed documentation.
By setting the _base_
field, we can set which files the current configuration file inherits from.
When _base_
is a string of a file path, it means inheriting the contents from one config file.
_base_ = './pointpillars_hv_secfpn_8xb6-160e_kitti-3d-3class.py'
When _base_
is a list of multiple file paths, it means inheriting from multiple files.
_base_ = [
'../_base_/models/pointpillars_hv_secfpn_kitti.py',
'../_base_/datasets/kitti-3d-3class.py',
'../_base_/schedules/cyclic-40e.py', '../_base_/default_runtime.py'
]
If you wish to inspect the config file, you may run python tools/misc/print_config.py /PATH/TO/CONFIG
to see the complete config.
Sometimes, you may set _delete_=True
to ignore some of the fields in base configs.
You may refer to MMEngine config tutorial for a simple illustration.
In MMDetection3D, for example, to change the neck of PointPillars with the following config:
model = dict(
type='MVXFasterRCNN',
data_preprocessor=dict(voxel_layer=dict(...)),
pts_voxel_encoder=dict(...),
pts_middle_encoder=dict(...),
pts_backbone=dict(...),
pts_neck=dict(
type='FPN',
norm_cfg=dict(type='naiveSyncBN2d', eps=1e-3, momentum=0.01),
act_cfg=dict(type='ReLU'),
in_channels=[64, 128, 256],
out_channels=256,
start_level=0,
num_outs=3),
pts_bbox_head=dict(...))
FPN
and SECONDFPN
use different keywords to construct:
_base_ = '../_base_/models/pointpillars_hv_fpn_nus.py'
model = dict(
pts_neck=dict(
_delete_=True,
type='SECONDFPN',
norm_cfg=dict(type='naiveSyncBN2d', eps=1e-3, momentum=0.01),
in_channels=[64, 128, 256],
upsample_strides=[1, 2, 4],
out_channels=[128, 128, 128]),
pts_bbox_head=dict(...))
The _delete_=True
would replace all old keys in pts_neck
field with new keys.
Some intermediate variables are used in the configs files, like train_pipeline
/test_pipeline
in datasets.
It's worth noting that when modifying intermediate variables in the children configs, user needs to pass the intermediate variables into corresponding fields again.
For example, we would like to use a multi-scale strategy to train and test a PointPillars, train_pipeline
/test_pipeline
are intermediate variables we would like to modify.
_base_ = './nus-3d.py'
train_pipeline = [
dict(
type='LoadPointsFromFile',
load_dim=5,
use_dim=5,
backend_args=backend_args),
dict(
type='LoadPointsFromMultiSweeps',
sweeps_num=10,
backend_args=backend_args),
dict(type='LoadAnnotations3D', with_bbox_3d=True, with_label_3d=True),
dict(
type='GlobalRotScaleTrans',
rot_range=[-0.3925, 0.3925],
scale_ratio_range=[0.95, 1.05],
translation_std=[0, 0, 0]),
dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5),
dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range),
dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range),
dict(type='ObjectNameFilter', classes=class_names),
dict(type='PointShuffle'),
dict(
type='Pack3DDetInputs',
keys=['points', 'gt_labels_3d', 'gt_bboxes_3d'])
]
test_pipeline = [
dict(
type='LoadPointsFromFile',
load_dim=5,
use_dim=5,
backend_args=backend_args),
dict(
type='LoadPointsFromMultiSweeps',
sweeps_num=10,
backend_args=backend_args),
dict(
type='MultiScaleFlipAug3D',
img_scale=(1333, 800),
pts_scale_ratio=[0.95, 1.0, 1.05],
flip=False,
transforms=[
dict(
type='GlobalRotScaleTrans',
rot_range=[0, 0],
scale_ratio_range=[1., 1.],
translation_std=[0, 0, 0]),
dict(type='RandomFlip3D'),
dict(
type='PointsRangeFilter', point_cloud_range=point_cloud_range)
]),
dict(type='Pack3DDetInputs', keys=['points'])
]
train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
val_dataloader = dict(dataset=dict(pipeline=test_pipeline))
test_dataloader = dict(dataset=dict(pipeline=test_pipeline))
We first define the new train_pipeline
/test_pipeline
and pass them into dataloader fields.
If the users want to reuse the variables in the base file, they can get a copy of the corresponding variable by using {{_base_.xxx}}
. E.g:
_base_ = './pointpillars_hv_secfpn_8xb6-160e_kitti-3d-3class.py'
a = {{_base_.model}} # variable `a` is equal to the `model` defined in `_base_`
When submitting jobs using tools/train.py
or tools/test.py
, you may specify --cfg-options
to in-place modify the config.
-
Update config keys of dict chains
The config options can be specified following the order of the dict keys in the original config. For example,
--cfg-options model.backbone.norm_eval=False
changes the all BN modules in model backbones totrain
mode. -
Update keys inside a list of configs
Some config dicts are composed as a list in your config. For example, the training pipeline
train_dataloader.dataset.pipeline
is normally a list e.g.[dict(type='LoadPointsFromFile'), ...]
. If you want to change'LoadPointsFromFile'
to'LoadPointsFromDict'
in the pipeline, you may specify--cfg-options data.train.pipeline.0.type=LoadPointsFromDict
. -
Update values of list/tuple
If the value to be updated is a list or a tuple. For example, the config file normally sets
model.data_preprocessor.mean=[123.675, 116.28, 103.53]
. If you want to change the mean values, you may specify--cfg-options model.data_preprocessor.mean="[127,127,127]"
. Note that the quotation mark"
is necessary to support list/tuple data types, and that NO white space is allowed inside the quotation marks in the specified value.
We follow the below style to name config files. Contributors are advised to follow the same style.
{algorithm name}_{model component names [component1]_[component2]_[...]}_{training settings}_{training dataset information}_{testing dataset information}.py
The file name is divided to five parts. All parts and components are connected with _
and words of each part or component should be connected with -
.
{algorithm name}
: The name of the algorithm. It can be a detector name such aspointpillars
,fcos3d
, etc.{model component names}
: Names of the components used in the algorithm such as voxel_encoder, backbone, neck, etc. For example,second_secfpn_head-dcn-circlenms
means using SECOND's SparseEncoder, SECONDFPN and a detection head with DCN and circle NMS.{training settings}
: Information of training settings such as batch size, augmentations, loss trick, scheduler, and epochs/iterations. For example:8xb4-tta-cyclic-20e
means using 8-gpus x 4-samples-per-gpu, test time augmentation, cyclic annealing learning rate, and train 20 epochs. Some abbreviations:{gpu x batch_per_gpu}
: GPUs and samples per GPU.bN
indicates N batch size per GPU. E.g.4xb4
is the short term of 4-GPUs x 4-samples-per-GPU.{schedule}
: training schedule, options areschedule-2x
,schedule-3x
,cyclic-20e
, etc.schedule-2x
andschedule-3x
mean 24 epochs and 36 epochs respectively.cyclic-20e
means 20 epochs respectively.
{training dataset information}
: Training dataset names likekitti-3d-3class
,nus-3d
,s3dis-seg
,scannet-seg
,waymoD5-3d-car
. Here3d
means dataset used for 3D object detection, andseg
means dataset used for point cloud segmentation.{testing dataset information}
(optional): Testing dataset name for models trained on one dataset but tested on another. If not mentioned, it means the model was trained and tested on the same dataset type.