-
Notifications
You must be signed in to change notification settings - Fork 336
/
Copy pathhsemotion.py
292 lines (243 loc) · 8.32 KB
/
hsemotion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
import os
import sys
import math
import time
import ailia
import cv2
import numpy as np
# import original modules
sys.path.append('../../util')
sys.path.append('../../face_detection/blazeface')
# logger
from logging import getLogger # noqa: E402
import webcamera_utils # noqa: E402
from blazeface_utils import compute_blazeface, crop_blazeface # noqa: E402
from image_utils import imread # noqa: E402
from model_utils import check_and_download_models # noqa: E402
from arg_utils import get_base_parser, update_parser # noqa: E402
logger = getLogger(__name__)
# ======================
# PARAMETERS
# ======================
ENET_B0_8_BEST_AFEW_WEIGHT_PATH = 'enet_b0_8_best_afew.onnx'
ENET_B0_8_BEST_AFEW_MODEL_PATH = 'enet_b0_8_best_afew.onnx.prototxt'
ENET_B0_8_BEST_VGAF_WEIGHT_PATH = 'enet_b0_8_best_vgaf.onnx'
ENET_B0_8_BEST_VGAF_MODEL_PATH = 'enet_b0_8_best_vgaf.onnx.prototxt'
ENET_B0_8_VA_MTL_WEIGHT_PATH = 'enet_b0_8_va_mtl.onnx'
ENET_B0_8_VA_MTL_MODEL_PATH = 'enet_b0_8_va_mtl.onnx.prototxt'
ENET_B2_8_WEIGHT_PATH = 'enet_b2_8.onnx'
ENET_B2_8_MODEL_PATH = 'enet_b2_8.onnx.prototxt'
REMOTE_PATH = \
'https://storage.googleapis.com/ailia-models/hsemotion/'
IMAGE_PATH = 'lenna.png'
EMOTION_MAX_CLASS_COUNT = 4
SLEEP_TIME = 0
EMOTION_CATEGORY = [
"Anger",
"Contempt",
"Disgust",
"Fear",
"Happiness",
"Neutral",
"Sadness",
"Surprise"
]
FACE_WEIGHT_PATH = 'blazeface.onnx'
FACE_MODEL_PATH = 'blazeface.onnx.prototxt'
FACE_REMOTE_PATH = "https://storage.googleapis.com/ailia-models/blazeface/"
FACE_MARGIN = 1.0
# ======================
# Arguemnt Parser Config
# ======================
parser = get_base_parser(
'High-Speed face Emotion recognition Model',
IMAGE_PATH,
None,
)
parser.add_argument(
'-m', '--model_name',
default='b0_8_best_afew',
choices=['b0_8_best_afew', 'b0_8_best_vgaf', 'b0_8_va_mtl', 'b2_8']
)
args = update_parser(parser)
MODEL_NAME = args.model_name
WEIGHT_PATH = 'enet_' + MODEL_NAME + '.onnx'
MODEL_PATH = WEIGHT_PATH + '.prototxt'
IMG_SIZE = 224 if '_b0_' in MODEL_PATH else 260
IS_MTL = 'mtl' in MODEL_PATH
# ======================
# Main functions
# ======================
def preprocess(img):
x = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
x = cv2.resize(x, (IMG_SIZE, IMG_SIZE)) / 255
mean = np.array([[[0.485, 0.456, 0.406]]])
std = np.array([[[0.229, 0.224, 0.225]]])
x = (x - mean) / std
return x.transpose(2, 0, 1)[np.newaxis, ...]
def postprocess(logits, max_class_count=None):
logits = logits.squeeze()
if IS_MTL:
x = logits[:-2]
else:
x = logits
x = np.exp(x - np.max(x)[np.newaxis])
scores = x / x.sum()[np.newaxis]
rank = np.argsort(-scores).squeeze()
if max_class_count is not None:
rank = rank[:max_class_count]
return rank, scores
def recognize_from_image():
hsemotion = ailia.Net(
MODEL_PATH,
WEIGHT_PATH,
env_id=args.env_id,
)
# input image loop
for image_path in args.input:
# prepare input data
logger.info(image_path)
# load input image and convert to BGRA
img = imread(image_path, cv2.IMREAD_UNCHANGED)
if img.shape[2] == 4:
img = cv2.cvtColor(img, cv2.COLOR_BGRA2BGR)
elif img.shape[2] == 1:
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
img = preprocess(img)
# inference emotion
logger.info('Start inference...')
if args.benchmark:
logger.info('BENCHMARK mode')
for i in range(5):
start = int(round(time.time() * 1000))
logits = hsemotion.predict(img)
end = int(round(time.time() * 1000))
logger.info(
f'\t[EMOTION MODEL] ailia processing time {end - start} ms'
)
else:
logits = hsemotion.predict(img)
rank, scores = postprocess(logits, EMOTION_MAX_CLASS_COUNT)
logger.info(f'emotion_class_count={len(rank)}')
# logger.info result
for idx, category in enumerate(rank):
logger.info(f'+ idx={idx}')
logger.info(f' category={category} '
f'[ {EMOTION_CATEGORY[category]} ]')
logger.info(f' prob={scores[category]}')
logger.info('')
logger.info('Script finished successfully.')
def recognize_from_video():
# net initialize
hsemotion = ailia.Net(
MODEL_PATH,
WEIGHT_PATH,
env_id=args.env_id,
)
detector = ailia.Net(FACE_MODEL_PATH, FACE_WEIGHT_PATH, env_id=args.env_id)
capture = webcamera_utils.get_capture(args.video)
# create video writer if savepath is specified as video format
if args.savepath is not None:
logger.warning('[WARNING] currently video results output feature '
'is not supported in this model!')
# TODO: shape should be debugged!
f_h = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
f_w = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
writer = webcamera_utils.get_writer(args.savepath, f_h, f_w)
else:
writer = None
frame_shown = False
while(True):
ret, frame = capture.read()
if (cv2.waitKey(1) & 0xFF == ord('q')) or not ret:
break
if frame_shown and cv2.getWindowProperty('frame', cv2.WND_PROP_VISIBLE) == 0:
break
# detect face
# WIP: FIXME: AiliaInvalidArgumentException error
detections = compute_blazeface(
detector,
frame,
anchor_path='../../face_detection/blazeface/anchors.npy',
)
for obj in detections:
# get detected face
crop_img, top_left, bottom_right = crop_blazeface(
obj, FACE_MARGIN, frame
)
if crop_img.shape[0] <= 0 or crop_img.shape[1] <= 0:
continue
crop_img = cv2.cvtColor(crop_img, cv2.COLOR_BGR2RGB)
# emotion inference
img = preprocess(crop_img)
logits = hsemotion.predict(img)
rank, scores = postprocess(logits, EMOTION_MAX_CLASS_COUNT)
count = len(rank)
logger.info('=' * 80)
logger.info(f'emotion_class_count={count}')
# logger.info result
emotion_text = ""
for idx, category in enumerate(rank):
logger.info(f'+ idx={idx}')
logger.info(
f' category={category} ' +
f'[ {EMOTION_CATEGORY[category]} ]'
)
logger.info(f' prob={scores[category]}')
if idx == 0:
emotion_text = (f'[ {EMOTION_CATEGORY[category]} ] '
f'prob={scores[category]:.3f}')
logger.info('')
# display label
LABEL_WIDTH = 400
LABEL_HEIGHT = 20
color = (255, 255, 255)
cv2.rectangle(frame, top_left, bottom_right, color, thickness=2)
cv2.rectangle(
frame,
top_left,
(top_left[0]+LABEL_WIDTH, top_left[1]+LABEL_HEIGHT),
color,
thickness=-1,
)
text_position = (top_left[0], top_left[1]+LABEL_HEIGHT//2)
color = (0, 0, 0)
fontScale = 0.5
cv2.putText(
frame,
emotion_text,
text_position,
cv2.FONT_HERSHEY_SIMPLEX,
fontScale,
color,
1,
)
# show result
cv2.imshow('frame', frame)
frame_shown = True
time.sleep(SLEEP_TIME)
# save results
if writer is not None:
writer.write(frame)
capture.release()
cv2.destroyAllWindows()
if writer is not None:
writer.release()
logger.info('Script finished successfully.')
def main():
# model files check and download
check_and_download_models(
WEIGHT_PATH, MODEL_PATH, REMOTE_PATH
)
if args.video:
check_and_download_models(
FACE_WEIGHT_PATH, FACE_MODEL_PATH, FACE_REMOTE_PATH
)
if args.video is not None:
# video mode
recognize_from_video()
else:
# image mode
recognize_from_image()
if __name__ == '__main__':
main()