-
Notifications
You must be signed in to change notification settings - Fork 337
/
Copy pathdid_m3d.py
173 lines (135 loc) · 5.23 KB
/
did_m3d.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import sys
import cv2
import yaml
import time
import ailia
import numpy as np
from did_m3d_util import Detect, get_objects_from_label
# import original modules
sys.path.append('../../util')
# logger
from logging import getLogger # noqa: E402
from model_utils import check_and_download_models # noqa
from image_utils import imread # noqa
from arg_utils import get_base_parser, get_savepath, update_parser # noqa: E402
import webcamera_utils
import time
logger = getLogger(__name__)
# ======================
# Parameters
# ======================
MODEL_NAME = 'did_m3d'
WEIGHT_PATH = MODEL_NAME + '.onnx'
MODEL_PATH = MODEL_NAME + '.onnx.prototxt'
REMOTE_PATH = 'https://storage.googleapis.com/ailia-models/did_m3d/'
IMAGE_PATH = '000005.png'
SAVE_IMAGE_PATH = 'output.png'
# ======================
# Arguemnt Parser Config
# ======================
parser = get_base_parser('did m3d model', IMAGE_PATH, SAVE_IMAGE_PATH)
parser.add_argument('--config', type=str, default='kitti.yaml')
parser.add_argument('--calib_path', type=str, default='000005.txt')
args = update_parser(parser)
def visualization(img,result_object):
objects = get_objects_from_label(result_object)
with open(args.calib_path, 'r') as f:
lines = f.readlines()
P2 = np.array(lines[2].strip().split(' ')[1:], dtype=np.float32).reshape(3, 4)
def line(img,p1, p2):
return cv2.line(img,(int(p1[0]), int(p1[1])),
(int(p2[0]), int(p2[1])),
color=(0,255,0))
for i in range(len(objects)):
corners_3d = objects[i].generate_corners3d()
corners_3d_hom = np.concatenate((corners_3d, np.ones((8, 1))), axis=1)
corners_img = np.matmul(corners_3d_hom , P2.T)
corners_img = corners_img[:, :2] / corners_img[:, 2][:, None]
# draw the upper 4 horizontal lines
img = line(img,corners_img[0], corners_img[1])
img = line(img,corners_img[1], corners_img[2])
img = line(img,corners_img[2], corners_img[3])
img = line(img,corners_img[3], corners_img[0])
#dras,w the lower 4 horizontal lines
img = line(img,corners_img[4], corners_img[5])
img = line(img,corners_img[5], corners_img[6])
img = line(img,corners_img[6], corners_img[7])
img = line(img,corners_img[7], corners_img[4])
#dras,w the 4 vertical lines
img = line(img,corners_img[4], corners_img[0])
img = line(img,corners_img[5], corners_img[1])
img = line(img,corners_img[6], corners_img[2])
img = line(img,corners_img[7], corners_img[3])
return img
# ======================
# Main functions
# ======================
def recognize_from_image():
# net initialize
net = ailia.Net(None,WEIGHT_PATH)
cfg = yaml.load(open(args.config, 'r'), Loader=yaml.Loader)
detect = Detect(net,cfg['dataset'],th=0.3)
# input image loop
for image_path in args.input:
logger.info(image_path)
img = imread(image_path)
# inference
logger.info('Start inference...')
if args.benchmark:
logger.info('BENCHMARK mode')
for i in range(5):
start = int(round(time.time() * 1000))
result_object = detect.run(img,args.calib_path)
end = int(round(time.time() * 1000))
logger.info(f'\tailia processing time {end - start} ms')
else:
result_object = detect.run(img,args.calib_path)
savepath = get_savepath(args.savepath, image_path, ext='.png')
res_img = visualization(img,result_object)
cv2.imwrite(savepath,res_img)
logger.info(f'saved at : {savepath}')
logger.info('Script finished successfully.')
def recognize_from_video():
# net initialize
net = ailia.Net(None,WEIGHT_PATH)
cfg = yaml.load(open(args.config, 'r'), Loader=yaml.Loader)
detect = Detect(net,cfg['dataset'],th=0.3)
capture = webcamera_utils.get_capture(args.video)
# create video writer if savepath is specified as video format
if args.savepath != SAVE_IMAGE_PATH:
f_h = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
f_w = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
writer = webcamera_utils.get_writer(args.savepath, f_h, f_w)
else:
writer = None
frame_shown = False
while (True):
ret, frame = capture.read()
if (cv2.waitKey(1) & 0xFF == ord('q')) or not ret:
break
if frame_shown and cv2.getWindowProperty('frame', cv2.WND_PROP_VISIBLE) == 0:
break
result_object = detect.run(frame,args.calib_path)
res_img = visualization(frame,result_object)
cv2.imshow('frame', res_img)
frame_shown = True
time.sleep(0.1)
# save results
if writer is not None:
writer.write(res_img)
capture.release()
cv2.destroyAllWindows()
if writer is not None:
writer.release()
logger.info('Script finished successfully.')
def main():
# model files check and download
check_and_download_models(WEIGHT_PATH, MODEL_PATH, REMOTE_PATH)
if args.video is None:
# image mode
recognize_from_image()
else:
# video mode
recognize_from_video()
if __name__ == '__main__':
main()