-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhermop-2.tex
879 lines (850 loc) · 25.1 KB
/
hermop-2.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
\documentclass[main.tex]{subfiles}
\begin{document}
% 5, part 2
\begin{psec}{5.20}%
Next,
we look at some properties of the square root map.
\begin{enumerate}
\item \label{5.20-1} \statement{
Let $S\in\mathscr{H}$, $T\in{\mathscr H}^+$.
If $S$ commutes with~$T$,
then it commutes with~$\sqrt{T}$.}
This follows from the last part of~\ref{5.19}:
$S$ commutes with all powers of~$T$,
therefore with every $\sr_n(T)$,
therefore with~$\sqrt{T}$.
%
\item \label{5.20-2} \statement{
If $S,T\in\mathscr{H}^+$ and $ST=TS$, then $ST\in{\mathscr H}^+$.}
\noindent \emph{Proof}\ By~\ref{5.12}, $ST\in{\mathscr H}$.
As for the positivity:
\ref{5.20-1} implies that~$T$ commutes with~$\sqrt{S}$
and, again, that~$\sqrt{S}$ commutes with~$\sqrt{T}$.
Then $ST=\smash{\sqrt{S}^2} \smash{\sqrt{T}^2}
= \smash{\bigl(\sqrt{S}^{\phantom{2}}\sqrt{T}\,\bigr)^2}\in{\mathscr H}^+$
\quad(\ref{5.9}). \xqed
%
\item \label{5.20-3} \statement{
Let $S,T\in\mathscr{H}$, $S\leq T$.
Then $VS\leq VT$ for every~$V$ in~${\mathscr H}^+$
that commutes with~$S$ and with~$T$.}
\noindent \emph{Proof}\ $VT-VS=V(T-S)\in{\mathscr H}^+$,
by~\ref{5.20-2}. \xqed
%
\item \label{5.20-4} \statement{
Let $S,T\in{\mathscr H}^+$, $ST=TS$.
If $S\leq T$, then $S^2 \leq T^2$.}
\noindent \emph{Proof}\ With~\ref{5.20-3}:
$SS\leq ST=TS\leq TT$. \xqed
%
\item \label{5.20-5} \statement{
Let $T\in{\mathscr H}^+$, $V\in\mathscr H$, $TV=VT$.
If $V^2\leq T$, then $V\leq \sqrt{T}$.}
\noindent\emph{Proof}\ We may assume $\|T\|=1$.
Let~$q_n$ be as in~\ref{5.18} and~\ref{5.19},
so that $q_n(I-T)\rightarrow I-\sqrt{T}$.
We are done if $q_n(I-T)\leq I-V$ for all~$n$.
This inequality can be proved inductively.
First:
\begin{alignat*}{2}
I-V-q_1(I-T)
& = I-V-{\textstyle \frac{1}{2}}(I-T) & \\
& = {\textstyle \frac{1}{2}} I - V + {\textstyle \frac{1}{2}} T & \\
& \geq {\textstyle \frac{1}{2}} I - V + {\textstyle \frac{1}{2}} V^2
&= {\textstyle \frac{1}{2}} (I-V)^2 \geq 0\htam{,}
\end{alignat*}
so $q_1(I-T)\leq I-V$.
Second: if~$n$ is so that $q_n(I-T)\leq I-V$, then
\begin{alignat*}{2}
2q_{n+1} (I-T)
& = I-T+(q_n(I-T))^2 & \\
& \relref{\leq}{5.20-4} I-T+(I-V)^2 & \\
& \leq I-V^2+(I-V)^2 & = 2(I-V)
\end{alignat*}
and $q_{n+1} (I-T) \leq I-V$. \xqed
%
\item \label{5.20-6} \statement{
If $T\in{\mathscr H}^+$, then $\smash{\sqrt{T^2}=T}$.}
\noindent \emph{Proof} Put $S:=\smash{\sqrt{T^2}}-T$.
By~\ref{5.20-5}, $T\leq \smash{\sqrt{T^2}}$,
i.e., $S\geq 0$.
Then $ST\geq 0$ according to~\ref{5.20-2}.
But~$ST$ equals $-\frac{1}{2} S^2$.
Hence for all~$x$ in~$H$
\begin{equation*}
\|Sx\|^2 = \left<Sx,Sx\right>=\left<S^2 x,x\right>
=-2\left<STx,x\right>\leq 0\htam{.}
\end{equation*}
It follows that $S=0$, and $\smash{\sqrt{T^2}}=T$. \xqed
\end{enumerate}
\end{psec}
%
% 5.21
%
\begin{psec}{5.21}{Exercise}
Let $S,T\in{\mathscr H}^+$ be so that $\|Sx\|=\|Tx\|\quad(x\in H)$.
Prove $S=T$.
(Show first that $S^2 = T^2$.)
\end{psec}
%
% 5.22
%
\begin{psec}{5.22}{Exercise}
(This we need farther on.)
Prove the following.
\begin{enumerate}
\item\label{5.22-1}
If $T\in\mathscr H$ and $0\leq T\leq I$, then $T^2\leq T$.
%
\item\label{5.22-2}
If $T\in\mathscr H$ and $0\leq T\leq I$,
then $\|Tx\|^2\leq \left< Tx,x\right>\quad (x\in H)$.
%
\item\label{5.22-3}
If $S,T\in\mathscr H$ and $0\leq S\leq T\leq I$,
then
\begin{equation*}
\|Tx-Sx\|^2 \leq \left<Tx,x\right>-\left<Sx,x\right>\qquad (x\in H)\htam{.}
\end{equation*}
\end{enumerate}
\end{psec}
%
% 5.23
%
\begin{psec}{5.23}{Exercise}
(built upon the previous one)
Let $T\in\mathscr H$, $0\leq T\leq I$
(or: $T\in{\mathscr H}^+$, $\|T\|\leq 1$).
Prove:
\begin{enumerate}
\item\label{5.23-1}
$T^n \geq 0$ for every~$n$, and $I\geq T \geq T^2 \geq \dotsb$.
%
\item\label{5.23-2}
$Px:=\lim_{n\ra\infty} T^n x$ exists for all~$x$ in~$H$.
This defines a (linear) map $P\colon H\ra H$.
For each~$x$ in~$H$
we see that $\|x\|\geq\|Tx\|\geq\|T^2 x\|\geq \dotsb$,
so that $\|Px\|\leq \|x\|\quad (x\in H)$
and~$P$ is continuous.
%
\item\label{5.23-3}
$P\in\mathscr H$, $0\leq P \leq T\leq I$.
%
\item\label{5.23-4}
$P=P^2$. (Careful: From $T^n x\ra Px\quad(x\in H)$
it does not immediately follow that $T^{2n} x\ra P^2 x\quad(x\in H)$.
Instead, prove $\left<Px,x\right>=\|Px\|^2$.)
Thus, $P$ is a projection (\ref{5.7}).
%
\item\label{5.23-5}
If $x\in H$ and $Tx=x$,
then $Px=x$.
Conversely,
if $x\in H$ and $Px=x$,
then $\left< Tx,x\right>=\left<x,x\right>$,
so $Tx-x\perp x$,
whence $Tx=x$ (Pythagoras).
$P$ is the projection onto $\left\{ x\colon Tx=x \right\}$.
\end{enumerate}
\end{psec}
%
% 5.24
%
\begin{psec}{5.24}{Exercise}
(built upon the previous one)
\begin{center}
\begin{tikzpicture}
% A:
\draw[line width=.8pt] (-1,0) -- (3,0);
\draw (3,0) node[anchor=west]{$A$};
% B:
\draw[line width=.8pt] (-.28,-.28) -- (2,2);
\draw (2,2) node[anchor=south west]{$B$};
% x:
\draw[fill=black] (2.6,1.1) circle (.4pt);
\draw (2.6,1.1) node[anchor=west]{$x$};
% projections:
\draw (2.6,1.1) -- (2.6,0) -- (1.3,1.3) -- (1.3,0) -- (.65,.65) -- (.65,0);
\draw[->] (.65,0) -- (.4,.25);
\end{tikzpicture}
\end{center}
Let~$A$ and~$B$ be closed linear subspaces of~$H$
with projections~$Q$ and~$R$, respectively.
We consider the sequence
\begin{equation*}
Q,\ RQ,\ QRQ,\ RQRQ,\ \dotsc
\end{equation*}
Prove the following.
\begin{enumerate}
\item\label{5.24-1}
$QRQ\in\mathscr H$, $0\leq QRQ \leq I$.
%
\item\label{5.24-2}
For all $x\in H$ the sequence $QRQx$, $QRQRQx$,
$\dotsc$ converges.
Denote its limit by~$Px$.
We now have a map $P\colon H\ra H$.
%
\item\label{5.24-3}
$P$ is the projection onto $A\cap B$.
(If $QRQx=x$, then $x\in Q(H)$, so $Qx=x$.)
%
\item\label{5.24-4}
For every~$x$ the sequence
\begin{equation*}
Qx,\ RQx,\ QRQx,\ RQRQx,\ \dotsc
\end{equation*}
converges to~$Px$.
\end{enumerate}
\end{psec}
\noindent
We begin to get results:
\begin{psec}{5.25}{Lemma}\statement{
Let $\mathscr A$ be a closed subalgebra of~$\mathscr H$.
\begin{enumerate}
\item\label{5.25-1} $\mathscr A$ is a Riesz space
under the ordering of~$\mathscr H$, and
\begin{equation*}
|T|\ =\ \sqrt{T^2}\qquad(T\in\mathscr A)\htam{.}
\end{equation*}
If $\mathscr B$ is a closed subalgebra of~$\mathscr H$
and $\mathscr B \subseteq \mathscr A$,
then $\mathscr B$ is a Riesz subspace of~$\mathscr A$.
%
\item\label{5.25-2} If $I\in\mathscr A$,
then~$I$ is a unit,
the norm~$\|\cdot\|_I$ is the operator norm,
and~$\mathscr A$ is uniformly complete.
\end{enumerate}
}\end{psec}
\begin{proof}
\begin{enumerate}
\item
It suffices to prove that for $T\in \mathscr A$,
$\smash{\sqrt{T^2}}$ is the supremum of $\{T,-T\}$
in the ordered vector space~$\mathscr A$.
Let $T\in\mathscr A$.
\begin{itemize}
\item The final lines of~\ref{5.19}
imply that $\sqrt{T^2}\in\mathscr A$.
\item $\pm T \leq \smash{\sqrt{T^2}}$,
since $(\pm T)^2\leq T^2$ (\ref{5.20}\ref{5.20-5}).
\item Let $W$ be an upper bound of $\{T,-T\}$ in~$\mathscr A$.
Then $W\geq \frac{1}{2}(T+-T)=0$.
Also, with~\ref{5.20}\ref{5.20-2},
$0\leq (W-T)(W+T)=W^2-T^2$,
so that $W^2\geq T^2$ and,
with~\ref{5.20}\ref{5.20-6} and~\ref{5.20}\ref{5.20-5},
$W=\smash{\sqrt{W^2}}\geq\smash{\sqrt{T^2}}$.
\end{itemize}
%
\item \label{5.25-2}
For $T\in\mathscr A$
we see that $|T|^2=T^2$.
Then for all~$x$ in~$H$
\begin{equation*}
\| T x \|\ = \|\, |T|x\, \|\htam{,}
\end{equation*}
since
$\|Tx\|^2=\left<Tx,Tx\right>
=\left<T^2x,x\right>
=\left<|T|^2x,x\right>
=\||T|x\|^2$.
Hence, $T$ and~$|T|$
have the same operator norm.
From lemma~\ref{5.10}
it follows easily that~$I$ is a unit in~$\mathscr A$
and that $\|\,|T|\,\|_I$ equals the operator norm of~$|T|$.
Thus, $\|T\|_I=\|T\|$.
As a closed subset of~$\mathscr H$
or~$\Lin(H,H)$,
$\mathscr A$ is complete in the operator norm (\ref{5.1}\ref{5.1-2}),
hence uniformly complete. \xqed
\end{enumerate}
\end{proof}
\noindent The moral is obvious:
By Yosida's Theorem every closed subalgebra of~$\mathscr H$
that contains~$I$
is Riesz isomorphic to some~$\Cont{\Phi}$.
Before filing this result as a theorem
we address ourselves to a question.
Both the operator algebra and~$\Cont{\Phi}$
carry multiplications.
Any connection?
The following lemma paves the way to an affirmative answer.
%
% 5.26
%
\begin{psec}{5.26}{Lemma}\statement{
Let $E$ be a Riesz space with a unit~$e$.
Suppose there is given a ``multiplication''
$*\colon E\times E\ra E$ satisfying
\begin{itemize}
\item For every~$a$ in~$E$
the maps $x\mapsto a*x$ and $x\mapsto x*a$ are linear;
\item $e*a=a*e=a$ for all~$a$ in~$E$;
\item if $a,b\in E^+$,
then $a*b\in E^+$.
\end{itemize}
Let $\varphi\colon E\ra \R$ be a Riesz homomorphism
with $\varphi(e)=1$.
Then $\varphi$ is ``multiplicative'':
\begin{equation*}
\varphi(x*y) \ =\ \varphi(x)\,\varphi(y)\qquad(x,y\in E)\htam{.}
\end{equation*}
}\end{psec}
\begin{proof}
\begin{enumerate}[label=(\Roman*)]
\item\label{5.26-I}
First, an auxiliary formula:
If $a,b\in E$, then
\begin{equation*}
|a*b|\ \leq\ |a|*|b|\htam{.}
\end{equation*}
Indeed,
\begin{alignat*}{2}
|a*b|\ &=\ \bigl|(a^+-a^-)*(b^+-b^-)\bigr| \\
&=\ \bigl| a^+*b^+ \,-\,a^-*b^+ \,-\, a^+*b^- \,+\, a^-*b^- \bigr| \\
&\leq\ \phantom{\bigl|}a^+*b^+ \,+\, a^-*b^+ \,+\, a^+*b^- \,+\,a^-*b^-\\
&=\ (a^+ + a^-)*(b^++b^-) \ =\ |a|*|b|
\end{alignat*}
%
\item\label{5.26-II}
With $a,b\in E$ and $n$ such that $|a|\leq ne$ we get for all $\lambda\in\R$:
\begin{alignat*}{2}
|a*b - \lambda a|
\ &=\ |a*(b-\lambda e)|\ &&\leq\ |a|*|b-\lambda e| \\
\ &\leq\ ne*|b-\lambda e|\ &&=\ n\,|b-\lambda e|\htam{,}\intertext{%
and, upon applying $\varphi$:}%
|\varphi(a*b)-\lambda\varphi(a)|\ &\leq\ n\,|\varphi(b)-\lambda|\htam{.}\\%
\intertext{Choosing $\lambda = \varphi(b)$ yields}%
\varphi(a*b)\ &=\ \varphi(a)\,\varphi(b)\htam{. \xqed}
\end{alignat*}
\end{enumerate}
\end{proof}
%
% 5.27
%
\begin{psec}{5.27}{Comments}
\begin{enumerate}
\item\label{5.27-1}
A a corollary we obtain:
\statement{
Let $E,e,*$ be as in~\ref{5.26};
let~$X$ be a set and let~$T$ be a Riesz homomorphism
$E\ra \R^X$ with~$Te=\mathbb{1}_X$.
Then~$T$ is multiplicative:
\begin{equation*}
T(a*b)\ =\ (Ta)(Tb)\qquad(a,b\in E)\htam{.}
\end{equation*}
Consequently, the range of~$T$ is a subalgebra of~$\R^X$:
\begin{equation*}
f,g\in T(E)\quad\implies\quad fg\in T(E)\htam{.}
\end{equation*}}
%
\item\label{5.27-2}
In our applications,
$T$ will result from the Yosida Theorem
and will map~$E$ into~$\Cont{X}$,
where~$X$ is a compact Hausdorff space.
%
\item\label{5.27-3}
Also,
the operation~$*$
will be known to be commutative and associative.
However,
if~$E$ is Archimedean,
the properties of~$*$ given in~\ref{5.26} \emph{imply}
commutativity and associativity, and formulas such as
\begin{alignat*}{2}
|x*y|\ &=\ |x|*|y|\htam{,} \\
x*x \ &\geq\ 0\htam{,} \\
x*x=0\quad&\implies\quad x=0\htam{,} \\
x\perp y\quad&\iff\quad x*y=0\htam{.}
\end{alignat*}
This follows directly from the observation that,
by Yosida's Theorem and by~\ref{5.26}
there is an injective (and multiplicative)
Riesz homomorphism of~$E$ into some~$\Cont{X}$
with $e\mapsto\mathbb{1}_X$.
%
\item\label{5.27-4}
For a non-Archimedean~$E$
things may go wrong.
Consider~$\R^3$,
ordered lexicographically by
\begin{equation*}
\begin{pmatrix}x_1 \\ x_2 \\ x_3\end{pmatrix}
\ \leq\
\begin{pmatrix}y_1 \\ y_2 \\ y_3\end{pmatrix}
\qquad\htam{if}\quad
\left\{\
\begin{aligned}
&\htam{either }&&x_1<y_1\htam{,} \\
&\htam{or } &&x_1=y_1,\ x_2<y_2\htam{,} \\
&\htam{or } &&x_1=y_1,\ x_2=y_2,\ x_3\leq y_3\htam{.}
\end{aligned}
\right.
\end{equation*}
The operation~$*$ and unit~$e$ given by
\begin{equation*}
\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}
*
\begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}
:=
\left(
\begin{array}{l}
x_1 y_1 \\
x_1 y_2 + x_2 y_1 \\
x_1 y_3 + x_3 y_1 + x_2 y_3
\end{array}
\right)
\htam{,}\qquad
e:=
\begin{pmatrix} \,1\, \\ 0 \\ 0\end{pmatrix}
\end{equation*}
satisfy the conditions of the lemma.
However, $*$ is not commutative.
\end{enumerate}
\end{psec}
%
% 5.28
%
\noindent Lemma~\ref{5.27}\ref{5.27-1} implies:
A Riesz homomorphism of a subalgebra of~$\mathscr H$
into a $\Cont{\Phi}$
that sends~$I$ to~$\mathbb{1}_\Phi$ must be multiplicative.
Except for one detail we now know:
\begin{psec}{5.28}{Theorem}\statement{
Let $\mathscr A$ be a closed subalgebra of~$\mathscr H$ containing~$I$.
Then there exist
a compact Hausdorff space~$\Phi$
and a multiplicative Riesz isomorphism $T\mapsto \hat{T}$
of~$\mathscr A$ onto~$\Cont{\Phi}$,
with $\hat I=\mathbb{1}_\Phi$
and $\|\hat T\|_\infty = \| T\|\quad(T\in\mathscr A)$.
}\end{psec}
\begin{proof}
The missing detail,
the preservation of the norm,
is easily supplied:
By Yosida's Theorem,
$\|\hat T\|_\infty$
equals~$\|T\|_I$
where~$\|\cdot\|_I$
is the norm on~$\mathscr A$
induced by the unit~$I$;
by~\ref{5.25}, $\|\cdot\|_I$ is the operator norm. \xqed
\end{proof}
\noindent This theorem presents us with numerous little facts,
such as (with $S,T\in\mathscr H$):
\begin{itemize}
\item $\|T^n\| = \|T\|^n\quad(n=1,2,\dotsc)$,
\item $T$ has a unique third root,
\item $I+T^2$ is a bijection $H\ra H$
and has a continuous inverse,
\item $ST=0\iff TS=0\iff |S|\wedge|T|=0$.
\end{itemize}
If~$\mathscr A$ is any subalgebra of~$\mathscr H$,
not necessarily closed,
then it need not be a Riesz space.
Still, we can apply the above to the closure of
$\mathscr A+\R I$ ($:=\{T+\lambda I\colon T\in\mathscr A,\ \lambda\in\R\})$
and obtain an injective map $\mathscr A\ra\Cont{\Phi}$
that is linear, multiplicative, order-preserving and isometric.
For a \emph{closed} subalgebra of~$\mathscr H$
that does not contain~$I$
we can do better.
First, a general lemma from functional analysis.
%
% 5.29
%
\begin{psec}{5.29}{Lemma}\statement{
Let $D$ be a closed linear subspace
of a normed vector space~$E$
and let $a\in E$.
Then $D+\R a$ is closed in~$E$.
}\end{psec}
\begin{proof}
Let $(x_n+\lambda_na)_n$ be a sequence in $D+\R a$
that converges to an element~$b$ of~$E$;
we prove $b\in D+\R a$.
\begin{enumerate}[label=(\Roman*)]
\item\label{5.29-I}
If $\lambda_n\ra \infty$,
then $\lambda_n^{-1}x_n+a = \lambda_n^{-1}(x_n+\lambda_n a)\ra 0$,
so $-\lambda_n^{-1}x_n\ra a$.
Then~$a$ lies in the closure of~$D$, which is~$D$;
thus, $D+\R a=D$,
and $D+\R a$ is closed (so that $b\in D+\R a$).
%
\item\label{5.29-II}
The same conclusion is valid if the sequence $(\lambda_n)_n$
has a subsequence tending to~$\infty$ or to~$-\infty$.
%
\item\label{5.29-III}
In the remaining case
the sequence~$(\lambda_n)_n$ is bounded,
and has a subsequence $(\lambda_{n(\rho)})_\rho$
that converges to some $\lambda\in\R$.
We have $x_{n(\rho)}+\lambda_{n(\rho)} a\ra b$,
so $x_{n(\rho)}\ra b-\lambda a$.
Then $b-\lambda a\in D$ and $b\in D+\R a$. \xqed
\end{enumerate}
\end{proof}
%
% 5.30
%
\begin{psec}{5.30}{Theorem}\statement{
Let $\mathscr A$ be a closed subalgebra of~$\mathscr H$,
and $I\notin \mathscr A$.
Then there exist a compact Hausdorff space~$\Phi$,
an element~$\varphi_0$ of~$\Phi$,
and a norm-preserving multiplicative
Riesz homomorphism of~$\mathscr A$ onto
\begin{equation*}
\bigl\{f\in\Cont{\Phi}\colon f(\varphi_0)=0\bigr\}\htam{.}
\end{equation*}
}\end{psec}
\begin{proof}
By lemma~\ref{5.29} and Theorem~\ref{5.28}
we have a compact Hausdorff space~$\Phi$
and a multiplicative Riesz isomorphism $T\mapsto \hat T$
of $\mathscr A+\R I$ onto $\Cont{\Phi}$.
We only have to prove that $\hat{\mathscr A}$
($:=\{\hat T\colon T\in\mathscr A\}$)
is of the form $\{f\colon f(\varphi_0)=0\}$.
Now~$\mathscr A$ is the kernel of the multiplicative
linear function $T+\lambda I\mapsto \lambda$ on $\mathscr A+\R I$.
Then $\hat{\mathscr A}$ is the kernel of some
multiplicative linear function on~$\Cont{\Phi}$.
Such a multiplicative linear function is a Riesz homomorphism,
as one proves with an obvious variant
of the proof of Theorem~\ref{2.20}.
Now apply~\ref{2.16}. \xqed
\end{proof}
%
% 5.31
%
\begin{psec}{5.31}{Exercise}
A closed subalgebra of~$\mathscr H$
that does not contain~$I$
may still be isomorphic to~$\Cont{\Phi}$
for a compact Hausdorff space~$\Phi$.
(The~$\varphi_0$ of the preceding theorem may be an isolated point.)
For a simple example, with $H=\R^2$ (see~\ref{5.5}\ref{5.5-1}), take
\begin{equation*}
\mathscr A\ =\ \left\{
\bigl(\begin{smallmatrix}a & 0 \\ 0 & 0\end{smallmatrix}\bigr)
\colon a\in\R\right\}\htam{.}
\end{equation*}
We farther investigate this situation.
Let~$\mathscr A$ be a closed subalgebra of~$\mathscr H$,
$\mathscr A\neq \{0\}$.
\begin{enumerate}
\item\label{5.31-1}
Suppose there is a~$J$ in~$\mathscr A$ with $JT=TJ=T\quad(T\in\mathscr A)$.
Show that~$J$ is an order unit for~$\mathscr A$,
and that there exist a compact Hausdorff space~$\Omega$
and a multiplicative Riesz isomorphism of~$\mathscr A$
onto~$\Cont{\Omega}$ with $J\mapsto \mathbb{1}_\Omega$.
%
\item\label{5.31-2}
Suppose $\mathscr A$ has a unit
in the sense of the order.
Show that there is a~$J$ in~$\mathscr A$ with $TJ=JT=T\quad(T\in \mathscr A)$.
\end{enumerate}
\end{psec}
%
% 5.32
%
\begin{psec}{5.32}%
For~$A$ in~$\mathscr H$ we set
\begin{equation*}
\R[A]\ :=\ \bigl\{p(A)\colon p\htam{ is a polynomial}\bigr\}
\end{equation*}
(so $\R[A]$ is the linear hull of $\{I,A,A^2,\dotsc\}$)
and we define
\begin{equation*}
\overline{\R [A]}
\end{equation*}
to be its closure.
Both are subalgebras of~$\mathscr H$ (\ref{5.16}).
Yosida's Theorem produces a compact Hausdorff space~$\Phi$
and a Riesz isomorphism $T\mapsto \hat T$
of $\overline{\R[A]}$ onto $\Cont{\Phi}$.
We now show that~$\Phi$ is homeomorphic to a subset of~$\R$.
$\hat A$ is a continuous function $\Phi\ra \R$;
its range we call the spectrum of~$A$:
\begin{equation*}
\Sp{A}\htam{.}
\end{equation*}
It is the set of all numbers~$\varphi(A)$
where~$\varphi$ is a Riesz homomorphism
$\overline{\R[A]}\ra \R$
with $\varphi(I)=1$.
(In~\ref{5.36} we obtain a more direct description.)
We claim that, actually,
$\hat A$ is a homeomorphism $\Phi\ra \Sp{A}$.
To validate this claim
we only have to show that~$\hat A$ is injective.
That is not hard to do:
Suppose $\varphi,\psi\in\Phi$,
$\hat A(\varphi)=\hat A(\psi)$.
Then $\varphi(A)=\psi(A)$.
As~$\varphi$ and~$\psi$ are multiplicative,
we get $\varphi(p(A))=\psi(p(A))$ for all polynomials~$p$.
In other words: $\varphi$ and~$\psi$ coincide on~$\R [A]$.
But both are continuous relative to the norm~$\|\cdot\|_I$,
which is the operator norm (\ref{5.25}\ref{5.25-2}).
Hence, $\varphi$ and~$\psi$ coincide on $\smash{\overline{\R [A]}}$,
i.e. $\varphi=\psi$.
The homeomorphism $\hat A\colon \Phi \ra \Sp{A}$
produces a multiplicative
\begin{equation*}
\xymatrix{
\Phi \ar[rr]^{\hat A} && \Sp{A}\ar[rr]^f && \R
}
\end{equation*}
Riesz isomorphism $f\mapsto f\circ \hat A$
of $\Cont{\Sp{A}}$ onto $\Cont{\Phi}$.
\begin{equation*}
\xymatrix{
\overline{\R [A]}
\ar[rr]^{T\mapsto \hat T}
&& \Cont{\Phi}
&& \Cont{\Sp{A}}
\ar[ll]_{f\mapsto f\circ \hat A}
\ar@/^1.5em/@{-->}[llll]^{f\mapsto f(A)}
}
\end{equation*}
The isomorphisms $T\mapsto \hat T$
and $f\mapsto f\circ \hat A$ combine
into an isomorphism $\Cont{\Sp{A}}\ra \smash{\overline{\R[A]}}$.
By linearity and multiplicativity
one sees that under this isomorphism the image of a polynomial~$p$
(viewed as a function on~$\Sp{A}$) is the operator~$p(A)$.
For arbitrary~$f$ in $\Cont{\Sp{A}}$ we now define
\begin{equation*}
f(A)
\end{equation*}
to be the image of~$f$ under the above
isomorphism $\Cont{\Sp{A}}\ra\smash{\overline{\R[A]}}$;
it is determined~by
\begin{align*}
\widehat{f(A)}\ &=\ f\circ \hat{A}\htam{,}\intertext{or:}
\varphi(f(A))\ &=\ f(\varphi(A))\qquad(\varphi\in\Phi)\htam{.}
\end{align*}
\end{psec}
%
% 5.33
%
\begin{psec}{5.33}{Theorem}\statement{
Let $A\in\mathscr H$ and let $\Sp{A}$ be the compact subset of~$\R$
introduced above.
Then there is a unique multiplicative Riesz isomorphism
\begin{equation*}
f\mapsto f(A)
\end{equation*}
of $\Cont{\Sp{A}}$ onto $\smash{\overline{\R[A]}}$ satisfying
\begin{equation*}
\mathbb{1}(A)=I\htam{, }\qquad \mathrm{id}(A)=A\htam{,}
\end{equation*}
$\mathrm{id}$ being the identity map $\Sp{A}\ra\R$.
Moreover, $f\mapsto f(A)$ is norm-preserving.
}\end{psec}
\noindent
To put $\Sp{A}$ and $f(A)$ in a wider context:
Let~$\mathscr A$ be a closed subalgebra of~$\mathscr H$
with $I\in\mathscr A$;
let~$\Phi$ be as in~\ref{5.28}.
Take $A\in\mathscr A$.
Then $\smash{\overline{\R[A]}}\subseteq\mathscr A$.
For a moment,
let~$\Omega$ be the set of all Riesz homomorphisms
$\smash{\overline{\R[A]}}\ra\R$ that send~$I$ to~$1$.
By definition,
\begin{equation*}
\Sp{A}\ =\ \bigl\{\omega(A)\colon \omega\in\Omega\bigr\}\htam{,}
\end{equation*}
whereas $f(A)$ is determined by
\begin{equation*}
\omega(f(A))\ =\ f(\omega(A))\qquad(\omega\in\Omega)\htam{.}
\end{equation*}
Now it follows from Exercise~\ref{3.8b}
that the elements of~$\Omega$
are precisely the restrictions to $\smash{\overline{\R[A]}}$
of the elements of~$\Phi$.
Therefore:
%
% 5.34
%
\begin{psec}{5.34}{Theorem}\statement{
Let $\mathscr A$ be a closed subalgebra of~$\mathscr H$
with $I\in \mathscr A$,
and let~$\Phi$ be the set of all Riesz homomorphisms
$\mathscr A\ra \R$ that send~$I$ to~$1$.
If $A\in\mathscr A$ and $f\in\Cont{\Sp{A}}$, then
\begin{align*}
\Sp{A}\ &=\ \bigl\{\varphi(A)\colon \varphi\in\Phi\bigr\}\htam{,} \\
\varphi(f(A))\ &=\ f(\varphi(A))\qquad (\varphi\in\Phi)\htam{.}%
\intertext{Again indicating by $\smash{\hat{\cdot}}$
the natural isomorphism $\mathscr A\ra \Cont{\Phi}$:}
\Sp{A}\ &=\ \smash{\hat A} (\Phi)\htam{,} \\
\smash{\widehat{f(A)}}\ &=\ f\circ \hat A\htam{.}
\end{align*}
Moreover, $f$ maps the spectrum of~$A$ onto the spectrum of~$f(A)$.
}\end{psec}
\begin{proof}
of the last statement:
$\Sp {f(A)} = \smash{\widehat{f(A)}}(\Phi)
= (f\circ\hat{A})(\Phi)
= f(\hat{A}(\Phi))
= f(\Sp{A})$.~\xqed
\end{proof}
\noindent Continuing for the moment in the situation of this theorem
we see that for~$\lambda\in\R$
\begin{equation}
\tag{$*$}\label{eqpre5.35}
\begin{aligned}
\lambda\in\Sp{A}\
&\iff\ \lambda\htam{ is a value of the function }\smash{\hat{A}} \\
&\iff\ \smash{\hat{A}} - \lambda\mathbb{1}\htam{
has no inverse in }\Cont{\Phi} \\
&\iff\ A-\lambda I\htam{ has no inverse in }\mathscr A \htam{.}
\end{aligned}
\end{equation}
Taking $\mathscr A = \smash{\overline{\R [A]}}$ we obtain:
%
% 5.35
%
\begin{psec}{5.35}{Theorem}\statement{
Let $A\in\mathscr H$.
Then $\Sp{A}$ consists precisely of the numbers~$\lambda$
for which $A-\lambda I$ has no inverse in $\smash{\overline{\R[A]}}$.
}\end{psec}
%
% 5.36
%
\noindent But also:
\begin{psec}{5.36}{Theorem}\statement{
Let $A\in\mathscr H$.
Then $\Sp{A}$ consists precisely of the numbers~$\lambda$
for which $A-\lambda I$ has no inverse in~$\mathscr H$.
}\end{psec}
\begin{proof}
Let $\lambda\in\Sp{A}$;
it suffices to prove that $A-\lambda I$ has no inverse in~$\mathscr H$.
Suppose $B\in\mathscr H$ and
$(A-\lambda I)B = B(A-\lambda I)=I$.
Then in particular~$A$ commutes with~$B$,
and every power of~$A$ commutes with every power of~$B$.
Let~$\mathscr A$ be the closure of the linear hull of
$\bigl\{A^n B^m\colon n,m\in\{0,1,2,\dotsc\}\bigr\}$
where, by definition, $A^0=B^0=I$;
then~$\mathscr A$ is a closed subalgebra of~$\mathscr H$
that contains~$I$.
By~\eqref{eqpre5.35},
$A-\lambda I$ has no inverse in~$\mathscr A$.
Contradiction. \xqed
\end{proof}
%
% 5.37
%
\begin{psec}{5.37}{Comments}
Let $A\in\mathscr H$.
\begin{enumerate}
\item\label{5.37-1}
The locution ``inverse in~$\mathscr H$'' in~\ref{5.35}
deserves some attention.
If $A$, as a map $H\ra H$,
has an inverse, $A^{-1}\colon H\ra H$,
it is not a priori clear that this inverse is again a Hermitian operator,
the problem being continuity.
The ``Inverse Mapping Theorem''
in functional analysis
guarantees the continuity of the inverses of continuous bijections
between complete normed spaces.
%
\item\label{5.37-2}
If $H$ is finite dimensional,
$\Sp{A}$ is just the set of all eigenvalues of~$A$.
If $H$ is infinite dimensional,
all eigenvalues lie in the spectrum
but the spectrum may contain more.
\end{enumerate}
\end{psec}
%
% 5.38
%
\begin{psec}{5.38}{Exercise}
Let $A\in\mathscr H$.
\begin{enumerate}
\item\label{5.38-1}
Prove:
If $B\in\mathscr H$ and $AB=BA=I$,
then $B\in\smash{\overline{\R[A]}}$.
%
\item\label{5.38-2}
The smallest closed subalgebra of~$\mathscr H$
that contains~$A$ is~$\smash{\overline{\R_0[A]}}$,
the closure of the linear hull of $\{ A, A^2, A^3,\dotsc \}$.
Prove: If~$A$ has an inverse in~$\mathscr H$,
then $I\in\smash{\overline{\R_0[A]}}$
(so that $\smash{\overline{\R_0[A]} = \overline{\R[A]}}$).
\end{enumerate}
\end{psec}
%
% 5.39
%
\begin{psec}{5.39}{Exercise}
Let $A\in\mathscr H$.
Let $g\in\Cont{\Sp{A}}$
and set $B:=g(A)$.
Then $B\in\mathscr H$
and~$g$ maps~$\Sp{A}$ onto~$\Sp{B}$ (\ref{5.34}).
Every continuous $f\colon\Sp{B}\ra \R$
determines an operator~$f(B)$,
but also (as $f\circ g\in\Cont{\Sp{A}}$)
an operator $(f\circ g)(A)$.
Show that these are equal:
\begin{equation*}
f(g(A))\ =\ (f\circ g)(A)\htam{.}
\end{equation*}
\end{psec}
%
% 5.40
%
\begin{psec}{5.40}{Exercise}
For $A\in\mathscr H$
we define $e^A$ to be (of course) $f(A)$
with $f(t)=e^t\quad(t\in\Sp{A})$.
\begin{enumerate}
\item\label{5.40-1}
Show that for all $A\in\mathscr H$
\begin{equation*}
e^A\ =\ \sum_{n=0}^\infty \ \frac{A^n}{n!}\htam{.}
\end{equation*}
%
\item\label{5.40-2}
Show: If $A,B\in\mathscr H$
and $AB=BA$,
then $e^{A+B} = e^A\,e^B$.
\end{enumerate}
\end{psec}
%
% 5.41
%
\begin{psec}{5.41}{Exercise}
Let $P$ be a projection,
not~$I$ and not~$0$.
Show that $\Sp{P}=\{0,1\}$
and that
\begin{equation*}
f(P)\ =\ f(0)\,(I-P)\,+\,f(1)\,P
\end{equation*}
for every $f\colon \{0,1\}\ra\R$.
\end{psec}
\clearpage
\end{document}