Skip to content

Files

Latest commit

55c0a9f · Jun 16, 2023

History

History

crowd_det

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
Dec 14, 2022
Dec 14, 2022
Jun 16, 2023
Dec 14, 2022
Dec 14, 2022

Detection in Crowded Scenes

Input

Input

(Image from http://www.crowdhuman.org/)

Output

Output

Usage

Automatically downloads the onnx and prototxt files on the first run. It is necessary to be connected to the Internet while downloading.

For the sample image,

$ python3 crowd_det.py

If you want to specify the input image, put the image path after the --input option.
You can use --savepath option to change the name of the output file to save.

$ python3 crowd_det.py --input IMAGE_PATH --savepath SAVE_IMAGE_PATH

By adding the --video option, you can input the video.
If you pass 0 as an argument to VIDEO_PATH, you can use the webcam input instead of the video file.

$ python3 crowd_det.py --video VIDEO_PATH

By adding the --model_type option, you can specify model type which is selected from "rcnn_fpn_baseline", "rcnn_emd_simple", "rcnn_emd_refine". (default is rcnn_fpn_baseline)

$ python3 crowd_det.py --model_type rcnn_fpn_baseline

Reference

Framework

Pytorch

Model Format

ONNX opset=16

Netron

rcnn_fpn_baseline_mge.onnx.prototxt
rcnn_emd_simple_mge.onnx.prototxt
rcnn_emd_refine_mge.onnx.prototxt