diff --git a/week1/Exercise2.ipynb b/week1/Exercise2.ipynb index 6cd775b..ff2dff9 100644 --- a/week1/Exercise2.ipynb +++ b/week1/Exercise2.ipynb @@ -50,7 +50,7 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -85,35 +85,9 @@ }, { "cell_type": "code", - "execution_count": 26, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " population householdsize racepctblack racePctWhite racePctAsian \\\n", - "9 103590 2.62 23.14 67.60 0.92 \n", - "13 57140 2.74 53.52 45.65 0.49 \n", - "17 180038 2.62 1.30 74.02 14.14 \n", - "19 261721 2.60 8.41 82.64 3.92 \n", - "21 7322564 2.60 28.71 52.26 7.00 \n", - "\n", - " racePctHisp agePct12t21 agePct12t29 agePct16t24 agePct65up \n", - "9 16.35 19.88 34.55 21.62 13.12 \n", - "13 0.43 16.51 28.17 14.68 13.38 \n", - "17 20.96 12.04 26.68 12.37 11.54 \n", - "19 8.91 14.18 32.78 15.14 4.58 \n", - "21 24.36 13.06 27.46 13.09 11.62 \n", - "9 26.88\n", - "13 27.26\n", - "17 5.02\n", - "19 2.39\n", - "21 26.59\n", - "Name: murdPerPop, dtype: float64\n" - ] - } - ], + "outputs": [], "source": [ "def printDataSet():\n", " (X_crime,y_crime) = get_crime_dataset()\n", @@ -126,20 +100,9 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(0.59690236423467447, 0.67949819476183415)" - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "#perform linear regression\n", "def ex1():\n", @@ -161,20 +124,9 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(0.78061368287329047, -0.055156513114217542)" - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "#perform polynomial regression of degree 2\n", "def ex1a():\n", @@ -196,20 +148,9 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(0.7577837996817649, 0.42712193149261213)" - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "# to avoid the problems of overfitting polynomial regression of higher degrees, we put a penalty on the\n", "# coefficients that are large.\n", @@ -236,20 +177,9 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(0.56772731184584013, 0.65054477060117732)" - ] - }, - "execution_count": 9, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "# when features vary wildly, e.g when calculating the price of the house: the square footage is in the thousands\n", "# and number of bedrooms is in the single digits, it's best to normalize the data to values \n", @@ -280,30 +210,9 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Alpha = 0.00\n", - "r-squared training: 1.00, r-squared test: -1485.23\n", - "Alpha = 1.00\n", - "r-squared training: 0.68, r-squared test: 0.65\n", - "Alpha = 10.00\n", - "r-squared training: 0.62, r-squared test: 0.67\n", - "Alpha = 20.00\n", - "r-squared training: 0.60, r-squared test: 0.67\n", - "Alpha = 50.00\n", - "r-squared training: 0.58, r-squared test: 0.65\n", - "Alpha = 100.00\n", - "r-squared training: 0.55, r-squared test: 0.63\n", - "Alpha = 1000.00\n", - "r-squared training: 0.27, r-squared test: 0.30\n" - ] - } - ], + "outputs": [], "source": [ "# use min max scaler and ridge regressor with alpha values in [0, 1, 10, 20, 50, 100, 1000] with a polynomial\n", "# of degree 3\n", @@ -340,34 +249,9 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Alpha = 0.10\n", - "r-squared training: 0.63, r-squared test: 0.69\n", - "Alpha = 0.50\n", - "r-squared training: 0.53, r-squared test: 0.62\n", - "Alpha = 1.00\n", - "r-squared training: 0.43, r-squared test: 0.52\n", - "Alpha = 2.00\n", - "r-squared training: 0.16, r-squared test: 0.19\n", - "Alpha = 3.00\n", - "r-squared training: 0.00, r-squared test: -0.00\n", - "Alpha = 5.00\n", - "r-squared training: 0.00, r-squared test: -0.00\n", - "Alpha = 10.00\n", - "r-squared training: 0.00, r-squared test: -0.00\n", - "Alpha = 20.00\n", - "r-squared training: 0.00, r-squared test: -0.00\n", - "Alpha = 50.00\n", - "r-squared training: 0.00, r-squared test: -0.00\n" - ] - } - ], + "outputs": [], "source": [ "# Lasso Regression\n", "# another way of doing regularization is using the Lasso Regression, which also penalizes the coeficients\n", @@ -406,17 +290,9 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "0.48715114223 0.562719985433\n" - ] - } - ], + "outputs": [], "source": [ "# Support Vector Machines transform of the data before finding a match \n", "def ex5():\n", @@ -443,18 +319,9 @@ }, { "cell_type": "code", - "execution_count": 30, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "{'C': 100.0}\n", - "0.561732591767 0.639787265159\n" - ] - } - ], + "outputs": [], "source": [ "# Use GridSearchCV to run SVR with different parameters \n", "def ex6():\n", diff --git a/week1/ex1data1.txt b/week1/ex1data1.txt deleted file mode 100644 index 1a32414..0000000 --- a/week1/ex1data1.txt +++ /dev/null @@ -1,98 +0,0 @@ -population,sales -6.1101,17.592 -5.5277,9.1302 -8.5186,13.662 -7.0032,11.854 -5.8598,6.8233 -8.3829,11.886 -7.4764,4.3483 -8.5781,12 -6.4862,6.5987 -5.0546,3.8166 -5.7107,3.2522 -14.164,15.505 -5.734,3.1551 -8.4084,7.2258 -5.6407,0.71618 -5.3794,3.5129 -6.3654,5.3048 -5.1301,0.56077 -6.4296,3.6518 -7.0708,5.3893 -6.1891,3.1386 -20.27,21.767 -5.4901,4.263 -6.3261,5.1875 -5.5649,3.0825 -18.945,22.638 -12.828,13.501 -10.957,7.0467 -13.176,14.692 -22.203,24.147 -5.2524,-1.22 -6.5894,5.9966 -9.2482,12.134 -5.8918,1.8495 -8.2111,6.5426 -7.9334,4.5623 -8.0959,4.1164 -5.6063,3.3928 -12.836,10.117 -6.3534,5.4974 -5.4069,0.55657 -6.8825,3.9115 -11.708,5.3854 -5.7737,2.4406 -7.8247,6.7318 -7.0931,1.0463 -5.0702,5.1337 -5.8014,1.844 -11.7,8.0043 -5.5416,1.0179 -7.5402,6.7504 -5.3077,1.8396 -7.4239,4.2885 -7.6031,4.9981 -6.3328,1.4233 -6.3589,-1.4211 -6.2742,2.4756 -5.6397,4.6042 -9.3102,3.9624 -9.4536,5.4141 -8.8254,5.1694 -5.1793,-0.74279 -21.279,17.929 -14.908,12.054 -18.959,17.054 -7.2182,4.8852 -8.2951,5.7442 -10.236,7.7754 -5.4994,1.0173 -20.341,20.992 -10.136,6.6799 -7.3345,4.0259 -6.0062,1.2784 -7.2259,3.3411 -5.0269,-2.6807 -6.5479,0.29678 -7.5386,3.8845 -5.0365,5.7014 -10.274,6.7526 -5.1077,2.0576 -5.7292,0.47953 -5.1884,0.20421 -6.3557,0.67861 -9.7687,7.5435 -6.5159,5.3436 -8.5172,4.2415 -9.1802,6.7981 -6.002,0.92695 -5.5204,0.152 -5.0594,2.8214 -5.7077,1.8451 -7.6366,4.2959 -5.8707,7.2029 -5.3054,1.9869 -8.2934,0.14454 -13.394,9.0551 -5.4369,0.61705 diff --git a/week1/ex1data2.txt b/week1/ex1data2.txt deleted file mode 100644 index 6c5acd9..0000000 --- a/week1/ex1data2.txt +++ /dev/null @@ -1,48 +0,0 @@ -population,valy,sales -2104,3,399900 -1600,3,329900 -2400,3,369000 -1416,2,232000 -3000,4,539900 -1985,4,299900 -1534,3,314900 -1427,3,198999 -1380,3,212000 -1494,3,242500 -1940,4,239999 -2000,3,347000 -1890,3,329999 -4478,5,699900 -1268,3,259900 -2300,4,449900 -1320,2,299900 -1236,3,199900 -2609,4,499998 -3031,4,599000 -1767,3,252900 -1888,2,255000 -1604,3,242900 -1962,4,259900 -3890,3,573900 -1100,3,249900 -1458,3,464500 -2526,3,469000 -2200,3,475000 -2637,3,299900 -1839,2,349900 -1000,1,169900 -2040,4,314900 -3137,3,579900 -1811,4,285900 -1437,3,249900 -1239,3,229900 -2132,4,345000 -4215,4,549000 -2162,4,287000 -1664,2,368500 -2238,3,329900 -2567,4,314000 -1200,3,299000 -852,2,179900 -1852,4,299900 -1203,3,239500 diff --git a/week1/ex3.py b/week1/ex3.py deleted file mode 100644 index 5df6b16..0000000 --- a/week1/ex3.py +++ /dev/null @@ -1,41 +0,0 @@ -import pandas as pd -import matplotlib.pyplot as plt -import numpy as np -from matplotlib.colors import ListedColormap -from sklearn.neighbors import KNeighborsClassifier -from sklearn.model_selection import train_test_split -from sklearn import svm, metrics - -df = pd.read_csv('ex2data1.txt',header=None) -df.columns = ['test1','test2','pass'] -notPassed = df[df['pass'] == 0] -passed = df[df['pass'] == 1] -plt.plot(notPassed['test1'],notPassed['test2'],'yo') -plt.plot(passed['test1'],passed['test2'],'bo') -plt.show() - -X = df[['test1','test2']] -y = df['pass'] - -# h = .01 -h = 1 -cmap_light = ListedColormap(['#FFAAAA', '#AAFFAA', '#AAAAFF']) -X_train, X_test, y_train, y_test = train_test_split(X,y, random_state=0) -neigh = KNeighborsClassifier(n_neighbors=3).fit(X_train,y_train) -print (neigh.score(X_train, y_train),neigh.score(X_test, y_test)) -# x_min, x_max = df['test1'].min() - 3, df['test1'].max() + 3 -# y_min, y_max = df['test2'].min() - 3, df['test2'].max() + 3 -x_min, x_max = df['test1'].min() - .2, df['test1'].max() + .2 -y_min, y_max = df['test2'].min() - .2, df['test2'].max() + .2 -xx, yy = np.meshgrid(np.arange(x_min, x_max, h), - np.arange(y_min, y_max, h)) -Z = neigh.predict(np.c_[xx.ravel(), yy.ravel()]) -# PREDICTED = neigh.predict(X_test) -# metrics.classification_report(y_test,PREDICTED) - -# Put the result into a color plot -Z = Z.reshape(xx.shape) -plt.pcolormesh(xx, yy, Z, cmap=cmap_light) -plt.plot(notPassed['test1'],notPassed['test2'],'yo') -plt.plot(passed['test1'],passed['test2'],'bo') -plt.show() \ No newline at end of file diff --git a/week1/exercise1.ipynb b/week1/exercise1.ipynb index 2498261..777a43c 100644 --- a/week1/exercise1.ipynb +++ b/week1/exercise1.ipynb @@ -25,36 +25,22 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ - "# let's generate some random data that we want to find an equation for\n", + "# let's read price of stock over time\n", "def getXAndY():\n", - " import numpy as np\n", - " np.random.seed(0)\n", - " n = 15\n", - " x = np.linspace(0,10,n) + np.random.randn(n)/5\n", - " y = np.sin(x)+x/6 + np.random.randn(n)/10\n", - " return(x,y)" + " import pandas as pd\n", + " df = pd.read_csv('stock.txt')\n", + " return(df['time'].values,df['price'])" ] }, { "cell_type": "code", - "execution_count": 2, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD8CAYAAACMwORRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAD4ZJREFUeJzt3XGMHOddxvHnOTsBrkUN1KcSbN9tJKwiU1ElrEJKJBRR\nkBKo4kpUVaKjTaugU6EhKVRCoZYoqnQSSKhASZTqSEISsUoauRG4VSBEbaWARKOs3TSNbSJOJnc+\n4+JLAm7FIYLlH3/MHL7b3HnnzrMzu+98P9Jpd959c/Objf3s63dm9nVECACQlrG6CwAAlI9wB4AE\nEe4AkCDCHQASRLgDQIIIdwBIEOEOAAki3AEgQYQ7ACRoZ1073rVrV7Rarbp2DwAj6ciRI69FxES/\nfrWFe6vVUrfbrWv3ADCSbC8U6ce0DAAkiHAHgAQR7gCQIMIdABJEuANAggh3APXodKRWSxobyx47\nnborSkptl0ICaLBOR5qZkVZWsu2FhWxbkqan66srIYzcAVTv4MGLwb5qZSVrRykIdwDVW1zcWju2\njHAHUL3Jya21Y8sIdwDVm52VxsfXt42PZ+0oBeEOoHrT09LcnDQ1JdnZ49wcJ1NLxNUyAOoxPU2Y\nDxAjdwBIEOEOAAki3AEgQYQ7ACSIcAeABBHuAJAgwh0AEkS4A0CCCHcASBDhDgAJItwBIEGEO4DR\nxnJ9G+KLwwCMLpbr2xQjdwCji+X6NkW4AxhdLNe3KcIdwOhiub5NEe4ARhfL9W2qb7jb3mv7G7aP\n2z5m+54N+tj2F2zP237J9nWDKRcA1mC5vk0VuVrmvKRPR8RR2z8s6YjtZyPi+Jo+t0jal//8rKQH\n8kcAGCyW69tQ35F7RJyJiKP58+9LOiFpd0+3A5Iei8w3JV1l++rSqwUAFLKlOXfbLUnXSnq+56Xd\nkk6t2V7SWz8AAAAVKRzutt8u6cuSPhUR39vOzmzP2O7a7i4vL2/nVwAACigU7ravUBbsnYh4aoMu\npyXtXbO9J29bJyLmIqIdEe2JiYnt1AsAKKDI1TKW9JCkExHx+U26HZb00fyqmRsknYuIMyXWCQDY\ngiJXy9wo6SOSvmP7xbztM5ImJSkivijpaUm/LGle0oqkj5dfKgCgqL7hHhH/KMl9+oSkT5ZVFADg\n8nCHKgAkiHAHgAQR7gCQIMIdABJEuANAggh3AEgQ4Q40HQtMZxJ7H1ggG2gyFpjOJPg+OLv/qHrt\ndju63W4t+waQa7WyIOs1NSW9+mrV1dRnhN4H20ciot2vH9MyQJOxwHQmwfeBcAeajAWmMwm+D4Q7\n0GQsMJ1J8H0g3IEmY4HpTILvAydUAWCEcEIVABqMcAeABBHuAJAgwh0AEkS4A0CCCHcASBDhDgAJ\nItwBIEGEOwAkiHAHgAQR7gCQIMIdABJEuANAggh3AEgQ4Q4ACSLcgVHS6WSLOY+NZY+dTt0VYUjt\nrLsAAAV1OtLMjLSykm0vLGTb0kivGITB6Dtyt/2w7bO2X97k9Ztsn7P9Yv7z++WXCUAHD14M9lUr\nK1k70KPIyP0RSfdJeuwSff4hIj5QSkUANra4uLV2NFrfkXtEPCfpjQpqAXApk5Nba0ejlXVC9X22\nv237b23/VEm/E8Bas7PS+Pj6tvHxrB3oUUa4H5U0FRHvlfTnkv56s462Z2x3bXeXl5dL2DXQINPT\n0tycNDUl2dnj3BwnU7EhR0T/TnZL0lcj4j0F+r4qqR0Rr12qX7vdjm63W6xKAIAkyfaRiGj363fZ\nI3fbP2bb+fPr89/5+uX+XgDA9vW9Wsb245JukrTL9pKkz0q6QpIi4ouSPiTpN2yfl/Tfkm6LIv8c\nAAAMTN9wj4jb+7x+n7JLJQEAQ4KvHwCABBHuAJAgwh0AEkS4A0CCCHcASBDhDgAJItwBIEGEOwAk\niHAHgAQR7gCQIMIdABJEuANAggj3MnU6UqsljY1lj51O3RUBaKgiC2SjiE5Hmpm5uDr9wkK2LbFS\nDoDKMXIvy8GDF4N91cpK1g4AFSPcy7K4uLV2AM1T4dQt4V6WycmttQNoltWp24UFKeLi1O2AAp5w\nL8vsrDQ+vr5tfDxrB4CKp24J97JMT0tzc9LUlGRnj3NznEwFkKl46parZco0PU2YA9jY5GQ2FbNR\n+wAwcgeAKlQ8dUu4A0AVKp66ZVoGAKpS4dQtI3cASBDhDgAJItwBIEGEOwAkiHAHgAQR7gCQIMId\nABJEuANAgvqGu+2HbZ+1/fImr9v2F2zP237J9nXllwkA2IoiI/dHJN18iddvkbQv/5mR9MDll1Uy\n1jYF0DB9wz0inpP0xiW6HJD0WGS+Kekq21eXVeBlq/gL8mvBhxeAHmXMue+WdGrN9lLe9ha2Z2x3\nbXeXl5dL2HUBqa9t2oQPLwBbVukJ1YiYi4h2RLQnJiaq2Wnqa5um/uEFYFvKCPfTkvau2d6Ttw2H\n1Nc2Tf3DC8C2lBHuhyV9NL9q5gZJ5yLiTAm/txypr22a+ocXgG0pcink45L+SdK7bS/ZvtP2J2x/\nIu/ytKSTkuYl/YWk3xxYtduR+tqmqX94AdgWR0QtO26329HtdmvZd3I6nWyOfXExG7HPzqbz4QVg\nHdtHIqLdrx8rMaWAhbkB9ODrBwAgQYQ7ACSIcAeABBHuAJAgwh0AEkS4A0CCCHcASBDhDgAJItwB\nIEGEOwAkiHAHgAQR7gCQIMIdABJEuANAggh3AEgQ4Q4ACSLcASBBhDsAJIhwB4AEEe4AkCDCHQAS\nRLgDQIIIdwBIEOEOAAki3AEgQYQ7ACSIcAeABBHuAJAgwh0AEkS4A0CCCoW77Zttv2J73va9G7z+\nMdvLtl/Mf369/FIBAEXt7NfB9g5J90v6JUlLkl6wfTgijvd0/VJE3DWAGgEAW1Rk5H69pPmIOBkR\nb0p6QtKBwZYFALgcRcJ9t6RTa7aX8rZev2r7JduHbO/d6BfZnrHdtd1dXl7eRrkAgCLKOqH6FUmt\niPhpSc9KenSjThExFxHtiGhPTEyUtGsAQK8i4X5a0tqR+J687f9FxOsR8T/55oOSfqac8np0OlKr\nJY2NZY+dzkB2AwCjrki4vyBpn+1rbF8p6TZJh9d2sH31ms1bJZ0or8RcpyPNzEgLC1JE9jgzQ8AD\nwAb6hntEnJd0l6RnlIX2kxFxzPbnbN+ad7vb9jHb35Z0t6SPlV7pwYPSysr6tpWVrB0AsI4jopYd\nt9vt6Ha7xf+DsbFsxN7Lli5cKK8wABhito9ERLtfv9G5Q3VycmvtANBgoxPus7PS+Pj6tvHxrB0A\nsM7ohPv0tDQ3J01NZVMxU1PZ9vR03ZWlh6uSgJHX9+sHhsr0NGE+aKtXJa2evF69KknivQdGyOiM\n3FENrkoCkkC4Y73Fxa21AxhKhDvW46qk7eE8BYYM4Y71uCpp67h7GkOIcMd6XJW0dZynwBAanTtU\ngWHF3dOoUHp3qALDivMUGEKEO3C5OE+BIUS4A5eL8xQYQqN1hyowrLh7GkOGkTsAJIhwB4AEEe4A\nkCDCHQASRLgDQIIIdwBIEOEOAAki3AEgQYQ7ACSIcAeABBHuAJAgwh3FsIwcMFL44jD0t7qM3Opq\nQ6vLyEl8WRYwpBi5oz+WkQNGDuGO/hYXt9YOoHaEO/pjGTlg5BQKd9s3237F9rztezd4/Qdsfyl/\n/XnbrbILRY1YRg4YOX3D3fYOSfdLukXSfkm3297f0+1OSf8RET8h6U8k/VHZhaJGLCMHjJwiV8tc\nL2k+Ik5Kku0nJB2QdHxNnwOS/iB/fkjSfbYdEVFiragTy8gBI6XItMxuSafWbC/lbRv2iYjzks5J\nemcZBQIAtq7SE6q2Z2x3bXeXl5er3DUANEqRcD8tae+a7T1524Z9bO+U9A5Jr/f+ooiYi4h2RLQn\nJia2VzFwObjTFg1RJNxfkLTP9jW2r5R0m6TDPX0OS7ojf/4hSV9nvh1DZ/VO24UFKeLinbYEPBLU\nN9zzOfS7JD0j6YSkJyPimO3P2b417/aQpHfanpf0O5LecrkkUDvutEWDuK4Bdrvdjm63W8u+0VBj\nY9mIvZctXbhQfT3ANtg+EhHtfv24QxXNwZ22aBDCHc3BnbZoEMIdzcGdtmgQvs8dzcKdtmgIRu4A\nkCDCHaOFm5CAQpiWwehguT+gMEbuGB3chAQURrhjdLDcH1AY4Y7RwU1IQGGEO0YHNyEBhRHuGB3c\nhAQUxtUyGC3chAQUwsgdABJEuANAggh3AEgQ4Q4ACSLcASBBtS2zZ3tZ0sKapl2SXqulmPo19dib\netxSc4+9qcctlXfsUxEx0a9TbeHey3a3yLqAKWrqsTf1uKXmHntTj1uq/tiZlgGABBHuAJCgYQr3\nuboLqFFTj72pxy0199ibetxSxcc+NHPuAIDyDNPIHQBQkqEId9s3237F9rzte+uupwq299r+hu3j\nto/Zvqfumqpme4ftb9n+at21VMn2VbYP2f5n2ydsv6/umqpg+7fzP+sv237c9g/WXdOg2H7Y9lnb\nL69p+1Hbz9r+l/zxRwZZQ+3hbnuHpPsl3SJpv6Tbbe+vt6pKnJf06YjYL+kGSZ9syHGvdY+kE3UX\nUYM/k/R3EfGTkt6rBrwHtndLultSOyLeI2mHpNvqrWqgHpF0c0/bvZK+FhH7JH0t3x6Y2sNd0vWS\n5iPiZES8KekJSQdqrmngIuJMRBzNn39f2V/w3fVWVR3beyT9iqQH666lSrbfIennJT0kSRHxZkT8\nZ71VVWanpB+yvVPSuKR/q7megYmI5yS90dN8QNKj+fNHJX1wkDUMQ7jvlnRqzfaSGhRykmS7Jela\nSc/XW0ml/lTS70q6UHchFbtG0rKkv8ynpB60/ba6ixq0iDgt6Y8lLUo6I+lcRPx9vVVV7l0RcSZ/\n/l1J7xrkzoYh3BvN9tslfVnSpyLie3XXUwXbH5B0NiKO1F1LDXZKuk7SAxFxraT/0oD/eT4M8vnl\nA8o+3H5c0tts/1q9VdUnsssUB3qp4jCE+2lJe9ds78nbkmf7CmXB3omIp+qup0I3SrrV9qvKpuF+\nwfZf1VtSZZYkLUXE6r/SDikL+9T9oqR/jYjliPhfSU9J+rmaa6rav9u+WpLyx7OD3NkwhPsLkvbZ\nvsb2lcpOshyuuaaBs21l864nIuLzdddTpYj4vYjYExEtZf+/vx4RjRjFRcR3JZ2y/e686f2SjtdY\nUlUWJd1gezz/s/9+NeBEco/Dku7In98h6W8GubPa11CNiPO275L0jLIz6A9HxLGay6rCjZI+Iuk7\ntl/M2z4TEU/XWBOq8VuSOvlg5qSkj9dcz8BFxPO2D0k6quxKsW8p4btVbT8u6SZJu2wvSfqspD+U\n9KTtO5V9I+6HB1oDd6gCQHqGYVoGAFAywh0AEkS4A0CCCHcASBDhDgAJItwBIEGEOwAkiHAHgAT9\nH/Tghco0V2JXAAAAAElFTkSuQmCC\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "import pandas as pd\n", "import numpy as np\n", @@ -67,30 +53,9 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD8CAYAAACMwORRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAD7BJREFUeJzt3XGMHOddxvHnOTsBroWG1qeS2r47S1hFbkWVsEpSIqGI\nguRAGyNRoUTXNq1SnQoNSaESCrVEUKWTQEIFSqJURxKSqKukkRuBqQIhaiuFStTKnpumsU3EyeTO\nZ1x8ScCtOESw/OOPmcN3lzvv3Hl2Zved70eydufdNzu/2STPvn5nZl9HhAAAaRmquwAAQPkIdwBI\nEOEOAAki3AEgQYQ7ACSIcAeABBHuAJAgwh0AEkS4A0CCtte14x07dsT4+HhduweAgTQzM/NqRIx0\n61dbuI+Pj6vT6dS1ewAYSLbnivRjWgYAEkS4A0CCCHcASBDhDgAJItwBIEGEO4B6tNvS+Lg0NJQ9\nttt1V5SU2i6FBNBg7bY0OSktLWXbc3PZtiRNTNRXV0IYuQOo3sGDF4N92dJS1o5SEO4Aqjc/v7l2\nbBrhDqB6o6Oba8emEe4Aqjc1JQ0Pr24bHs7aUQrCHUD1Jiak6WlpbEyys8fpaU6mloirZQDUY2KC\nMO8hRu4AkCDCHQASRLgDQIIIdwBIEOEOAAki3AEgQYQ7ACSIcAeABBHuAJAgwh0AEkS4A0CCCHcA\ng43l+tbFD4cBGFws17chRu4ABhfL9W2IcAcwuFiub0OEO4DBxXJ9GyLcAQwuluvbUNdwt73b9jdt\nH7d9zPbd6/Sx7S/anrX9ou1re1MuAKzAcn0bKnK1zHlJn42Io7Z/XNKM7Wcj4viKPjdL2pv/uV7S\nA/kjAPQWy/Wtq+vIPSLORMTR/PkPJZ2QtHNNtwOSHovMtyVdZfvq0qsFABSyqTl32+OSrpF0ZM1L\nOyWdWrG9oDd/AQAAKlI43G2/VdJXJX0mIn6wlZ3ZnrTdsd1ZXFzcylsAAAooFO62r1AW7O2IeGqd\nLqcl7V6xvStvWyUipiOiFRGtkZGRrdQLACigyNUylvSQpBMR8YUNuh2W9LH8qpkbJJ2LiDMl1gkA\n2IQiV8vcKOmjkr5n+4W87XOSRiUpIr4k6WlJvyJpVtKSpE+UXyoAoKiu4R4R35LkLn1C0qfLKgoA\ncHm4QxUAEkS4A0CCCHcASBDhDgAJItwBIEGEOwAkiHAHmo4FpjOJfQ4skA00GQtMZxL8HJzdf1S9\nVqsVnU6nln0DyI2PZ0G21tiY9MorVVdTnwH6HGzPRESrWz+mZYAmY4HpTIKfA+EONBkLTGcS/BwI\nd6DJWGA6k+DnQLgDTcYC05kEPwdOqALAAOGEKgA0GOEOAAki3AEgQYQ7ACSIcAeABBHuAJAgwh0A\nEkS4A0CCCHcASBDhDgAJItwBIEGEOwAkiHAHgAQR7gCQIMIdABJEuAODpN3OFnMeGsoe2+26K0Kf\n2l53AQAKarelyUlpaSnbnpvLtqWBXjEIvdF15G77Ydtnbb+0wes32T5n+4X8zx+UXyYAHTx4MdiX\nLS1l7cAaRUbuj0i6T9Jjl+jzjxHxwVIqArC++fnNtaPRuo7cI+I5Sa9XUAuASxkd3Vw7Gq2sE6rv\nt/1d239n+z0lvSeAlaampOHh1W3Dw1k7sEYZ4X5U0lhEvE/SX0j664062p603bHdWVxcLGHXQINM\nTEjT09LYmGRnj9PTnEzFuhwR3TvZ45K+FhHvLdD3FUmtiHj1Uv1arVZ0Op1iVQIAJEm2ZyKi1a3f\nZY/cbf+UbefPr8vf87XLfV8AwNZ1vVrG9uOSbpK0w/aCpHslXSFJEfElSR+W9Ju2z0v6b0m3RpG/\nDgAAeqZruEfEbV1ev0/ZpZIAgD7Bzw8AQIIIdwBIEOEOAAki3AEgQYQ7ACSIcAeABBHuAJAgwh0A\nEkS4A0CCCHcASBDhDgAJItwBIEGEe5nabWl8XBoayh7b7borAtBQRRbIRhHttjQ5eXF1+rm5bFti\npRwAlWPkXpaDBy8G+7KlpawdACpGuJdlfn5z7QCap8KpW8K9LKOjm2sH0CzLU7dzc1LExanbHgU8\n4V6WqSlpeHh12/Bw1g4AFU/dEu5lmZiQpqelsTHJzh6npzmZCiBT8dQtV8uUaWKCMAewvtHRbCpm\nvfYeYOQOAFWoeOqWcAeAKlQ8dcu0DABUpcKpW0buAJCggRu5f+TBI/rW7Kt1lwEgYdfveXtP33/f\nu35C937oPT3dByN3AEjQwI3cv/zJ6+suAQD6HiN3AEgQ4Q4ACSLcASBBhDsAJKhruNt+2PZZ2y9t\n8Lptf9H2rO0XbV9bfpkAgM0oMnJ/RNL+S7x+s6S9+Z9JSQ9cflklY21TAA3TNdwj4jlJr1+iywFJ\nj0Xm25Kusn11WQVetop/IL8WfHkBWKOMOfedkk6t2F7I297E9qTtju3O4uJiCbsuIPW1TZvw5QVg\n0yo9oRoR0xHRiojWyMhINTtNfW3T1L+8AGxJGeF+WtLuFdu78rb+kPrapql/eQHYkjLC/bCkj+VX\nzdwg6VxEnCnhfcuR+tqmqX95AdiSIpdCPi7pnyS92/aC7Ttsf8r2p/IuT0s6KWlW0l9K+q2eVbsV\nqa9tmvqXF4AtcUTUsuNWqxWdTqeWfSen3c7m2OfnsxH71FQ6X14AVrE9ExGtbv0G7lchsQ4W5gaw\nBj8/AAAJItwBIEGEOwAkiHAHgAQR7gCQIMIdABJEuANAggh3AEgQ4Q4ACSLcASBBhDsAJIhwB4AE\nEe4AkCDCHQASRLgDQIIIdwBIEOEOAAki3AEgQYQ7ACSIcAeABBHuAJAgwh0AEkS4A0CCCHcASBDh\nDgAJItwBIEGEOwAkiHAHgAQR7gCQIMIdABJUKNxt77f9su1Z2/es8/rHbS/afiH/88nySwUAFLW9\nWwfb2yTdL+mXJS1Iet724Yg4vqbrVyLizh7UCADYpCIj9+skzUbEyYh4Q9ITkg70tiwAwOUoEu47\nJZ1asb2Qt63167ZftH3I9u713sj2pO2O7c7i4uIWygUAFFHWCdW/lTQeET8r6VlJj67XKSKmI6IV\nEa2RkZGSdg0AWKtIuJ+WtHIkvitv+38R8VpE/E+++aCknyunvDXabWl8XBoayh7b7Z7sBgAGXZFw\nf17SXtt7bF8p6VZJh1d2sH31is1bJJ0or8Rcuy1NTkpzc1JE9jg5ScADwDq6hntEnJd0p6RnlIX2\nkxFxzPbnbd+Sd7vL9jHb35V0l6SPl17pwYPS0tLqtqWlrB0AsIojopYdt1qt6HQ6xf+BoaFsxL6W\nLV24UF5hANDHbM9ERKtbv8G5Q3V0dHPtANBggxPuU1PS8PDqtuHhrB0AsMrghPvEhDQ9LY2NZVMx\nY2PZ9sRE3ZWlh6uSgIHX9ecH+srEBGHea8tXJS2fvF6+KkniswcGyOCM3FENrkoCkkC4Y7X5+c21\nA+hLhDtW46qkreE8BfoM4Y7VuCpp87h7Gn2IcMdqXJW0eZynQB8anDtUgX7F3dOoUHp3qAL9ivMU\n6EOEO3C5OE+BPkS4A5eL8xToQ4N1hyrQr7h7Gn2GkTsAJIhwB4AEEe4AkCDCHQASRLgDQIIIdwBI\nEOEOAAki3AEgQYQ7ACSIcAeABBHuAJAgwh3FsIwcMFD44TB0t7yM3PJqQ8vLyEn8WBbQpxi5ozuW\nkQMGDuGO7ubnN9cOoHaEO7pjGTlg4BQKd9v7bb9se9b2Peu8/iO2v5K/fsT2eNmFokYsIwcMnK7h\nbnubpPsl3Sxpn6TbbO9b0+0OSf8RET8t6U8l/XHZhaJGLCMHDJwiV8tcJ2k2Ik5Kku0nJB2QdHxF\nnwOS/jB/fkjSfbYdEVFiragTy8gBA6XItMxOSadWbC/kbev2iYjzks5JekcZBQIANq/SE6q2J213\nbHcWFxer3DUANEqRcD8tafeK7V1527p9bG+X9DZJr619o4iYjohWRLRGRka2VjFwObjTFg1RJNyf\nl7TX9h7bV0q6VdLhNX0OS7o9f/5hSd9gvh19Z/lO27k5KeLinbYEPBLUNdzzOfQ7JT0j6YSkJyPi\nmO3P274l7/aQpHfYnpX0u5LedLkkUDvutEWDuK4BdqvVik6nU8u+0VBDQ9mIfS1bunCh+nqALbA9\nExGtbv24QxXNwZ22aBDCHc3BnbZoEMIdzcGdtmgQfs8dzcKdtmgIRu4AkCDCHYOFm5CAQpiWweBg\nuT+gMEbuGBzchAQURrhjcLDcH1AY4Y7BwU1IQGGEOwYHNyEBhRHuGBzchAQUxtUyGCzchAQUwsgd\nABJEuANAggh3AEgQ4Q4ACSLcASBBtS2zZ3tR0tyKph2SXq2lmPo19dibetxSc4+9qcctlXfsYxEx\n0q1TbeG+lu1OkXUBU9TUY2/qcUvNPfamHrdU/bEzLQMACSLcASBB/RTu03UXUKOmHntTj1tq7rE3\n9bilio+9b+bcAQDl6aeROwCgJH0R7rb3237Z9qzte+qupwq2d9v+pu3jto/Zvrvumqpme5vt79j+\nWt21VMn2VbYP2f5n2ydsv7/umqpg+3fy/9Zfsv247R+tu6Zesf2w7bO2X1rR9nbbz9r+l/zxJ3tZ\nQ+3hbnubpPsl3Sxpn6TbbO+rt6pKnJf02YjYJ+kGSZ9uyHGvdLekE3UXUYM/l/T3EfEzkt6nBnwG\ntndKuktSKyLeK2mbpFvrraqnHpG0f03bPZK+HhF7JX093+6Z2sNd0nWSZiPiZES8IekJSQdqrqnn\nIuJMRBzNn/9Q2f/gO+utqjq2d0n6VUkP1l1LlWy/TdIvSHpIkiLijYj4z3qrqsx2ST9me7ukYUn/\nVnM9PRMRz0l6fU3zAUmP5s8flfRrvayhH8J9p6RTK7YX1KCQkyTb45KukXSk3koq9WeSfk/ShboL\nqdgeSYuS/iqfknrQ9lvqLqrXIuK0pD+RNC/pjKRzEfEP9VZVuXdGxJn8+fclvbOXO+uHcG8022+V\n9FVJn4mIH9RdTxVsf1DS2YiYqbuWGmyXdK2kByLiGkn/pR7/9bwf5PPLB5R9ub1L0ltsf6TequoT\n2WWKPb1UsR/C/bSk3Su2d+VtybN9hbJgb0fEU3XXU6EbJd1i+xVl03C/aPvL9ZZUmQVJCxGx/Le0\nQ8rCPnW/JOlfI2IxIv5X0lOSfr7mmqr277avlqT88Wwvd9YP4f68pL2299i+UtlJlsM119Rztq1s\n3vVERHyh7nqqFBG/HxG7ImJc2b/vb0REI0ZxEfF9Sadsvztv+oCk4zWWVJV5STfYHs7/2/+AGnAi\neY3Dkm7Pn98u6W96ubPa11CNiPO275T0jLIz6A9HxLGay6rCjZI+Kul7tl/I2z4XEU/XWBOq8duS\n2vlg5qSkT9RcT89FxBHbhyQdVXal2HeU8N2qth+XdJOkHbYXJN0r6Y8kPWn7DmW/iPsbPa2BO1QB\nID39MC0DACgZ4Q4ACSLcASBBhDsAJIhwB4AEEe4AkCDCHQASRLgDQIL+D6NxjQ1q3TKAAAAAAElF\nTkSuQmCC\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "(0.0, -0.47808641737141788)" - ] - }, - "execution_count": 3, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "# let's make a model that always predict the mean\n", "# we need to do a reshape of the data because train_test_split expects a [[]] and the data is just one column []\n", @@ -120,30 +85,9 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD8CAYAAACMwORRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGoxJREFUeJzt3Xt8FfWZx/HPE64GEVEQEUiCCqKgiKQiWC2KCogVrZeq\nlFXXLa1b29pqWxW2XjCV2tbVrlcqal1T8brKWm94l6JIQC0CXkBJCCIXRRBQbnn2jxPWJOfEnMA5\nM+fMfN+vl69knhkzzwT4ZvKby8/cHRERiZaCsBsQEZHMU7iLiESQwl1EJIIU7iIiEaRwFxGJIIW7\niEgEKdxFRCJI4S4iEkEKdxGRCGoZ1o47derkJSUlYe1eRCQvzZkzZ7W7d25qu9DCvaSkhIqKirB2\nLyKSl8ysMp3tNCwjIhJBCncRkQhSuIuIRJDCXUQkghTuIiIRpHAXkXCUl0NJCRQUJD6Wl4fdUaSE\ndiukiMRYeTmMGwcbNyaWKysTywBjxoTXV4TozF1Egjd+/NfBvt3GjYm6ZITCXUSCV1XVvLo0m8Jd\nRIJXVNS8ujSbwl1EgldWBoWF9WuFhYm6ZITCXUSCN2YMTJ4MxcVglvg4ebIupmaQ7pYRkXCMGaMw\nzyKduYuIRJDCXUQkghTuIiIRpHAXEYkghbuISAQp3EVEIkjhLiISQQp3EZEIUriLiESQwl1EJIIU\n7iIiEaRwF5H8pun6UtKLw0Qkf2m6vkbpzF1E8pem62uUwl1E8pem62uUwl1E8pem62uUwl1E8pem\n62tUk+FuZj3M7EUzW2Bm883s5ym2MTP7s5ktMrN/mtlh2WlXRKQOTdfXqHTultkKXOLuc82sPTDH\nzKa7+4I624wEetX+Nwi4rfajiEh2abq+lJo8c3f35e4+t/bzL4CFQLcGm40G7vWE14HdzaxrxrsV\nEZG0NGvM3cxKgAHArAarugFL6yxXk/wDQEREApJ2uJvZrsAjwMXuvm5HdmZm48yswswqVq1atSNf\nQkRE0pBWuJtZKxLBXu7uj6bYZBnQo85y99paPe4+2d1L3b20c+fOO9KviIikIZ27ZQyYAix09xsa\n2Wwa8C+1d80cAax19+UZ7FNERJohnbtljgTGAvPM7K3a2hVAEYC73w48CZwILAI2AudnvlUREUlX\nk+Hu7jMAa2IbB36SqaZERGTn6AlVEZEIUriLiESQwl1EJIIU7iIiEaRwFxEJyIZNWymfVcncqjVZ\n35em2RMRybKFy9dRPquSx978mPWbtnLBt3tyWFHHrO5TZ+4icacJphMy/H34ass2Hp1bzWm3zWTk\nTa/yYEU1J/TtwiMXDmHCqAMz0vI30Zm7SJxpgumEDH4fPlq9gb/NquShOdV8vnELPTu1Y8KoAznt\nsO50bNc6w403zhLPHwWvtLTUKyoqQtm3iNQqKUkEWUPFxbBkSdDdhGcnvw9bttXw3IIVlM+qYsai\n1bQsME7o24Uxg4oZvO+eFBR843OgzWJmc9y9tKntdOYuEmeaYDphB78PH3/+JVPfqGLq7KWs/GIT\n+3RoyyXH9+b73+rBXru1zUKj6VO4i8RZUVHqM9a4TTDdjO9DTY3zygeruO/1Kl54dwUODO3dmd8N\nKuaYPnvRIoNn6TtD4S4SZ2Vl9ceaIZ4TTKfxfVi9fhMPVizl/jeqWPrZl3TatTU//s5+nH14ET32\nKEzxRcOlcBeJs+0XC8ePTwxBFBUlAi1OF1Oh0e+Dn3MOb3z4KffNquLpd5azZZtzxL578OvhfRje\nd29at8zdGw51QVVEpIG1X27h0bnVlM+qYtHK9bRv25LTB3ZnzKAi9t+rfai96YKqiEgzXfbIP5k6\neyltWxXw1ZYa+vfYnetPP4TvHrIPu7RuEXZ7zaJwF5FYW/rZRo66/sV6tWEHduHHR+/Hwd07hNTV\nzlO4i0gs3fjc+9z43AdJ9WcuPpoD9g536CUTFO4iEhtrNmxmwMTpSfVj++zFlHNLSUwZHQ0KdxGJ\nvPvfqOLyR+cl1R/80WAO77lHCB1ln8JdRCJp4+atDJn0Ap9v3FKv3mfv9vzvT79Nqxa5extjJijc\nRSRSpi9YwQ/vTb7N+vYfHMaIfl1D6CgcCncRyXubt9YwZNLzrF6/uV69fduWvH75MNq1iV/Uxe+I\nRSQyGjtLn3hKP8YeURxCR7lD4S4iecXdGXjtc3y2YXPSutnjj6Nz+zYhdJV7FO4ikhferFrDqbfO\nTKoP79uFO8Y2+TR+7CjcRSSnnXH7TGYvSZ5Q+umLj6LP3ruF0FF+ULiLSM5ZsnoDQ//4UlK9d5dd\neebioyP1sFG2KNxFJGf86qG3eWhOdVL9bz8cxJD9OoXQUf5SuItIqFav30Tptc8l1VsUGO9fOzJn\nZjbKNwp3kXxSXh6ZiTXGTpnFqx+sTqrfdNahjD60WwgdRYvCXSRflJfXnwqusjKxDHkT8Gu/3EL/\nq59Nue7diSNo2yq/3pmey5qcicnM7gJOAla6e78U64cCjwMf1ZYedfdrmtqxZmISaaaSktSTOBcX\nw5IlQXfTLBOfWMCUGR8l1Y8/qAt/+RfdxtgcmZyJ6R7gZuDeb9jmVXc/Kc3eRGRHVFU1rx6yLdtq\n6DX+qZTrXrv8WLp22CXgjuKlyXB391fMrCT7rYjINyoqSn3mXlQUfC/f4L7XK5nw2DtJ9W6778I/\nLjs2hI7iKVNj7oPN7G3gY+BSd5+foa8rItuVldUfcwcoLEzUQ+bu9Lz8yZTrnvjpt+nXLX+nq8tX\nmQj3uUCxu683sxOBx4BeqTY0s3HAOICiHDvbEMl52y+a5tDdMi++t5Lz756dct2SSaMC7kbqavKC\nKkDtsMwTqS6opth2CVDq7sn3ONWhC6oi+avksr+nrE85t5RhB3YJuJt4yeQF1aZ2tDewwt3dzA4H\nCoBPd/brikhuWfDxOk7886sp13103Yl6JUCOaTLczex+YCjQycyqgSuBVgDufjtwOnChmW0FvgTO\n8nR+HRCRvDD0Dy+y5NONSfWrT+7LuUNKgm9I0pLO3TJnN7H+ZhK3SopIRKxY9xWDfvd8ynXvXzuS\n1i2jPf9oFOgJVRH5fxfeN4en3vkkqX7ekBKuOrlvCB3JjlK4i8Tchk1b6XvlMynXvf3bE+hQ2Crg\njiQTFO4iMXXD9Pf58/MfJNWP2HcPpo4bHEJHkkkKd5EY2Vbj7HdF6oeNXvnVMRTtWRhwR5ItCneR\nGHhkTjWXPPR2Ur1925bMu2p4CB1JtincRSKssYeNHrlwCAOLOwbcjQRJ4S4SMa8t/pSz//J6ynV6\nJUB8KNxFIqKxs/RbzjmMUYd0DbgbCZvCXSSPLVq5nuNueDnlug9/dyIFmn80thTuInno5Jtn8M/q\ntUn134zow4VD9wuhI8k1CneRPPHp+k0MvPa5lOs0/6g0pHAXyXG/euhtHppTnVQ/7bDu/OnM/iF0\nJPlA4Z5J5eU5NZGC5K+vtmyjz388nXJdxYTj6LRrm4A7knyjcM+U8vL6U6BVViaWQQEvabv95cVM\neurdpHq/brvxxE+PCqEjyVdpzcSUDZGbiamkJPXkxcXFsGRJ0N1IHqmpcfZt5JUAz/3yaPbfq33A\nHUkuC2wmJqlVVdW8usTek/OW8+/lc1Ou08NGERXg0K3CPVOKilKfuWsicGmgsYeN/vbDQQzZr1PA\n3UhgAh66VbhnSllZ/T84gMLCRF1ib27VGr5368yU63SWHhPjx9fPB0gsjx+vcM9p2/9wdLeM1NH/\n6mdZ++WWpPofz+jP6QO7h9CRhCbgoVuFeyaNGaMwF5Z+tpGjrn8x5bpFZSNp2ULzj8ZSwEO3CneR\nDDnnL68zc/GnSfWLjtmfS4cfEEJHklMCHrpVuIvshLUbt9D/mmdTrpt/9XDatdE/MakV8NCt/uaJ\n7ICrps3nnplLkurD+3bhjrFN3oIscRXg0K3CXSRNm7fW0HvCUynXvX75MPbu0DbgjkQap3AXacK9\nry3ht4/PT6r32GMXXv31scE3JJIGhbtICu5Oz8tTvxLg7z/7Nn336RBwRyLNo3AXqeOFd1fwr/ek\nfueRHjaSfKJwF6HxVwLcfd63OKbPXgF3I7LzFO4SW/M/XsuoP89Iue6j607ETPOPSv5SuEvsHH/D\ny3ywcn1SfeLovowdXBJ8QyJZoHCXWFizYTMDJk5Pue79a0fSuqVeCSDR0mS4m9ldwEnASnfvl2K9\nATcBJwIbgfPcPfVLqkUCdsfLi7kuxcxG5x9ZwpXf7RtCRyLBSOfM/R7gZuDeRtaPBHrV/jcIuK32\nY+7Q3Kax8k3zjy64ZjiFrfULq0Rfk7+LuvsrwGffsMlo4F5PeB3Y3cy6ZqrBnbb9BfmVleD+9Qvy\ny8vD7ixzyssT0/wVFCQ+RunYmuHxt5ZRctnfk4L9l8f3ZsmkUSyZNErBLrGRib/p3YCldZara2vL\nG25oZuOAcQBFQc1QFPAL8gMX84m5t9U4vSc8xbaa5LmAKyYcR6dd24TQlUj4Aj2NcffJwGRITJAd\nyE6jPrdp1H94NeK1xZ9y9l9eT6qfMbA7fzijfwgdieSWTIT7MqBHneXutbXcEPW5TaP+w6sOd2f4\nja/w/ork2xhfvHQoPTu1C6ErkdyUiXCfBlxkZlNJXEhd6+5JQzKhifrcplH/4QW898kXDL/xlaR6\naXFHHr5wSAgdieS+dG6FvB8YCnQys2rgSqAVgLvfDjxJ4jbIRSRuhTw/W83ukKjPbRrhH14//u85\nPD3/k6T6//z7EAYUdQyhI5H8Ye7BDH03VFpa6hUVqV/QJM0UoVs9l6/9ksHXvZBU37NdayomHKdX\nAkjsmdkcd29yRhjdFxYFEZiY+7onF3LHKx8m1SePHcgJffcOoSOR/KZwl9Cs+2oLh1yVev5RvRJA\nZOco3CVwf525hCunJc9sNPGUfow9ojiEjkSiR+Eugfim+UfnXXUC7du2CrgjkWhTuEtWPf3OJ/z4\nvjlJ9QuH7sdvRvQJoSOReFC4S8bV1Dj9r3mWL77amrRu1hXD6LJb2xC6EokXhbtkzJzKNZx228yk\n+qiDu3LLmMNC6EgkvhTustNOvfUfvFn1eVJ9+i+OpleX9iF0JCIKd9khi1etZ9ifXk6qH9h1N576\n+VEhdCQidSncpVl++cBbPPpm8nvhpo47giP23TOEjkQkFYW7NGnVF5v4VtlzSfW2rQpYcPUICgr0\nSgCRXKNwl0b95/T3uen5D5LqN58zgJMO2SeEjkQkXQp3qWfDpq30vfKZlOvenTiCtq1aBNyRiOwI\nhbsA8MDsKn7zyLyk+oRRB/JvR+0bQkcisjMU7jG2ZVsNvcanfiXA2789gQ6FeiWASL5SuMfQi++t\n5Py7ZyfVzxtSwlUn9w2hIxHJNIV7TLg7g697gU/WfZW0bsZvjqF7x8IQuhKRbFG4R9y86rV89+YZ\nSfVjDujM3ecfHkJHIhIEhXtE/eDOWcxYtDqp/veffZu++3QIoSMRCZLCPUKWfraRo65/Manes1M7\nXrjkO5p/VCRGFO4RMP5/5lE+qyqp/t8XHM5RvTqH0JGIhE3hnqfWbNjMgInTU65bVDaSli00/6hI\nnCnc88xtLy3m90+/m1T/0xn9OW1g9xA6EpFcpHDPA19t2Uaf/3g65bqF14xgl9Z6JYCI1Kdwz2GP\nvbmMix94K6l+6Qm9uejYXiF0JCL5QuGeY7bVOPtd8WTKdXMmHMeeu7YJuCMRyUcK9xwxc9Fqzrlz\nVlL9+6U9+P3ph4TQkYjkM4V7iNyd4254mcWrNiSte+nSoZR0ahdCVyISBQr3ECxcvo6RN72aVB/U\ncw8e+NHgEDoSkahRuAfoh/dWMH3BiqT6Yz85kkN77B5CRyISVQr3LPv48y8ZMumFpHrn9m1444ph\neiWAiGRFWuFuZiOAm4AWwJ3uPqnB+vOAPwDLaks3u/udGewz71z7xALunPFRUn3KuaUMO7BLCB2J\nSJw0Ge5m1gK4BTgeqAZmm9k0d1/QYNMH3P2iLPSYN77aso0zbn+NecvWJq37oGwkrfRKABEJSDpn\n7ocDi9z9QwAzmwqMBhqGe2y9WbWGU2+dmVQvO7UfYwYVh9CRiMRdOuHeDVhaZ7kaGJRiu9PM7Gjg\nfeAX7r604QZmNg4YB1BUVNT8bnPI1m01THrq3aShlzNLuzPxlH60aalXAohIeDJ1QfV/gfvdfZOZ\n/Qj4K3Bsw43cfTIwGaC0tNQztO9AfbDiC8684zXWbNxSr17+b4M4cv9OIXUlIlJfOuG+DOhRZ7k7\nX184BcDdP62zeCdw/c63lkJ5OYwfD1VVUFQEZWUwZkxWdlWXu3PrS4v5wzPv1asfd2AXbjzrUHZt\no5uORCS3pJNKs4FeZtaTRKifBZxTdwMz6+ruy2sXTwYWZrRLSAT7uHGwcWNiubIysQxZC/hln3/J\n2Cmz+LDBE6S3jjmMEw/umpV9iohkQpPh7u5bzewi4BkSt0Le5e7zzewaoMLdpwE/M7OTga3AZ8B5\nGe90/Pivg327jRsT9QyH+/1vVHH5o/Pq1QYWd2Ty2IF6cZeI5AVzD2fou7S01CsqKtL/HwoKIFWv\nZlBTs9P9fLZhM+PuraCick29uu54EZFcYmZz3L20qe3yZ7C4qCgxFJOqvhOemrecC8vn1qvt26kd\n915wON07Fu7U1xYRCUv+hHtZWf0xd4DCwkS9mdZv2sovHngr6T0vl57Qm58cs79eCSAieS9/wn37\nuPpO3C2T6p3puxe24sEfDaZ3l/aZ7Da/hXRXkohkTv6EOyQCppkhs3lrDb99/B2mzq7/TNW/HtmT\nK07sQ0u9EqC+EO5KEpHMy58Lqs00r3ot37vtH2zZVv/4HrlwCAOLO2Ztv3mvpCT1tY3iYliyJOhu\nRKSB6F1QTcO2GuePz77HbS8trlc/dUA3rvvewbRtpVcCNKmqqnl1EclJkQj3j1Zv4KzJr7Fi3aZ6\n9XvO/xZDD9grpK7yVJbuSoo8XaeQHJO34e7u3PnqR5Q9Wf9h2O/07sx/nTOA3dq2CqmzPJfBu5Ji\nQ9cpJAfl3Zh7TY1z8i0zeGfZunr1G79/KKcM6Jap9uJNZ6HNo+sUEqDIjrk/NGfp/wf7wd06MOW8\nUvZq3zbkriJmB+5KijVdp5AclHfhfmZpDwYWd2S/zrvqYSPJDbpOITko727yNjP236u9gl1yR1lZ\n4rpEXbpOISHLu3AXyTljxsDkyYkxdrPEx8mTNbQlocq7YRmRnKTrFJJjdOYuIhJBCncRkQhSuIuI\nRJDCXUQkghTuIiIRpHAXEYkghbuISAQp3EVEIkjhLiISQQp3EZEIUriLiESQwl3SU16emJSioCDx\nsbw87I5E5BvoxWHSNE0jJ5J3dOYuTRs/vv6cqpBYHj8+nH5EpEkKd2mappETyTsKd2laY9PFaRo5\nkZyVVrib2Qgze8/MFpnZZSnWtzGzB2rXzzKzkkw3KiHSNHIieafJcDezFsAtwEjgIOBsMzuowWYX\nAGvcfX/gP4HfZ7pRCZGmkRPJO+ncLXM4sMjdPwQws6nAaGBBnW1GA1fVfv4wcLOZmbt7BnuVMGka\nOZG8ks6wTDdgaZ3l6tpaym3cfSuwFtgzEw2KiEjzBXpB1czGmVmFmVWsWrUqyF2LiMRKOuG+DOhR\nZ7l7bS3lNmbWEugAfNrwC7n7ZHcvdffSzp0771jHIjtDT9pKTKQT7rOBXmbW08xaA2cB0xpsMw04\nt/bz04EXNN4uOWf7k7aVleD+9ZO2CniJoCbDvXYM/SLgGWAh8KC7zzeza8zs5NrNpgB7mtki4JdA\n0u2SIqHTk7YSIxbWCXZpaalXVFSEsm+JqYKCxBl7Q2ZQUxN8PyI7wMzmuHtpU9vpCVWJDz1pKzGi\ncJf40JO2EiMKd4kPPWkrMaL3uUu86ElbiQmduYuIRJDCXfKLHkISSYuGZSR/aLo/kbTpzF3yhx5C\nEkmbwl3yh6b7E0mbwl3yhx5CEkmbwl3yhx5CEkmbwl3yhx5CEkmb7paR/KKHkETSojN3EZEIUriL\niESQwl1EJIIU7iIiEaRwFxGJoNCm2TOzVUBlnVInYHUozYQvrsce1+OG+B57XI8bMnfsxe7euamN\nQgv3hsysIp15AaMorsce1+OG+B57XI8bgj92DcuIiESQwl1EJIJyKdwnh91AiOJ67HE9bojvscf1\nuCHgY8+ZMXcREcmcXDpzFxGRDMmJcDezEWb2npktMrPLwu4nCGbWw8xeNLMFZjbfzH4edk9BM7MW\nZvammT0Rdi9BMrPdzexhM3vXzBaa2eCwewqCmf2i9u/6O2Z2v5m1DbunbDGzu8xspZm9U6e2h5lN\nN7MPaj92zGYPoYe7mbUAbgFGAgcBZ5vZQeF2FYitwCXufhBwBPCTmBx3XT8HFobdRAhuAp529z5A\nf2LwPTCzbsDPgFJ37we0AM4Kt6usugcY0aB2GfC8u/cCnq9dzprQwx04HFjk7h+6+2ZgKjA65J6y\nzt2Xu/vc2s+/IPEPvFu4XQXHzLoDo4A7w+4lSGbWATgamALg7pvd/fNwuwpMS2AXM2sJFAIfh9xP\n1rj7K8BnDcqjgb/Wfv5X4JRs9pAL4d4NWFpnuZoYhRyAmZUAA4BZ4XYSqBuBXwM1YTcSsJ7AKuDu\n2iGpO82sXdhNZZu7LwP+CFQBy4G17v5suF0Frou7L6/9/BOgSzZ3lgvhHmtmtivwCHCxu68Lu58g\nmNlJwEp3nxN2LyFoCRwG3ObuA4ANZPnX81xQO748msQPt32Admb2g3C7Co8nblPM6q2KuRDuy4Ae\ndZa719Yiz8xakQj2cnd/NOx+AnQkcLKZLSExDHesmd0XbkuBqQaq3X37b2kPkwj7qDsO+MjdV7n7\nFuBRYEjIPQVthZl1Baj9uDKbO8uFcJ8N9DKznmbWmsRFlmkh95R1ZmYkxl0XuvsNYfcTJHe/3N27\nu3sJiT/vF9w9Fmdx7v4JsNTMDqgtDQMWhNhSUKqAI8yssPbv/jBicCG5gWnAubWfnws8ns2dhT6H\nqrtvNbOLgGdIXEG/y93nh9xWEI4ExgLzzOyt2toV7v5kiD1JMH4KlNeezHwInB9yP1nn7rPM7GFg\nLok7xd4kwk+rmtn9wFCgk5lVA1cCk4AHzewCEm/EPTOrPegJVRGR6MmFYRkREckwhbuISAQp3EVE\nIkjhLiISQQp3EZEIUriLiESQwl1EJIIU7iIiEfR/V2ZZyLEBuO0AAAAASUVORK5CYII=\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "(0.42924577812346643, -0.45237104233936654)" - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "# let's do a linear regression with a polynomial of degree = 1 ( a line)\n", "def question2():\n", @@ -171,30 +115,9 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD8CAYAAACMwORRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHo5JREFUeJzt3Xl8VPW9//HXJyGBLECAhD0LYRGRVSJL3am2igveWleq\ntRv1/oq22ntvW+nvWturv/Zqrd6fVqVqrb3BpWotLq3VimK1gmEV2QlkY0lYQkhC1vneP2bAkAsm\nwGTOzJn38/HIY+acOeR8ZiDvfPme7/d8zTmHiIj4S4LXBYiISPgp3EVEfEjhLiLiQwp3EREfUriL\niPiQwl1ExIcU7iIiPqRwFxHxIYW7iIgPdfPqxJmZmS4vL8+r04uIxKRly5btds5ldXScZ+Gel5dH\nUVGRV6cXEYlJZlbSmePULSMi4kMKdxERH1K4i4j4kMJdRMSHFO4iIj6kcBcRbxQWQl4eJCQEHwsL\nva7IVzwbCikicaywEObMgfr64HZJSXAbYPZs7+ryEbXcRSTy5s37NNgPqa8P7pewULiLSOSVlh7f\nfjluCncRibycnOPbL8dN4S4ikXf33ZCaeuS+1NTgfgkLhbuIRN7s2TB/PuTmglnwcf58XUwNI42W\nERFvzJ6tMO9CarmLiPiQwl1ExIcU7iIiPqRwFxHxIYW7iIgPKdxFRHxI4S4i4kMKdxERH1K4i4j4\nkMJdRMSHFO4iIj6kcBeR2Kbl+o5KNw4Tkdil5fqOSS13EYldWq7vmBTuIhK7tFzfMSncRSR2abm+\nY1K4i0jsisHl+l5cVs623XVdfp4Ow93Mss1skZmtNbNPzOy7RznGzOy/zGyzma02s9O7plwRkTZi\naLm+usYWbn9uJd//wyp++/7WLj9fZ0bLtADfd84tN7OewDIze9M5t7bNMRcDI0NfU4FHQo8iIl0r\nBpbrW7ejhu8sWM623XXcdsEo5s4Y0eXn7DDcnXM7gB2h5wfMbB0wBGgb7rOAp51zDvjQzDLMbFDo\nz4qIxCXnHAuWlnLXK2vJSEmi8JvTmD68X0TOfVzj3M0sD5gELGn30hCgrM12eWifwl1E4lJNQzM/\neuljXlu9g3NGZXH/1RPITO8esfN3OtzNLB14Efiec67mRE5mZnOAOQA5upotIj61uryauQtWUFF9\nkB9cNJpvn5NPQoJFtIZOhbuZJREM9kLn3EtHOaQCyG6zPTS07wjOufnAfICCggJ33NWKiEQx5xxP\nfbCNe15fR1Z6d57/9jQm5/b1pJYOw93MDHgCWOecu/8Yhy0E5prZswQvpO5Xf7uIxJPq+ib+9YXV\nvLl2Fxec2p97vzyBPmnJntXTmZb7mcANwMdmtjK07w4gB8A59yjwOjAT2AzUA18Lf6kiItFpWck+\nbn1mBZUHGvi/l47h62fmEWwXe6czo2X+DnxmlaFRMt8JV1EiIrEgEHDMf6+Ye9/YwOCMHrxw8+eY\nkJ3hdVmA7gopInJC9tQ2cvvzq3h3YxUzxw3k51eOp1ePJK/LOkzhLiJynD4s3sN3n13BvvpmfnbF\nWL4yNcfzbpj2FO4iIp3UGnA8vGgzD7y1kbx+aTx50xmcNri312UdlcJdRKQTKmsa+N5zK/lgyx6u\nmDiY//incaR3j94Ijd7KRESixHubqrjtuZXUNrbwn18ez1WTh0ZdN0x7CncRkWNoaQ3wq7c28ut3\ntjCyfzoLvjWNUQN6el1Wp+h+7iLxTgtMB7X7HHY8tYDrfvMhDy/awtWTs/nTd86KmWAHtdxF4psW\nmA5q9zm8nZjF91cYTWl7eeCaSVwxaYjHBR4/C84/iryCggJXVFTkyblFJCQvLxjo7eXmwrZtka7G\nO6HPoSmhG/eeeyO/mfIlxuzawkNF/03+x0u9ru4IZrbMOVfQ0XFquYvEMy0wHVRayobMXG679HbW\nDhjODctfZd7bT9Aj0OJ1ZSdM4S4Sz3Jyjt5yj6NbcrcGHE9c+DXuG3cZPRvrmP/iz/jC5tCSFbm5\n3hZ3EnRBVSSexeAC0+FUtree637zIfdM+hLnlazgjSe/82mwx/jnoHAXiWcxtMB0ODnneP6jMi56\nYDFrt9dw31UTeGzWKDKzMnzzOeiCqojElaoDjfzopY95a90upuX35b6rJjC0T2rHfzBK6IKqiEg7\nf1mzk3l//JgDjS38+JJT+fqZwyK+/F2kKNxFxPdqGpq5a+FaXlxeztghvXj26omMjKEJSSdC4S4i\nvvbBlt386x9Ws7OmgVtnjGDujJEkd/P/5UaFu4j4UkNzK/e+sYEn/r6VYZlpvHDzdCbl9PG6rIhR\nuIuI76yp2M9tz61kU2UtN07P5YcXjyY1Ob7iLr7erYj4WktrgEfe2cKDf9tEZnp3nv76FM4ZleV1\nWZ5QuIuILxRX1XLb86tYVVbNrImD+enlY+mdGj1rmkaawl1EYlprwPH7f2zj539ZT/duiTx0/SQu\nHT/Y67I8p3AXkZi1adcBfvDiapaXVnPeKVn84srxDOjVw+uyooLCXURiTlNLgF+/s5mHF20mvXs3\nfnXNBK6YOCTql76LJIW7iMSUFaX7+MGLq9m4q5bLJwzmzsvG0C+9u9dlRR2Fu4jEhPqmFu57YyO/\n/WArA3v14MmbCpgxeoDXZUUthbuIRL3FG6u4448fU77vIDdMy+XfLjqFnj3idyRMZyjcRSRq7atr\n4mevreWl5RXkZ6Xxh5unc0ZeX6/LigkKdxGJOs45Xl29g7te+YTq+mbmnj+CuTNG0CMp0evSYob/\n754j4ieFhcHFnBMSgo+FhV5XFHY79h/kW08XccszKxickcIrt5zFv3zxFAX7cVLLXSRWFBbCnDlQ\nXx/cLikJbkNMrxh0SCDgWLC0lJ//eT0tgQA/vuRUbvpcHt0S1QY9ER1+amb2pJlVmtmaY7x+npnt\nN7OVoa9/D3+ZIsK8eZ8G+yH19cH9Ma64qpZrf/MhP355DROye/PX753LN8/OV7CfhM603J8CHgKe\n/oxj3nPOXRqWikTk6EpLj29/DGhuDTB/cTEP/m0TPbol8J9fHs9Vk4dqMlIYdBjuzrnFZpbX9aWI\nyGfKyQl2xRxtfwz6YPNu7nplLRt2HWDmuIH85PLT6N9Ttw4Il3D9n2e6ma0ysz+b2Wlh+p4i0tbd\nd0Nqu4WcU1OD+2NI2d56bv79Mq5/fAn1zS3Mv2Eyv549WcEeZuG4oLocyHXO1ZrZTOBlYOTRDjSz\nOcAcgJwYbW2IeObQRdN584JdMTk5wWCPkYupB5taeeSdzTy2uJgEM/7lC6P45tn5GgXTRcw51/FB\nwW6ZV51zYztx7DagwDm3+7OOKygocEVFRZ2rUkRi1qEx6//v9XVs39/A5RMG86OZoxnUO8Xr0mKS\nmS1zzhV0dNxJt9zNbCCwyznnzGwKwa6ePSf7fUUk9q3dXsNPXvmEpVv3MmZQLx64dhJThmmGaSR0\nGO5m9gxwHpBpZuXAnUASgHPuUeDLwD+bWQtwELjWdea/AyLiW/vqmvjlmxtYsKSU3ilJ3PNP47jm\njGwSEzQKJlI6M1rmug5ef4jgUEkRiXMtrQEKl5Ry/5sbqW1s4cbpedx2wai4Xu7OK5qhKiJh8cGW\n3dy1MDi08cwR/fj3S0/jlIE9vS4rbincReSklO+r557X1/H6xzsZ2ieFR79yOl88baAmInlM4S4i\nJ+RgUyuPvruFR9/dghncfuEo5pyjoY3RQuEuIsfFOcfrH+/kntfXUVF9kMsmDOZHF49mcIaGNkYT\nhbuIdNq6HTX8ZOEnLNm6l1MH9eL+qycwNb+f12XJUSjcRaRD++qauP/NjRQuKaF3ShL/ccVYrpuS\no6GNUUzhLiLH1NIa4JmlpfzyzY3UHGzmhmm53HbhKDJSk70uTTqgcBeRo/rHlj3c9conrN95gOn5\n/bjz8jGMHtjL67KkkxTuInKEiuqD3PPaOl77eAdDMlJ4ZPbpXDRWQxtjjcJdRABoaP50aCPAbReM\n4tvnamhjrFK4i8Q55xx/XrOTu18LDm28ZPwg7ph5KkM0tDGmKdxF4pRzjvc27eaXf93AqvL9jB7Y\nk2e+NY3pwzW00Q+0+mw4FRZCXh4kJAQfCwu9rkjkqIq27eXa+R9y45NL2V3bxC+uHMert5ylYPcR\ntdzDpbAQ5sz5dHX6kpLgNsTMSjnif2sq9nPfXzfwzoYqMtO785PLxnDd1By6d1O/ut90aiWmruC7\nlZjy8o6+eHFuLmzbFulqRI6wadcB7n9zI39es5PeKUncfO5wvvq5XFKT1b6LNZ1diUndMuFSWnp8\n+0UioHRPPbc/v5IvPrCYxRuruPXzI3nvB+fzz+cNV7B7IYJdt/rbDZecnKO33LUQuHhg5/4G/v/b\nm3juozISE4xvnp3PzecOp2+aZpZ6JsJdtwr3cLn77iP/4gBSU4P7RSJkT20jj7yzhd9/WELAOa6b\nksPcGSMY0KuH16XJvHlH5gMEt+fNU7hHtUN/OfPmBbticnKCwa6LqRIBNQ3NPL64mCf+vpWDza18\n6fShfPfzI8num+p1aXJIhLtuFe7hNHu2wlwiqr6phac+2MZj7xaz/2Azl4wbxG0XjmJE/3SvS5P2\nItx1q3AXiUGNLa0sWFLKw4u2sLu2kRmj+3P7haMYO6S316XJsUS461bhLhJDGppbeWl5BQ+9vYnt\n+xuYnt+Px26YzOTcPl6XJh2JcNetwl0kBuw/2EzhkhJ++/42qg40MjE7g3uvmsCZIzK9Lk2ORwS7\nbhXuIlFs5/4Gnnx/KwuWlFLb2MI5o7J48Jp8pg/vp1vwymdSuItEoU27DvDY4mL+tLKCgINLxw9i\nzjn5nDZYferSOQp3kSjy0ba9PPbuFt5aV0mPpARmT83lG2cN05BGOW4KdxGPBQKOt9bt4rHFxSwr\n2Uef1CS+d8FIbpyepxmlcsIU7iIeaWxp5U8rtvPY4i1sqapjaJ8UfjrrNK6anE1Ksu7SKCdH4S4S\nYTUNzSxYUsqTf99K5YFGxgzqxX9dN4mZYwfSLVH38pPwULiLREhlTQNPvL+VBR+WcqCxhbNGZPLL\nqydw1ohMjXyRsFO4i3SxzZW1/GZxMX9cUUFLIMDMcYP49jnDGTdUI1+k63QY7mb2JHApUOmcG3uU\n1w14EJgJ1AM3OeeWh7tQkVizrGQfj727hTfX7SI5MYFrzsjmm2cPI7dfmtelSRzoTAffU8BFn/H6\nxcDI0Ncc4JGTLyvMtLapREgg4Pjbul1c9egHXPnIByzZupdbzh/BBz+cwc+uGKtgl4jpsOXunFts\nZnmfccgs4GkXXK/vQzPLMLNBzrkdYarx5MTD2qaFhbrVsMcONDTz8srtPP3BNjZV1jIkI4V/v3QM\n15yRTVp39X5K5IXjX90QoKzNdnlo3/8KdzObQ7B1T06kViiK8A3yIy4efnlFsdXl1SxYUsrCVdup\nb2plzKBe/OqaCVw6fjBJGvkiHopok8I5Nx+YD8EFsiNyUr+vber3X15RqLaxhYUrt7NgaQlrKmpI\nSUrksgmDuH5qLhOG9tbIF4kK4Qj3CiC7zfbQ0L7o4Pe1Tf3+yyuKrKnYz4KlpfxpRQV1Ta2MHtiT\nn846jSsmDaFXjySvyxM5QjjCfSEw18yeBaYC+6Omvx38v7ap3395eay+qYVXVm1nwZJSVpXvp3u3\nBC4dP5jrp+Zwek6GWukStTozFPIZ4Dwg08zKgTuBJADn3KPA6wSHQW4mOBTya11V7Anx+9qmfv/l\n5ZF1O2pYsKSUl1dUcKCxhZH907nzsjF8adJQeqeqlS7Rz4KDXCKvoKDAFRUVeXJu39FombA42NTK\nq6u3s2BpKStKq0nulsAl4wZx/dQcCnL7qJUuUcHMljnnCjo8TuEu8W7DzgM8s7SUF5eXc6ChheFZ\naVw/NZcvTRpCH92VUaJMZ8NdA3AlLjU0t/La6h0sWFrKspJ9JCcmcPG4gVw/JYcpw/qqlS4xT+Eu\nccM5x+ry/fxxRQV/XFHB/oPN5GemMW/mqVw5eajunS6+onAX39u2u46XV1awcOV2infXkZyYwBdO\nG8D1U3OYnq+1SMWfFO7iS1UHGnl19XZeXrmdVWXVmMG0Yf349rn5XDR2EL1TNOJF/E3hLr5R29jC\nG2t28vLKCt7fvJuAgzGDenHHzNFcNmEwg3qneF2iSMQo3CWmNbUEWLyxipdXVvDWul00NAcY2ieF\n/3PeCGZNHMzIAT29LlHEEwp3iTmBgGNZ6T5eXlHBax/voLq+mT6pSVw1OZsrJg3m9ByNSRdRuEtM\nqGlo5r2Nu3l7fSXvbqxkd20TKUmJfOG0AcyaOJizR2bpLowibSjcJSo559hSVcvb6yt5e30lRdv2\n0RJw9E5J4txRWXz+1P5ccOoA3Std5Bj0kyFRo6G5lX8U72HR+koWbaikbO9BAEYP7Mm3zslnxuj+\nTMrOoJta6CIdUriLp7ZXH+Tt9ZUsWl/J+1t209AcICUpkTNH9OPmc4dz/in9GZyhUS4ix0vhLhHV\n0hpgRVn14UBfv/MAANl9U7imIJvzR/dnWn4/eiQlelypSGxTuEuX21fXxLsbq0IXQ6vYf7CZbglG\nQV4f7pg5mhmj+zM8K10jXETCSOEuYeecY+2OGhaFLoauLKsm4CAzPZkLxwzg/FP6c/aoTK1eJNKF\nFO4SFnWNLby/eTeLNlSyaH0VO2saABg/tDe3zBjJjNH9GTekNwkJap2LRILCXU5YyZ66w0MVlxTv\npak1QHr3bpw9MpPzR/fnvFOy6N+zh9dlisQlhbt0WlNLgKJte4OBvqGS4qo6APKz0rhxei4zRven\nIK8vyd00VFHEawp3OaaG5lZWllWzdOtelmzdw/KSag42t5KcmMDU/L7cMC0Y6Ln90rwuVUTaUbgL\nELwIWrKnnlXl1aworWZlWTVrt9fQ1BrADEYP7MU1Z2TzueH9OHNEpmaGikQ5/YTGqX11Tawsr2Zl\naTWryqtZVVbNvvpmAFKSEhk3tDdfOzOPKcP6UpDbl96pGtkiEksU7nGgobmVtTtqDgf5yrJqSvbU\nA2AGo/r35AtjBjIxJ4MJQzMYNSBdU/xFYpzC3WcCAcfWPXWsKguG+MqyatbtqKG51QEwsFcPJmZn\ncO0ZOUzMzmDc0N6kq4tFxHf0Ux2jnHPsqmmkeHctxVV1FFfVsanyAKvKqqlpaAEgLTnYvfKNs/KZ\nmJ3BxOwMBvbW0ESReKBwj3K1jS1srar7NMR311FcVcvW3XXUN7UePq5HUgLDs9K5ZPxgJmb3ZmJ2\nH0b0TydRk4ZE4pLCPQq0tAYo23fwcGhvqapjayjMKw80Hj7ODIb2SSE/M50z8voyPCuNYZnp5Gel\nMbBXD83+FJHDFO4R4pxjd20TW0Mt72ALPNgiL91TT0vAHT62T2oSwzLTOGdUFvlZaeRnppGflU5O\n31TdLVFEOkXhHkaBgGP/wWZ27G+geHdtqDvl066UA6G+cIDkxATyMlMZ1b8nXzxtYCjA08jPTKdP\nWrKH70JE/EDh/hmaWgLsrWs6/LWnrpF9h583sa++iT21we199U3sq2+mtU0LHGBw7x4My0rjiolD\nGBYK8OFZ6QzOSFF/uIh0mbgJ90DAUd/cyt7aYEi3De0jAzwY1HtrmzjQ2HLU72UGGSlJ9E1Lpl9a\nd/Kz0uib1pd+acn0TUumf6/uDMtMY1hmGqnJcfMRi0gUibnkWV1ezTNLy2hsaaWxJUBjc+DT5y0B\nGptbaTr0vKU19HqAptbAMb9ncmICfUPB3DctmZy+qaHgTqZP6LHt6xmpyWp1i0hU61S4m9lFwINA\nIvC4c+7n7V6/CbgXqAjtesg593gY6zyssqaRt9btonu3hNBXIt2Tgs8zUpLo3rM73ZMSD7+efOiY\nbgmkJicGQzs9mT6pwVZ33/Rk0pITtQqQiPhKh+FuZonAw8CFQDnwkZktdM6tbXfoc865uV1Q4xEu\nGDOAC8YM6OrTiIjEtM7cQGQKsNk5V+ycawKeBWZ1bVkiInIyOhPuQ4CyNtvloX3tXWlmq83sBTPL\nPto3MrM5ZlZkZkVVVVUnUK6IiHRGuG799wqQ55wbD7wJ/O5oBznn5jvnCpxzBVlZWWE6tYiItNeZ\ncK8A2rbEh/LphVMAnHN7nHOH5sk/DkwOT3ntFBZCXh4kJAQfCwu75DQiIrGuM+H+ETDSzIaZWTJw\nLbCw7QFmNqjN5uXAuvCVGFJYCHPmQEkJOBd8nDNHAS8ichQdhrtzrgWYC7xBMLSfd859YmY/NbPL\nQ4fdamafmNkq4FbgprBXOm8e1Ncfua++PrhfRESOYM65jo/qAgUFBa6oqKjzfyAhIdhib88MAsee\noCQi4idmtsw5V9DRcbGzllpOzvHtFxGJY7ET7nffDampR+5LTQ3uFxGRI8ROuM+eDfPnQ25usCsm\nNze4PXu215X5j0YlicS82Lpx2OzZCvOudmhU0qGL14dGJYE+e5EYEjstd4kMjUoS8QWFuxyptPT4\n9otIVFK4y5E0KunE6DqFRBmFuxxJo5KOn2ZPSxRSuMuRNCrp+Ok6hUSh2JmhKhKtNHtaIsh/M1RF\nopWuU0gUUriLnCxdp5AopHAXOVm6TiFRKLZmqIpEK82eliijlruIiA8p3EVEfEjhLiLiQwp3EREf\nUriLiPiQwl1ExIcU7iIiPqRwFxHxIYW7iIgPKdxFRHxI4S4i4kMKd+kcLSMnElN04zDp2KFl5A6t\nNnRoGTnQzbJEopRa7tIxLSMnEnMU7tKx0tLj2y8inlO4S8e0jJxIzOlUuJvZRWa2wcw2m9kPj/J6\ndzN7LvT6EjPLC3eh4iEtIycSczoMdzNLBB4GLgbGANeZ2Zh2h30D2OecGwH8CvhFuAsVD2kZOZGY\n05nRMlOAzc65YgAzexaYBaxtc8ws4Ceh5y8AD5mZOedcGGsVL2kZOZGY0plumSFAWZvt8tC+ox7j\nnGsB9gP9wlGgiIgcv4heUDWzOWZWZGZFVVVVkTy1iEhc6Uy4VwDZbbaHhvYd9Rgz6wb0Bva0/0bO\nufnOuQLnXEFWVtaJVSxyMjTTVuJEZ8L9I2CkmQ0zs2TgWmBhu2MWAl8NPf8y8Lb62yXqHJppW1IC\nzn0601YBLz7UYbiH+tDnAm8A64DnnXOfmNlPzezy0GFPAP3MbDNwO/C/hkuKeE4zbSWOmFcN7IKC\nAldUVOTJuSVOJSQEW+ztmUEgEPl6RE6AmS1zzhV0dJxmqEr80ExbiSMKd4kfmmkrcUThLvFDM20l\njuh+7hJfNNNW4oRa7iIiPqRwl9iiSUginaJuGYkdWu5PpNPUcpfYoUlIIp2mcJfYoeX+RDpN4S6x\nQ5OQRDpN4S6xQ5OQRDpN4S6xQ5OQRDpNo2UktmgSkkinqOUuIuJDCncRER9SuIuI+JDCXUTEhxTu\nIiI+5Nkye2ZWBZS02ZUJ7PakGO/F63uP1/cN8fve4/V9Q/jee65zLqujgzwL9/bMrKgz6wL6Uby+\n93h93xC/7z1e3zdE/r2rW0ZExIcU7iIiPhRN4T7f6wI8FK/vPV7fN8Tve4/X9w0Rfu9R0+cuIiLh\nE00tdxERCZOoCHczu8jMNpjZZjP7odf1RIKZZZvZIjNba2afmNl3va4p0sws0cxWmNmrXtcSSWaW\nYWYvmNl6M1tnZtO9rikSzOy20L/1NWb2jJn18LqmrmJmT5pZpZmtabOvr5m9aWabQo99urIGz8Pd\nzBKBh4GLgTHAdWY2xtuqIqIF+L5zbgwwDfhOnLzvtr4LrPO6CA88CPzFOTcamEAcfAZmNgS4FShw\nzo0FEoFrva2qSz0FXNRu3w+BvznnRgJ/C213Gc/DHZgCbHbOFTvnmoBngVke19TlnHM7nHPLQ88P\nEPwBH+JtVZFjZkOBS4DHva4lksysN3AO8ASAc67JOVftbVUR0w1IMbNuQCqw3eN6uoxzbjGwt93u\nWcDvQs9/B1zRlTVEQ7gPAcrabJcTRyEHYGZ5wCRgibeVRNQDwL8BAa8LibBhQBXw21CX1ONmluZ1\nUV3NOVcB3AeUAjuA/c65v3pbVcQNcM7tCD3fCQzoypNFQ7jHNTNLB14Evuecq/G6nkgws0uBSufc\nMq9r8UA34HTgEefcJKCOLv7veTQI9S/PIvjLbTCQZmZf8bYq77jgMMUuHaoYDeFeAWS32R4a2ud7\nZpZEMNgLnXMveV1PBJ0JXG5m2wh2w80ws//2tqSIKQfKnXOH/pf2AsGw97sLgK3OuSrnXDPwEvA5\nj2uKtF1mNggg9FjZlSeLhnD/CBhpZsPMLJngRZaFHtfU5czMCPa7rnPO3e91PZHknPuRc26ocy6P\n4N/32865uGjFOed2AmVmdkpo1+eBtR6WFCmlwDQzSw392/88cXAhuZ2FwFdDz78K/KkrT+b5GqrO\nuRYzmwu8QfAK+pPOuU88LisSzgRuAD42s5WhfXc45173sCaJjFuAwlBjphj4msf1dDnn3BIzewFY\nTnCk2Ap8PFvVzJ4BzgMyzawcuBP4OfC8mX2D4B1xr+7SGjRDVUTEf6KhW0ZERMJM4S4i4kMKdxER\nH1K4i4j4kMJdRMSHFO4iIj6kcBcR8SGFu4iID/0PsyKob0LAERwAAAAASUVORK5CYII=\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "(0.45109980444082465, -0.068569841499159789)" - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "# let's do a polynomial 2 regression\n", "def question3():\n", @@ -224,30 +147,9 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAD8CAYAAABXe05zAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlglNW9//H3SSYLWYAkZAFCCEICIioKyqaCBW9pa9Xa\nalXcd+9tC6332nqtbe9tae/vtrW73iJuranUomi1iiuCYkXCorITlIQtJCSBkIRkspzfHzMTIgYy\nCZmZ55l8Xv+ETGb5DsonZ87zPecYay0iIuIeMZEuQEREukfBLSLiMgpuERGXUXCLiLiMgltExGUU\n3CIiLqPgFhFxGQW3iIjLKLhFRFzGE4onHTRokM3Pzw/FU4uIRKU1a9YcsNZmBnPfkAR3fn4+xcXF\noXhqEZGoZIwpDfa+mioREXEZBbeIiMsouEVEXEbBLSLiMgpuERGXUXCLiLiMgltExGVcH9zWWp4u\n3sURb2ukSxERCQvXB/e2/XXcs/hDnlu/J9KliIiEheuD+0BdEwBbyw9HuBIRkfBwfXBX13sBKKmo\ni3AlIiLhETXBvW2/Rtwi0jdETXBXHG7iUENzhKsREQm9qAlugO0VGnWLSPSLiuBOio8FfB0mIiLR\nLiqC+9TB/ekXF6sRt4j0CVER3BnJ8RRkp7BdI24R6QPcH9wNXtKT4xmVlaLOEhHpE1wd3NZaaup9\nwV2YnarOEhHpE1wd3LWNLbS0WX9wpwDqLBGR6Ofq4A60AqYnx1OQlQrAdq2gFJEoFzXBPXRgP/rF\nxWqeW0SiXtQEd0yMYVSWOktEJPq5OrhrOgQ34GsJ1By3iEQ5Vwd31THBXZidyv7aJg4dUWeJiEQv\nVwd3TYOXxLgYkuI9ABRk+TpLSjTqFpEoFlRwG2O+bYzZaIzZYIx5yhiTGOrCglFV5yU9Kb79+8Js\nX2eJ9iwRkWjWZXAbY4YC3wImWmvHAbHAVaEuLBjV9U2kpxwNbnWWiEhfEOxUiQfoZ4zxAEnA3tCV\nFLzqhmbSOoy4A50lOg1HRKJZl8Ftrd0D/AIoA/YBh6y1r4a6sGBU1zeRkRz/qdsKsrVniYhEt2Cm\nStKAS4ERwBAg2RhzbSf3u90YU2yMKa6srOz9SjtRU99M2rHBnaXOEhGJbsFMlcwCPrHWVlprm4Fn\nganH3slau8BaO9FaOzEzM7O36/yMppZW6ppaPjPiDuxZos4SEYlWwQR3GTDZGJNkjDHATGBzaMvq\nWk29b0SdnpzwqdvVWSIi0S6YOe5VwGJgLfCR/zELQlxXl6rqmwBIT4771O2BzhItfReRaOUJ5k7W\n2h8CPwxxLd1yvBF3+54lmioRkSjl2pWTxxtxgzpLRCS6uTa4j24wlfCZn6mzRESimWuDu7reizEw\noN9nR9zqLBGRaOba4K6q95KWFE9sjPnMz9pPw9EFShGJQq4N7poGL2lJnx1tA+SmBfYsUXCLSPRx\nbXBX1XnJ6GR+G9RZIiLRzbXBXdPgJa2TjpKAAh1jJiJRyrXBXV3v7bSjJKAgO5Xy2kZ1lohI1HFl\ncLe1WWoamjvt4Q7QaTgiEq1cGdy1jc20ttkTjrgDe5ZoukREoo0rg7vav/jm2J0BO8pN60diXIw6\nS0Qk6rg6uI/di7sjdZaISLRydXCfaMQNUJiVqqkSEYk6rg7uE424QZ0lIhKd3BncDf4NppK6CO72\nzhKNukUkergzuOu89IuLpV987Anvd7SzRPPcIhI93Bnc9V7Su5gmgaOdJds14haRKOLO4G4ILrgD\nnSU6VEFEook7gzvIETeos0REok/UB/eo7BTKaxupbVRniYhEh6gP7kIdqiAiUcZ1wd3Y3EqDtzX4\n4FZniYhEGdcFd3X7IcHBBbc6S0Qk2kR9cKuzRESiTdQHN/gOD9bqSRGJFq4L7pqGHgR3dgr7Dqmz\nRESig+uCu6ouuH1KOlJniYhEE9cFd3W9lxgDA/od/9iyYxVk6xgzEYke7gvuBi9pSfHExJigHzMs\nLUmn4YhI1HBfcNcFv/gm4OhpOApuEXE/9wV3g7fLAxQ6U5CVqkU4IhIVggpuY8xAY8xiY8wWY8xm\nY8yUUBd2PNX13i6PLOuMOktEJFoEO+L+DbDUWjsGOBPYHLqSTqymvucjbtBpOCLifl0GtzFmAHAB\n8AiAtdZrrT0Y6sI609ZmqWno2Yi70N9ZoukSEXG7YEbcI4BK4DFjzDpjzEJjTPKxdzLG3G6MKTbG\nFFdWVvZ6oQCHjjTTZru3+CYgV50lIhIlggluD3A28JC19iygHvjesXey1i6w1k601k7MzMzs5TJ9\nqnqw3D0gNsYwMlOdJSLifsEE925gt7V2lf/7xfiCPOx6sty9o8JsdZaIiPt1GdzW2nJglzFmtP+m\nmcCmkFZ1HIHl7mndWO7e0agsX2fJYXWWiIiLBdtV8k2gyBjzITAe+GnoSjq+wIg7I6XnI25A0yUi\n4mqeYO5krV0PTAxxLV0KbOna0xF3x86Ss/PSeq0uEZFwctXKyao6L8nxsSTGxfbo8blpSSR4YrRL\noIi4mquCu6aHy90DYgOn4WiqRERczFXBXdXD5e4dFWanUqLOEhFxMVcFd0+Xu3c0KiuFveosEREX\nc1VwV9d3f0vXY6mzRETczn3B3cOOkoCCLP9pOLpAKSIu5ZrgPuJt5UhzK+k97OEOGJbu6yzZpnlu\nEXEp1wR3dWDxzUlOlaizRETczj3BfZLL3TsqyEpRZ4mIuJZ7gvskl7t3VJCdqs4SEXEt9wR3fRPQ\nOyPuQGeJTsMRETdyTXAHdgbMSE446ecKdJZo6buIuJFrgrumwUtsjCE1Mah9sU5InSUi4mauCe7q\nei9pSfHExJiTfi6dhiMibuaq4E5Pjuu15yvMTtFpOCLiSi4L7pO/MBmgzhIRcau+G9yBpe+aLhER\nl+mzwd2+2ZQ6S0TEZVwR3K1tloNHmk96g6mOAp0l2ys0zy0i7uKK4D7Y4MVaenXEHegs2aYRt4i4\njCuCO3C6e3rKyS++6UidJSLiRq4I7sCqyd6cKgF1loiIO7kiuNtH3L04VQLqLBERd3JFcFfVhya4\ndYyZiLiRK4K7fS/uXlw5CR06SzTPLSIu4o7gbvCSkuAhwRPbq8+rzhIRcSN3BHcvL77pqCA7RXPc\nIuIqrgnutBAFd2F2KnsOHqGuqSUkzy8i0ttcE9wne0jw8aizRETcxhXBXePfizsUCvydJTpUQUTc\nwvHBba2lqt7bK4cEdyZPnSUi4jJBB7cxJtYYs84Y82IoCzrWkeZWmlraQnZxUqfhiIjbdGfEPRfY\nHKpCjidUy907KshO0fauIuIaQQW3MSYX+BKwMLTlfFaolrt3pM4SEXGTYEfcvwbuAdqOdwdjzO3G\nmGJjTHFlZWWvFAdHl7uHqh0QYJQ6S0TERboMbmPMxUCFtXbNie5nrV1grZ1orZ2YmZnZawUGlruH\nqh0Qju5Zos4SEXGDYEbc04BLjDE7gUXA54wxT4a0qg4CUyWhHHHnpScR74nRiFtEXKHL4LbW3mut\nzbXW5gNXAW9aa68NeWV+VfVePDGG/omekL3G0T1LNOIWEedzfB93jX+5uzEmpK9TqM4SEXGJbgW3\ntfYta+3FoSqmM1UhXO7ekTpLRMQt3DHiDmEPd4A6S0TELRwf3NX1XtJDtNy9I3WWiIhbOD+4G7wh\nXTUZoM4SEXELRwd3S2sbBxuaQ7pqMkCdJSLiFo4O7oNHmgFCtjPgsdRZIiJu4Ojgrg4sdw/DVAn4\nDlXYc/AI9eosEREHc0Vwh6MdEI4eqqAtXkXEyVwR3KFc7t5R4BgzHaogIk7m6OCuCvOIe3hGMvGe\nGI24RcTRHB3cNf7gHhimOe7203A04hYRB3N0cFfXe0lN9BDvCV+ZBVkpbFNniYg4mOODOxw93B0V\nZquzREScTcF9jEBniVZQiohTOT+4wzS/HRDoLNEKShFxKucHd5hH3IE9S9RZIiJO5djgttb6NpgK\nc3B7YmM4ZVCyOktExLEcG9z13la8LW1hD27wbfGqzhIRcSrHBneghzsywa3OEhFxLscGd1UEg3tU\nljpLRMS5HBvc1fVNQORG3KDOEhFxJgcHt28v7kgEt07DEREnc3BwR27EHegs0YhbRJzIwcHdTFys\nISXBE5HXL8xOVS+3iDiSg4O7ifTkeIwxEXn9gqwUdteos0REnMfBwd0ctiPLOqM9S0TEqRwc3E1h\nOyS4M4HOEk2XiHRTURHk50NMjO9rUVGkK4o6kZlADkJNQzNDBvaL2OvnpScRHxujpe8i3VFUBLff\nDg0Nvu9LS33fA8yZE7m6ooxjg7uqrilsR5Z1xhMbwymZ6iwR6Y5DP/oJb4yYxMuFU1k3dAxj93/M\neaXrmfbzhzj16muIiYnMNato48jgbm5to7axhfTkhIjWUZCdyrqymojWIOJ0B+qaeHXjfpZuLOfd\ny/6HllgPOYcPMG3nB2zKHsFPL7wFgPT5rzN1ZAbnjRrEtFGDGJaeFOHK3cuRwV3TEFjuHhfROgqz\nUnjhg73UN7WQHKG2RBEn2nvwCK9sLOflDeUU76ymzcLwjCRu2fYms1cv5cx924nBArA/JZ2VE2by\nzr/+JytLDvDih/sA33TktFGDOG/UIKaMzIjImg236jKNjDHDgD8B2YAFFlhrfxPKomraV01GfsQN\nsKOyjjNyB0a0FpFI23mgnpc3lLN0Yzkf7DoIwOjsVL7xuQK+MC6HMTmpmCF74fWF4A9tgOy2Ri6/\n7VIuv3I81lp2VNazsuQA75Qc4MUP9vLU+2UYA2MH928fjZ+Tn06/vy2C++6DsjLIy4P58zVP7hfM\nMLIFuNtau9YYkwqsMca8Zq3dFKqiqvyrJtMiPOIuaN+zRMEtfY+1lq37D7N0QzlLN5Szpdx3veeM\n3AHcM3s0s0/L4ZTMlE8/KBCsxwlcYwyjslIYlZXCDVPzaWlt48M9h1i5/QArdxzg0ZWf8McVHxNv\nLBPKdjNtyCSmeRM4o6yEWF3kbNdlcFtr9wH7/H8+bIzZDAwFQhbc1f6dATMiPOIers4S6WOstXyw\n+xBLN5TzysZyPjlQjzFwzvB07r94LLPH5TC0q26vOXOCDldPbAxn56Vxdl4a35xZQIO3hdU7a1j5\nHz/lnfQR/OKC6/nFBdcz8Egt53+yjhkPP88Fl3yNzNTIZkOkdWvi1hiTD5wFrApFMQGBvbgjPeIO\ndJaol1uiWWubpXhnNS9vKOfVjeXsPdSIJ8YwZWQGt54/govGZpOVmhiWWpLiPUwvzGT6C78Ba6nq\n15+V+eNZPuJslo+YwAsp02H+64wb2p8ZhVnMGJ3J+GED8cQ6dklKSAQd3MaYFOAZYJ61traTn98O\n3A6Ql5d3UkUF9uKO5MrJAHWWSDTytrTxz4+rWLqhnNc2lXOgzku8J4YLCjK5+19GM/PULAZG8t9f\nXh6UlpJxpJZLNq/gks0raMOwafw0lj/wGG9treCh5Tv4/bIS+id6OL8gk+mjM5lemEl2//D8komk\noILbGBOHL7SLrLXPdnYfa+0CYAHAxIkTbWf3CVZNvZf+iR7iHPBbNNBZ0uBtISlenSXiIkVFn5pr\nbvzxfFacPZOlG8p5ffN+ahtbSI6P5cIxWcwel8OFo7Oc0z01f/6nF/IAMUn9GPfvdzLuwlH824Wj\nOHSkmZUlB3hrawXLt1Xyj4983SqnDu7PDH+ITxie5suRY/4u3H6hM5iuEgM8Amy21j4Q+pJ8I+6M\nFGfMYQUuUJZU6AKluEhRES133Ek1cbw35nxeKZzCsnWJNGxcw4B+cVw0NocvjMvhvIJBJMbFRrra\nz+riIifAgH5xfPH0wXzx9MFYa9lSfpi3tlayfFsFD6/4mIfe2kFqgodpCQ1Mf+6vzKiuY7C1UbGa\n01h74sGxMeY84G3gI6DNf/N/WmtfOt5jJk6caIuLi3tc1JyF73HE28qz/zqtx8/RW3ZU1jHzl8v5\nxRVn8rUJuZEuR/oway11TS1U1Xmpqm/iQJ2XqjovB+qaqKpr4kC9l6q6Jt/Py/ZRk5CMNb5PrYPq\navj89n8y++AOJr/7kiM+zYbS4cZmVpZUsXxbJcuXrWdvcjoAU3d+wNyVf2HS7o0wfDjs3BnZQjsw\nxqyx1k4M5r7BdJW8A4R1nWpVnZfcNGesqmrvLKlQZ4mE1r5DR3jv4yoOHPZyoN4fwHVNVNUfDeim\nlrZOH9s/0cOglAQyUuIZmZnCpFfeJqP+IIMaDjKmYidn791CrG0DYyDKQxsgNTGO2eNymD0uB/u1\nMylJz+XVgsk8NuESvj7n/zG59EPmvvsUUyJdaA85ZELr02oavJyROyDSZQAdOkv2q7NEet/hxmZe\n3lDOkrV7eO+TKgIfgONjYxiUEk+GP4wLslL938eTkZzAoNQEMpLjGZSSQHpyPPGeY8L4/q/6pgSO\ndZKNA25k8vIoKC2loGoXNxf/nb+M/zz/N+lrXH31z5j0x38yd1YBU07JiNje/z3huOC21lJd7434\nqsmO1Fkivam5tY0V2yp5dt0eXt+0n6aWNvLjW5n34ct8fvVShgxIIPWH92OuPYn5104u7pGU5Lu9\nr+nwd9GvpYlbiv/OnK3LeerHD/PQgQSueXgV5+anM29WAVNGuiPAHRfcdU0tNLfaiO4MeCx1lsjJ\nstayftdBlqzbw4sf7vMPTuK56pxhXFaxgfHzbsEEQrYSuON23wRlTy+eBXFxr8/o5O8icf58bppz\nBVc3t7Lo/TIeWr6Daxau4pz8NObOLGTaKGcHeJcXJ3viZC5OllbVM/3nbznqYuDSDfu488m1/P0b\n09RZIt1SWlXPc+v28tz6PXxyoJ4ETwyzxmZz+VlDuaAw03eRMD+/82kNh108i2aNza08XbyLB5ft\noLy2kQnD05g3q4DzRg0KW4D36sXJcKtqX+7unBF3YLOp7dqzRIJQU+/lxY/2sWTtbtaWHcQYmDwi\ng7umj2T26Tn0TzxmRXBZWedPdLzbpdclxsVy/ZR8vn7OMJ5evYsH39rBdY+8z9l5A5k7q5ALCsIX\n4MFwXHAfXe7unOAOdJZsU2eJHEdjcytvbqng2bV7WL6tguZWS2F2Ct+dPYZLxw858WlO/lWCnd4u\nYZXgieW6Kflcec4w/la8mweXlXDDo+8zfthA5s0qYHphpiMC3HHB7cQRtzpLpDNtbZb3d1bz3Lo9\n/OOjfRxubCErNYEbp+bzlbNyOXVwanD/yHUh0XESPLFcO3k4V0zMZfGa3Ty4bAc3PraaM4cNZN7M\nAmaMjmyAOy64nTjiBig4UsX6klq4eVLfvtAjbN9/mCXr9vD8+r3sOXiEpPhYZo/L4StnDWXqyEHE\ndvd4Ll1IdKwETyxzJg3nignDeGbtbn7/Zgk3Pb6aM3MHMHdWAReOzopIgDsuuKvrfZvdJMc7aBlu\nUREFr7zCC5O/ToMnnqQoWDIr3VN5uInn1+/hufV72LCnltgYw/kFg7hn9mguGpt98t1G3dgKVcIv\n3hPD1efm8dWzc3l27W5+v6yEmx8v5ozcAXzrcwXMXPs65vvh+8XryOBOT4p3xDxSu/vuozBhCAC/\nOP86zt21kdEHSsn7/veJ1T+2qLd5Xy1X/t8/OdzUwhm5A/jBxWP58plD+vye0H1RvCeGq87N46sT\nclmydg+/W7adW/9UzLiKaubGZTPLlmLCMLBzXDvgLY+vZt+hRl6ae34vV3USYmKo7DeAq675GTsy\nhrXfnNjcREF+FoXZqYzJSaUwx/c1KzXBWb94pMcqahu57A8rabWWJ24+lzE5/SNdkjhIc2sbS2Zd\nwx8KZ1KaNoRx5SUsLrqHxBZvt9s5Xd0OWN3gdd6hoXl5ZJaW8sbCu6iPS2T7oDy2DRrOlpGns+3U\nK1mxvZJn1u5uv/uAfnGMzk6lMCeF0Tn9GZ2dyujsVAYkRfZgCOmeBm8LtzxRzMEjzfztzikKbfmM\nuNgYrlz+NJcv/xvPnTaDzVmn+EIbQtrO6bzgrvcyrDsbTIVjn90OV/2TmxsZv28b4w/thu/eAHMm\ntde9tfww2/YfZuv+w2wtP8zz6/ZyuOnof7yc/okU5qQyOvtooI/KSqHfiebzo2wfYbdobbPMXbSe\njXsP8fD1EzltiDP2zhEHysvDU1rK1za8Cbz5qdtDxZHBHfSIu6jo021UoZpbCuKqf3pyPFNGZjBl\nZEb7bdZa9h1qZGu5L8y3+b8+8XEVXv8ub8ZAfkYyhdkpvpF5Tn9G56SQn5GMZ9FT4Xl/8hk/e2kz\nr23az4++PJaZp2ZHuhxxsgi0czpqjtvb0kbh91/mOxcV8q2ZBV0/wKVLhVta2yitbmgP8kCw7zxQ\nT1uH3eFOOVDGmL3bKaws5cubVzCstsL3Q4e/P7f783ul3P/cBm6cms+PLjkt0uWIG/TCJ+PuzHE7\nKrj31zYy6adv8JPLxnHt5OFdPyAmBjqr3xho63zfYidrbG6lpKKufbpl26N/ZWvmcPb2zyKxuZFv\nrVzEbauXEGfbXPn+3OCtrRXc8kQxMwozWXD9xO73ZIv0kGsvTlb7F98EPVUSZUuFE+NiGTd0AOOG\n+udT73ocSkvZk5rJf8+8jf+dcSPPnXYh8z94hnMiWml02ryvlm/8ZR2js1P57dVnKbTFsRx1FEa3\ng3v+fN9cUkfRtFTY//6GHq7kj8/9lIWL/5v6hCSumPUdvrv4w/ZVpnLyKmobueXx1SQnxPLIjROd\nc2iuSCfcHdxz5sCCBb45X2N8XxcsiJ4Ld8e8v1kt+3ltShx3XHAKi9fuZuYDy3lmzW5CMd3Vl3Rs\n+3vkhnMYPOAEG0KJOICjhhXdDm6I/qXCx7y/JOBe4LKzhnLfko+4+28f8Lc1u/jJZaczKislYmW6\n1bFtf+3TVCIO5sgR98B+WqjSlVMH92fxnVP56VdOZ9PeWr74m7d54NWtNDa3Rro0Vwm0/f3gYrX9\niXs4LrgHJsXh6QOnUPeGmBjDNZPyeOPuGXzpjMH89s0SZv96BW9vr4x0aa7w5/dKWfjOJ9w4NZ8b\np42IdDkiQXNUQlY3+DaYku7JTE3gV18fT9GtkzDGcN0j7/Otp9ZRcbgx0qU51ltbK/jR3zfyuTFZ\n3H/x2EiXI9ItzgnuoiKqX3uL9PWrfQtriooiXZHrTBs1iJfnns/cmQUs3VDOzF8u58n3Smlr08XL\njjq2/f1ObX/iQs4Ibv/S9RoTT1rDoaNLuxXe3ZYYF8u3Lypk6bzzOX3oAL7/3AYuf+hdNu2tjXRp\njqC2P4kGzgju++6DhgaqkgaQccQfMA0NvtulR07JTKHo1kn86utnsqu6gS///h3m/2MT9X8q8n2i\niYnpc59s1PYn0cIZwV1WhgVqE5JJbzj0qdul54wxfOWsXN68ewZXThzGw29/wkWrWng1Lse3VUAf\n+mTTse3vd1ef1b22v6K++8tOnMkZe5X4N4tqw9AcG0tCa4vvdm2m1KvWTLiQ+878KluyRvDNdxdx\n99tP+n7QB/6ef/LiJha+8wk//PJYbupOB8mxO1CCb3VuNC30Ekfozl4lzhhx+5d2x2CPhnY0LV13\niAnrlvPCE/O48sNX+d3Uq1haOMX3gyj/ZNOx7a9boQ3t03ifomk8iTBnBHe0L113irw84tpa+fGr\nDzJ+7xbu/uK3KUnPde2mXME46ba/4/1Si/JfduJszghu8IX0zp2+7Up37lRoh4L/k01CawsPPfcz\n+rU0ccfl3+dwU0tUzt9uKfe1/RWezG5/x/ulFsW/7MT5ggpuY8xsY8xWY0yJMeZ7oS5KQqTDJ5vB\nddX8ftlD7EwbzL9PvsG3UVUUXaysqG3k5sd8bX+P3jiRlJ62/UX7DpTiSl0GtzEmFvgD8AVgLHC1\nMUZLzdyqwyebyXV7uHfZo7wyeioPTr7C9/MomL/t1bY/TeOJAwUz4j4XKLHWfmyt9QKLgEtDW5aE\nRVkZtxQ/z5c3Lefn02/g+iv+i41ZI9w5f+tv2WuN9TD35v9l456D3W/7Ox5N44nDBBPcQ4FdHb7f\n7b9N3C4vDwP88h+/4r43H+GDwYV86abfMffKH1BW1dDlwx0j0LJXWsrPpt/Ia7lncv/yx5m59vVI\nVyYSEr12cdIYc7sxptgYU1xZqd3pXME/fxvf1sJtq5ew4o+38q/FS3hlxERmPvAWP3x+A5WHm8JX\nT08Xuvhb9v501pdYeO5XuGHNC9z03jOun/IROZ5ggnsPMKzD97n+2z7FWrvAWjvRWjsxMzOzt+qT\nUDpm/nZAziDuuelClt87i69NGMaTq8qY/vNlPPDaNuqaWkJbS4dRc7dXdZaV8fTpF/GDf7mLWdtX\ncf8bD7ffLhKNulw5aYzxANuAmfgCezVwjbV24/Ee09NT3sVZdlTW8ctXt/LSR+VkJMfzjc+N4ppJ\neSR4Ynv/xfyrZz8jiFWdS6ZfwXcmX895O9fz8DM/JrG1OejHijhFr66ctNa2AN8AXgE2A0+fKLQl\neozMTOHBORN4/t+mMTonlf96YRMzf7mcJet29/5WsT1c6PLih3u5e8oNTN69iYef/cnR0FbLnkSx\noOa4rbUvWWsLrbUjrbX619DHnDlsIEW3TuJPN59L/8Q4vv3XD/jib99m2ZaK3juouAcLXV7ZWM7c\nReuZkJ/OI7NzSRw6WC170ic4Y5MpcY22NssLH+7ll69uo6y6gUkj0vnuF8Zwdl7ayT1xNzdzenPL\nfu748xpOGzKAP99yLqmJOqdU3M19m0yJa8TEGC4dP5TXvzOd/770NHZU1nH5g+9yx5+LKamo6/kT\nd2Ohy4ptldz55FrG5PTniZsV2tL3aMQtJ6W+qYVH3vmEBSs+psHbwhUThjHvooKQHVLwzx1V3PjY\n+4wYlMyi2yczUGeUSpTozohbwS29oqquid8vK+HJ90qJMYYbp+Zz14yRvRqsxTuruf7R9xk6sB+L\nbp9MRkpCrz23SKQpuCVidlU38KvXtrFk/R5SEzzcNWMUN03LJzHu5FoI15XVcN0j75OVmsCiOyaT\nlZrYSxWLOIOCWyJu875afv7KVt7cUkF2/wTmzSrkigm5eGK7f1llw55DXP3we6QlxfP0HVPIGaDQ\nluiji5NyJ9IvAAAFEklEQVQScacO7s+jN57DX2+fzJCB/bj32Y/4l1+vYOmGfd1qIdy8r5ZrH1lF\n/8Q4/nLbJIW2CApuCbFJp2Tw7F1T+eN1E4gxhjufXMtXHnyXf+6o6vKx2/cf5tqFq0j0xPLUbZPJ\nTUvq8jEifYGCW0LOGMPnT8th6dzz+d+vnkH5oUaufvg9bnj0fTbuPdTpYz6urOOahauIiTH85bZJ\n5GUotEUCFNwSNp7YGK48Zxhv/ccM7v3CGNbvOsiXfvsO8xatY1f10YU3ZVUNXPPwKtraLH+5dRKn\nZKZEsGoR59HFSYmYQ0ea+b/lO3hs5Se0tlnmTBrO5WcP5a4n11LvbeGp2yZz6uD+kS5TJCzUVSKu\nsr+2kV+/vp2ni3fR2mZJTfTw1G2Te+f0GhGX6E5w9/AEVZHek90/kZ9dfjq3nj+CP727k69OyFVo\ni5yAglscY2RmCv916bhIlyHieLo4KSLiMgpuERGXUXCLiLiMgltExGUU3CIiLqPgFhFxGQW3iIjL\nKLhFRFwmJEvejTGVQGmHmwYBB3r9hZyvr75v6Lvvva++b+i777233vdwa21mMHcMSXB/5kWMKQ52\nDX406avvG/rue++r7xv67nuPxPvWVImIiMsouEVEXCZcwb0gTK/jNH31fUPffe999X1D333vYX/f\nYZnjFhGR3qOpEhERlwlpcBtjZhtjthpjSowx3wvlazmJMWaYMWaZMWaTMWajMWZupGsKJ2NMrDFm\nnTHmxUjXEk7GmIHGmMXGmC3GmM3GmCmRrikcjDHf9v9/vsEY85QxJjHSNYWKMeZRY0yFMWZDh9vS\njTGvGWO2+7+mhbqOkAW3MSYW+APwBWAscLUxZmyoXs9hWoC7rbVjgcnAv/Wh9w4wF9gc6SIi4DfA\nUmvtGOBM+sDfgTFmKPAtYKK1dhwQC1wV2apC6nFg9jG3fQ94w1pbALzh/z6kQjniPhcosdZ+bK31\nAouAS0P4eo5hrd1nrV3r//NhfP+Ah0a2qvAwxuQCXwIWRrqWcDLGDAAuAB4BsNZ6rbUHI1tV2HiA\nfsYYD5AE7I1wPSFjrV0BVB9z86XAE/4/PwFcFuo6QhncQ4FdHb7fTR8Jr46MMfnAWcCqyFYSNr8G\n7gHaIl1ImI0AKoHH/NNEC40xyZEuKtSstXuAXwBlwD7gkLX21chWFXbZ1tp9/j+XA9mhfkFdnAwh\nY0wK8Awwz1pbG+l6Qs0YczFQYa1dE+laIsADnA08ZK09C6gnDB+ZI80/n3spvl9cQ4BkY8y1ka0q\ncqyvTS/krXqhDO49wLAO3+f6b+sTjDFx+EK7yFr7bKTrCZNpwCXGmJ34psY+Z4x5MrIlhc1uYLe1\nNvDJajG+II92s4BPrLWV1tpm4FlgaoRrCrf9xpjBAP6vFaF+wVAG92qgwBgzwhgTj++Cxd9D+HqO\nYYwx+OY6N1trH4h0PeFirb3XWptrrc3H99/7TWttnxh9WWvLgV3GmNH+m2YCmyJYUriUAZONMUn+\n/+9n0gcuyh7j78AN/j/fADwf6hf0hOqJrbUtxphvAK/gu9L8qLV2Y6hez2GmAdcBHxlj1vtv+09r\n7UsRrElC75tAkX+g8jFwU4TrCTlr7SpjzGJgLb5uqnVE8QpKY8xTwAxgkDFmN/BD4H+Ap40xt+Db\nFfXKkNehlZMiIu6ii5MiIi6j4BYRcRkFt4iIyyi4RURcRsEtIuIyCm4REZdRcIuIuIyCW0TEZf4/\nWmp8x+wgFc8AAAAASUVORK5CYII=\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "(0.9999997643602121, -38.876365895794137)" - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "# let's do a linear regression for a polynomial of grade 10\n", "# return r2 scores for the training and testing set\n", @@ -279,30 +181,9 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZoAAAEaCAYAAAAotpG7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd4VGX2wPHvSS+kEDqE0KSDgiCgiIICIqKIIgIuKoJg\nQZffWlndtayra+9lQUEEwYI0pQjioiJKEQSUIiAdQoAASQghZd7fH++NjGES0iYzSc7nefJkZm47\nM3Pnnvvet1wxxqCUUqpkRCQEqAGEAKFAsIfZTgGHgBPGmMwyDM+nRBONUkoVn4hUbdCAa2NjuSQy\nknohIdQODSUsOBgjcno+YyAnB9LTcaWmcujECb7esYNFmZmsMMbk+O4deJ8mGqWUKiYRqdqmDQ/f\nfDN1tm2jSc+eRFx4Ienx8WTlt0xGBgFbtxK1bBmZ69axY+5c5h84wIcVOdkE+ToApZQqr+Ljueqe\ne6i+Zw/VBgwgrE8fjp9tmbAwXG3bclyE2FatCDCGXuPH8yvwUxmE7BMBvg5AKaXKIxEJqlWLiy6+\nmOQjR6jTowdpRVm+YUPS0tJIuPZaUpo2pau34vQHWqJRSqniiYuPJzQxkZwmTSA0lCLVQ1SpQnZQ\nEBGtW3MiKorW3grSH2iiUUqpsxCRKoGBtKxdmybh4UQC1KtHVWNounEj2SJU27+fiIAAcsLCOFml\nCulBQbjOtt6gIAgJgYAAQkUkwBhz1mXKI000SilVgOho6dq1K8O7dyfgvPPIioggRwSzcyeR27dT\nPSGBnKQkIqKiCHK5kJMniUtOxkREcHDSJBq8/jqxgAkP51RiIiH33cfOJ59kb+76AwLsHyD5xVDe\naaJRSql8hIdLuyuvZNSrr7K/fn1OuU/76SdOHTlCRvXq5KSkkBUVZVuaxcRAZiYB06fTvEsXEseN\nY31WFpKeTmDjxnQaOpRDvnk3vqONAZRSKh9NmnDl2LEcy5tkziYnB3P4MCFNm5INEByM+fJLouLj\nOdmiRdHWVRFoiUYppTwQkahLL6XpRRexp6jLJicTHBlJzpIlxKekULdmTVKnTUOuv54kb8Tq77RE\n4yMiUktEvhWRVBF50dfx5CUi/xCRd3wdh6+JSD8R2VyG27tPRA6JSJqIhHph/TNE5GHncR8R+clt\n2rki8ouzT44QkWgR+VJEUkTk/dKOpbSJSBsRySjFVUbVqYMrKKhorckAXC5ISiKkZUvSR4/mZyDn\n66+pceutxU80IhIoIh+JyDER+bq468ln3S948/fut4lGRHaKyEnnB5coIu+LSBW36Q+4/Sh2iMgD\nvoy3GEYBh4FoY8x9JVmRiPzd+ZzSRCRDRHLcnv9anHUaY/5ljLmjJHEVl4jc4hb/SRFxuT0/VoL1\nlvaBKO/6x4jIwhIsHwX8B+hijKlijPHqJRZjzEJjTAe3lx4BZhljoowx7wE3YcfsqmqMudWbseQl\nIlVExIhI7bLcbh6BwZ5GKyuEmBhyqlQhp1YtsoyBPXvIjI8nJyEh/xEDCqE30AGobYy5rATrKXN+\nm2gcVxtjqgDtgPbAOLdpAtwMVAX6AGNEZHDZh2g7bhVjsQbARlOMMYDybs8Y87RzYKoC3AH8kPvc\nGHNG+/xixltmjDGT3d7P1cBut/cT6+v4vKgekGOM2V7UBUUkQERK2mqpAfBrnuebizM0ir/vY0WR\nnY24PDQ6vvxyRixdSos5c2j9++9Ud58WHU1OVBTZx44RCDBzJrW6dye1hKE0ALYbY7x2suQ1xhi/\n/AN2Aj3dnj8HzCtg/teA1/OZFgZMBY4Ax4BVQC1nWhwwCdgPHAVmuy13O7ANSAbmAnXdphngbmAr\nsMN5rQWw2Jl/CzAon3jeB7KATCAN6Ik9c3zFiWO/8zjUmb87sBd4CEgEphTwOdwKLMvzWpAT713O\n+9nmvP6Gs94U5zO5yG2Zp4D3ncfnOMvf7Mx/CHg4n+13BfYBAW6v3QCscR53AdY42zwIPH+W/aAn\nsNPD6w2Az7Glwu3A7W7TugE/O9s4ADzlvJ7svI8056+th/VGAdOd/WQ98HfswTZ3+hPOvpkKbACu\ndF6/ADsyb7az7r3O69c760kFdgEP5fM+2wPpbvF97rzeA1gLHAd+ADq4LbMaeBxYCWRgz3TzrreL\n2/Y/AObkfndAv9z35qwjx1lPGvY3kYndT9OAG5357sLu28nAFzi/CaCKE/sdzvfxi/P6ucBS7G9r\nI/bkMTe2GcBL2N9MKrAMqO9MW+Os74Sz/X4e3lswdh9Oxu7X9wIZbtOrYX/3icBu4FFOj+8YDLzp\ntuxf8yy7GngpKoqkoCCyN2zgha1bebZzZ9ZXqUJaTAzHQ0PJGDeOdd9/z6opU9j/4oscadyYrJgY\ncnr2JH3lShJffZXMp5/mRFAQJjqarMhIsps2JW3dOlYYw9KvvmLNoUM816kT7wOB2P16gfN5bQH+\n4sRzb57960EPn8cY57N8F7vv/wpcnOc3c8a6nWkvAO84j78BhudZ93agl9v3PBL43fn8Xjjr8bww\nB31f/OGWaIB47I/61XzmFeyP8Y58po/GHpQinC+zA/aSFcA84GNsySgYuNR5/TLsQex8bBJ4HfjW\nbZ3G+VLjgHAgEtgDDMce2Ns7y7fKJ6b3cQ6AzvMngR+BmtihxpcD/3KmdXd2sGedWMIL+NxuJf9E\ns9B5n+HO68Oc+IOwSWwfp5Obp0TzDjZpn+/s9E3z+S52Aj3cXpsF3O88XgUMcR5HAZ3Psh+ckWic\neDcC9znfWXNsAuzqTN8ADHAeRwOdnMdtcDuY5LO9N4BFQAzQGHsi4Z5oBgO1nf1oODYBxLn90Bfm\nWV8voCX26kFH7I+8Zz7b/lN8QB3sAfh65z2PxCbnKGf6auxBsil2aPrAPOuLcOYf5XxOtzj70RmJ\nxm19g92e/3HwcZ7fhD14neOs7xlgsTMt9wA01/nswoFY7EF+sPN5dcEemBo5y8xwprdz4p8FvJtn\nfWckT7d47seeUNTB/m5+yPP5LQZedmKpi024N7ktu9b5LmsA33NmotnZpw+fpKbyr1OneKJ5c7b3\n6cMPR47w1Nq1vBgQQE6fPuz6/ntW3X47R5s1I3PjRvaeOsXOsWM5dsklnNy5kwPvvMOmdu04dvgw\n32Vns3T5clbt2cP3xnOiWe187qFAJ2d/6Zzf/pXn8xjjfL+53/dt2JPCKtjfZUHrdk80twFL3Nbb\nFfv7CnD7Xj7F/n6bYJPaxfnFZYzx+0tns0UkFXsATwIey2e+x7EfwqR8pmdhz27OMcbkGGN+Msak\niEgd4EpsgjpqjMkyxnzjLHMTMNEYs8bYa+XjgAtFpKHbep8xxiQbY05if7Q7jTGTjDHZxpi1wGfY\ns/nCuAl40hiTZIw5hD1zHuY23QU8Zow55WyvOJ523udJAGPMFCf+bGyJMRp7EMnP48aYDGPMGuwB\n57y8Mxi7Z34EDAEQkVjgCuc1sN9FUxGpZoxJNcasKMb7uBR7Zvqi851tASZjD2i522gmInHGmBRj\nzMoirHsQ9ns4boz5HXg7z/v7yBiT6OxHk7A/5Pb5rcwYs9gYs8kY4zLGrMbuE5cWMpZrgVXGmM+c\nfepd7O/gCrd5xhtjthpjMs2Zl7i6A6nGmPHO5zQZm6CL6w7sZ7PNGJOF3UcvE5FqbvM85Xx2J7EJ\ncq3zmeUYY37EnlFf5zb/R8aYn429N8t0bNIprEHYs+kDxpgk4PncCSLSBOgMPGCMOWmM2Y89WRyc\nZ9lE5/f2PGf6sEYNUqpUIefHH4nduZP4WbNYHBdHdrt2pIaEcGrlSup9/jmtFi8m6u9/51jLlmSH\nhMC//83xZcsIO3IECQ7GpKYStG4dESJw4YWcyB3d2bkkZ1wuDPaEqRXwqPM7X4ktkQ3zEFt+drp9\n3xOx+2cv7NWWwq77U6CTiNRzng8Dppk/j1rwb+f3ux1bEi3we/P3RHOtMSYK+4NpAX++Dgq2AhZ7\nSecqk3/l6RTgS+AjEdkvIs+JSDBQH0g2xhz1sExd7KUOAIwxadhLb/Xc5nFv9tgA6Oy0CDnmVFrf\nhD1jKow/bc95XNft+SFT8muzf2qmKSIPishmETmOPbuJxMNnnMsYk+j2NB17duPJNOB65zO+Hlhh\njMntCT0cu8NvEZGVItK3GO+jAXBOns/6Xk5/1sOwpYetIvKjiPQqzEqdeoUa/Plz2pVnnlEissFt\nuw0p4DMTkUuc1oWHnc/5LwXNn0fefSI3nvz2QU/L552ed31F0QB41+29J2Ivr8XnE08DbCJy/576\nY0sguQq7T3mS9/25v7cG2P35sNu2XwRq5bOsp89xf+6DX38lNjOT4KpVeTA8nIfDw3k4J4cgEU71\n68fmI0cIvOsuqsfEkBATQ0KdOtQPDsbs30/gkCEkDxrEwTvuoHm1alx00000TUkhICcHOXUK0tMh\nJ4cTzudyMM/vPO/3fTaevu+6zl+h1m2MScVeYh3q3MztBuwx1F2RvrdyUWFnjPnGaV75AvYsDwAR\nuQ14GLjE7UDmafncs68nnBLJfOw1yvlAnIjEGmPytmbaj91Zc7cViS0V7XNftdvjPcA3xphCHdQ8\nyN1ebmVsAm47ep5tFdcf6xCRHsDfgMs5fZZ7nFIYBsMYs15EErFn3kOxiSd32hZgsIgEYHfgz0Sk\nahGT6B5sHYDHkoQx5lfgBhEJxB7YZ4pIVc7yGRpjskXkMPYEJPeglZA7XURaYesULgNWG2NcIrKN\n05+Zp/V/CvwDmGyMOSUi71L4z3g/nDGqbwL574N5HeDPSSB3+e8Luf289gD3GGPm5J3g1iI0729i\nvjFmQDG2VZj9/QD2u8qV4PZ4D3Z/ruaUsj0t6/7Z1Pcwzx9atOB4WBin0tJ4NsDt9PyBB+gWEUGV\n8HByxo3j5NixHHFfbtcuQgMC4Omn2fP00+zZsYOQa66hzb//Tb2//pUj4eEkrVhB7JEj/ID9vmuJ\nSKjbSXPe7/tsPH3fufW+RVn3ZOzxdhuwxxizoQgxnMHfSzTuXgF6ich5ACJyE/A00Mu5xJEvEekh\nIm2dA08K9tKKyxhzAFuUf0tEqopIsIhc4iw2HRguIu3E9md4GntmvjOfzXyBvVwzzFlPsIhcICIt\nC/n+pgOPikgNEakO/BNbtPWWKOz13MPY67mPY88AS8s04P+AC7HX4gFwPp/qTjH8OPaAUtSBBL8B\nQp3mxKEiEiQi54lIO2cbNzuXzXKcbbic7SQ5y9XNf9V8gv0eokWkEfZyUa4qzroOAQFOabqh2/SD\nQEJuiysnmUZiS8KZInIxtoRXWHOwlzCudd7jcGypbVEhl/8fECMiI53lh0GJRgl+B/iniDQDe9Mv\nEbmugPlnOvEPdLYfIiIXikhBl2cBMMacwDYEaFzAbJ8A94lIbRGpga13yV1+K7YO5mmnqXSAiDQT\nka55lq3l/N4K7GLQowfJ9etzYMAALj94kJD9+wn+7DNqZ2eT9umnhLdoQfZLLxG+YYM9eT98mIBp\n04gAWLyYqKVLqZKZicTGkhMcjMvlQjZuJCQigj3TphG6ezfLgc3O37+cz6oj9kTpw7N9Xm4auX3f\nt2BLcF8VY91LsCfWT2AbkZRIuUk0znXUD7AHYLCV1dWAVXK6j0V+HY5qYw92KcAm7IEqtyg4DJt4\nNmMPRGOd7X2FPRP9DHv204TT13c9xZeKbec+GHv2kMjpyvvCeApbWbceW5m9xnnNW+Zjd8Ct2Mr7\n3BZapWUa9sx/cZ5Lk32BTWLr3l7AtmYq0r3TnfmvxF5S3Y393t7kdPG9P/Cbs40nnG3kOPvQi8B6\n53JKWw+rH4dNTnuwB/rJbttdCbyHPYDtx16O+Nlt2fnYM8RDIrLLSaZ3AK866/wbbkm3EO9zv/Ne\nHscmqzuwl4hTCrl8OjAAu08fxV6rn1fY7XtY3xRsspktIinY9355AfMfwZZqb8f+HvZjG70UtnfK\nP4BZznd1lYfpr2IbAGx0/n+cZ/og7IE2t5XcdOyl0dxlV2KPBz9iGzEU2G9p3jw+TU6mSrNmjGnc\nmPsHD2bEpElcMmEC9SMiSI6PJ/Wyy6gdEUFCmzbUnTOHiH37CNq8mcibb6Z1TAwXN2xIl5gYXOec\nQ/qqVex96imCFizge+xvsAb2ROQ87EnLNOD/jDE/FPLzAntykdvo4iHgOqcuxRRl3c6+OxV7mXua\np3mKQm/lrJSq9ETkBmxjl9Zur9X/y194bMoU8r0sn2vrViIWL6bWTz/RMDmZajk5hBtDYGIioZmZ\n/C5CNraRb3ZWFodF2J2UxPLDh1mDPRmKwB7UXzPGTCjmexiDbQbepzjLe1jfXcA1pbG+clFHo5RS\npUlEYrB9n/6Hrdd4BNu82l3WyZOFq09r2pT0pk3ZAexwf71XL+p/9RX/V1ApVETuxJaGf8HWIx81\nxhS65OsNTp3bHdjSdIn59NKZiEwUkSQR+SWf6SIir4nINhFZLyLnl3WMSqkKKQDbpPk4sML5eybP\nPMl79pCdnFy8E/Lduwk7fPiPDqf5chrC9Md2LZiPrTMubqOiEnPq3Q5iL0nOLo11+rqO5n3s8DH5\nuRLbGa0pthPS2wXMq5Sq4JxK/QgRicnnL0oKMfyN05+svbHDGtU2xox2GiC4z5OZlMTKBQuoWZxY\n582j1oEDfGsKcddMp473Smwrw0+BaSLSpSjbM8a8URqXuYwxM40xkcaYwYWJvTB8eunMGPOt/LkD\nZF79gQ+ciqwfRSRWROo4rcWUUpWEiNSsXZvu7dtzcUwMkSEhnufLyYGUFFxNm8rP27bxP2NMSTqo\nsnMnX7z0Em1DQ6ndrx9JYWFnbyGZlkbgzJnUeustDh08SKFHWTbGHBaR3tgOkB8Cc0TkcmOMxys+\n5YnPGwM4ieYLY0wbD9O+AP5jjFnmPF+CHStqdZ75RmFLPERGRnZo0aKFt8NWSpWRzMxMgoMTuewy\nF/HxQYSHF3whJjvbcPBgNsuXu9i3rzoREVEl2n5WVhYu1xGqVMmgbl0IC/M8nzFw6hTs2wdpaREE\nBcURFBTEvn37iIuLIzw8vFDby8jIYMuWLcTFxXH06FGaN29OaGip3zHiDD/99NNhY0yNs89ZdBWi\nMYAxZjwwHqBjx45m9erVZ1lCKVUeGGN4883H6dHjEK1bF+0K1vHjGYwfn8Sttz5LjRolP36mpqaS\nmJhIZmb+rfFDQ0OpW7cuERERf7z20Ucfcf/99/P555/TuHFB3YJOW7NmDX369GH06NEsWLCAxYsX\nU7u2d++YICIlGTWiQP6eaPbx5x678RStl6xSqhxLSkoiO3s3rVolnH3mPGJiwmjb1rBx4wYuvbTk\nt2+JiooiKqropaPBgwdz9OhRevXqxbJly6hTp85Zlzn//POZMWMG119/Pddddx1XXHEFS5cupWrV\nqsUJ3ed83RjgbOYCNzutz7oAx7V+RqnKY8+ePTRuDFLMW+00blyF3btLNHpKqbjzzjsZMWIEvXv3\nJjk5uVDLXHLJJUycOJFZs2Zx3nnn0bt3b0aPHs3mzZv54IMSd9YvU75u3jwd26O3uYjsFXv72DtE\nJHfYj/nYex5sAyZg74WhlKokMjIyKGTVhkfh4UGcOnXi7DOWgXHjxtG7d2/69evHiROFi+nqq6/m\npZde4uuvvyY+Pp733nuPxMREHnvsMXxdv14Uvm51NuQs0w325mJKqUqqoMJMTo6Ljh0nUK9eFF98\nMdTDsiUeI7bUiAgvvPACI0aM4LrrrmPu3LmFquQfOHAgR48e5dVXXyUuLo5x48aRnZ3N5s2badmy\nsEMp+pa/XzpTSql8vfrqClq2LOxdF3xPRBg/fjyRkZEMGzaMnJyC75Kdnp5OQkICn376KQcPHiQ9\nPZ3ffvuN6Oho5s0r9rB1ZU4TjVKqXNq7N4V587YycmT5GjAkKCiIadOmceTIEe66664CL4FFRESw\na9cu7rzzTtq2bUt6ejrJycn89ttvvPnmm2UYdcloolFKlUtjxy7kued6EhDgP5fHCissLIzZs2ez\ndu1aHnnkEQBycnJITEw8Y97w8HCGDBnC8uXL2bFjB2PHjuW9997jggsuKOuwi00TjVKq3Pnii9+o\nWTOSDh0KurWQf4uKimLBggXMnj2bF154gV27dtG1a9cCSzgNGjTg5Zdf5uZ+/fjEGOjfH+67DzJK\nevNd7/L3fjRKKXWG77/fzdy5W5g/fysZGdmkpJziL3+ZydSpBd2Hzf9Uq1aNRYsW0a1bN2JjY8nM\nzGTLli0UOLrJ9OkwfLgdhiBX/fowdqz3Ay4mTTRKqXLnmWd68swzPQFYunQnL7yw3G+SzKlTp9iy\nZQubN68iJeUgOTlZHucLDAwmMrIG69f/zjvvvMPw4cNp27Yt8+bN85xoMjPhmmvgyy/BuT80cXFw\nxx2wf/+Z8/sRTTRKKVVKjh07xvvvP0fNmgdo1SqUatXCCQz0XEORk+Pi4MEdLF/+Pbff/iq1a7fg\nm2++ISkpifvuy3Nn6W+/hauvhpQUiI+HpUuhSRNYssROTynUTVd9RhONUqpc6969Id27N/R1GLhc\nLj744CUuuugInTo1KNQy9evH0LHjIAYO3M0nn5wkLCyMlStX4nK5CAgIAJcLRo2C996zC4weDW+9\nZUs0ANWq2f9+nmi0MYBSym+JCK4S3BHF5TKIlM1hbteuXYSG7qFTp7OPZZbXJZfUp2XLMD755BMy\nMzNtktmyxda9vPcexMTAsmXwzjunkwxAdacPUWpqKb0L79BEo5TyWxEREaSmFr/5cmrqKSIiYksx\novxt3bqRFi2KF6uI0KIFbN262R6U77wTWrWydS99+0JSEnTteuaCNZ0RrQs5pI2vaKJRSvmtJk2a\nsG2bISeneMWaLVtO0qRJ+1KOyrMTJ5KJicnnjmyFEBMTxIlF8yA21pZcwsPh449h3jzI705vua+n\nFXi3aJ/TRKOU8lvR0dHUrt2epUv3FXkQyV27jrF1azitWrX2UnR/5nLlFL/zaHIyAZ/NwPXqKzZp\n3HILHDsGgwadfVkROHmyeNstI9oYQCnl1wYOHMHkyS+TlLSNtm0jqF27CsHBns+RXS7DsWMZbN6c\nwoYNYdxwwwNERkayb98+6tWrV8aRn/byyz/w7rtrEYG2bWsxaVJ/wsKC7L2nZ8+GX36BZCChPiz4\nBho1KvzKAwI00SilVElERkYyYsQDbNy4kXXrlvO//+0lKysTOLOEExAQSJUqtWnatD8jR7YjLi6O\npKQk2rVrx6xZs7j44ovLPP59+1J47bWVbNx4F+HhwQwa9CkfffQLt7bNgYULISsbwkKhVzfoN6Jo\nSQYgMFBHBlBKqZIKDQ2lffv2tG9f9PqWmjVr8uGHH3LdddexePFizjvvPC9EWLDsbBcnT2YTHBxI\n+tE06q5cAjvTQIDOnaBPH1hzoHj3Dw4Ksp05/ZgmGqVUhde7d2/eeOMN+vbtyzfffMM555xTZtuu\nVy+a+++/kISElwkPcNG7YQ69uwLx9WDwYKhSpWQbCA7WRKOUUv5g0KBBHDt2jN69e7Ns2TLq1i2b\nATmPHj3JnA9WsmNMNrHBhhtmBTI1qjN/GdmrdDYQGqr9aAoiIn1EZIuIbBORhz1MTxCR/4nIWhFZ\nLyJ9fRGnUqpiGDVqFLfffjtXXHEFycnJ3t/g7t18NfY1GrmOUiMCgnt047oH+rF8eymWQEJDbaMC\nP+azEo2IBAJvAr2AvcAqEZlrjNnoNtujwCfGmLdFpBUwH2hY5sEqpSqMhx9+mMOHD9OvXz8WL15M\nZGRk6W8kI8P2gdmxk4Rg+DEpmPQx9xBetQpLbp1Dx45FHz0gX2Fhfp9ofFmi6QRsM8b8bozJBD4C\n+ueZxwDRzuMYwL+HKFVK+T0R4YUXXqB58+Zcd911ZJZm/YYxdqDL556DHTshOorOj93GwJEXcv5F\nk2nb9m1cLsOoUR1Kb5thYZRonJ4y4Ms6mnrAHrfne4HOeeZ5HFgkIvcAkUBPTysSkVHAKICEhIRS\nD1QpVbGICBMmTOCGG25g2LBhTJs2jcDAwJKtdMMvsOx9iDkFQYFweY8/ho154on6PPFEj8JEVvTt\nRkTYBOfH/H1kgCHA+8aYeKAvMEU8jJBnjBlvjOlojOlYo0aNMg9SKVX+BAUFMX36dJKSkrj77rsx\nxjBnzhyWL19etBUlJkKXLoT+50Uy0k5Bi+bw0EOexyYrQEZGNqGhxbiMl3vpLz296MuWEV8mmn1A\nfbfn8ZzZinwE8AmAMeYHIAyoXibRKaUqvLCwMObMmcPq1av5xz/+QWJiIm+99VbhFna54J57oF49\nWLGCejXrs7PDNbbJcnBwkWPZudNQt27hbi/wJ1FR9v+hQ0Vftoz4MtGsApqKSCMRCQEGA3PzzLMb\nuBxARFpiE43/fppKqXInOjqaBQsWMGPGDPbt28fChQvJOVvl+owZ9u6Wb7xh60j++19abNnC9qM1\nSU4u+nAwhw+ns3t3KM2aNSv6G8jth6OJ5kzGmGxgDPAlsAnbuuxXEXlSRK5xZrsPuF1E1gHTgVtN\nUUfWU0qpAkyfPp1evXoxaNAgJk6cSHh4OKtWrfI8844dcO65cMMN9mZjN90ER4/CqFGEh4fTu/co\nJk9OZPPmw2Rnn72CPisrh02bDjF5chJ9+95BaGho0d9AtNNe6siRoi9bRnzaYdMYMx/bZNn9tX+6\nPd4IFO1Cp1JKFcGNN95InTp1mDRpEikpKaSlpfHqq6/SpUuX0zNlZ8OIETBliq14b9sWZs2yt1N2\n06HDBYSHP8iPP37JrFm/EBMj5NfGIDsbUlIMdeueS79+V9K8eXOWLVvG66+/zpQpUwjJ79YAecXE\n2P9l0S+omHRkAKVUpRYQEED37t3p3r07b7zxBi+++OKfZ3jvPbj3XlvZHh0NEyYUOHx/q1atadWq\nNenp6aSmpuZ7GS4wMJDo6GjCw8P/eK1z584899xz3HrrrUydOtXeafNschPN0aNnn9dHNNEopZQj\nKiqKxx9/3D5Zs8ZW7G/daofiv/NOWydTmIM/9u6gERERRdp+cHAwH3/8MX369OHee+/l9ddfR+Qs\nTZ6rVrXM72rZAAAgAElEQVT//bhE4+/Nm5VSqmytWmXrYTp0sEnmggtgzx54661CJ5mSCA8PZ+7c\nuSxfvvx00itItWr2//HjXo2rJDTRKKUUwIoVtu6lUyfYsAGaNbO9/FeuhDIagDNXTEwMCxcuZPr0\n6bz22msFzxwXZ//7caLRS2dKqcrt++/h9tth0yb7vEULWw/jg5ukuatZsyaLFy+mW7duVK1alWHD\nhnmesbrTtdCPR3DWRKOUqpy+/RZGjYItW+zz1q3hv/8tco9+b2rQoAELFy7ksssuIzY2lquvvvrM\nmcpBotFLZ0qpyuXrr+1lsUsvtUmmbVv48Uf45Re/SjK5WrVqxdy5cxkxYgTffvvtmTPkJpoTJ8o2\nsCLQRKOUqhwWL4ZzzoHLL7eV/OedZyv+16+HznnH8/UvnTp1Ytq0aQwcOJC1a9cCsGbNGjIyMiC3\nv01amg8jLJgmGqVUxTZ/PjRuDL17w/btcP75sHYt/PwzdOzo6+gKrWfPnrz99ttcddVVbN26leef\nf56PPvrIThSBk0Uf+qasaKJRSlVMc+dCw4Zw1VV26JgOHWxrsp9+gnbtfB1dsVx//fU8+eST9O7d\nmwsuuID5852BVQIC/DrRaGMApVTFMmsW/PWvtu8L2ObKEyfayv5yburUqaSkpDBs2DD++9//cvDg\nQbKysggOCoJTp3wdXr60RKOUqhhmzID4eLjuOptkLrwQNm+2/WMqQJIBOO+881i3bh2vvfYaLpeL\nEydOsGTJEtBEo5RSXjR9uu1QecMNsG+f7f+ybRssXw7Nm/s6ulLVtm1bJk+ezJ49e3j44YepVauW\nTTTBwVCat6QuZVLRRt3v2LGjWb16ta/DUEp529Sp8MAD9g6XYJsrT5oEjRr5Ni5fqFXL9qMpwV02\nReQnY4xXWkdoiUYpVb5MmmQPrMOGwcGD0KMH7NwJS5dWziQDEBpq7zvgpzTRKKXKh3ffhRo14Lbb\n7N0ke/aE3bttB8wGxbgFckUSEGDvk+OnfJpoRKSPiGwRkW0i8nA+8wwSkY0i8quITCvrGJVSPvb2\n27b3++2327tIXnEF7N1rO2DGx/s6Ov9QBqNKl4TPmjeLSCDwJtAL2AusEpG5zl01c+dpCowDuhpj\njopITd9Eq5Qqc6+/Do89Zm/oJQJ9+9qbkNWu7evI/M/Z7lnjY75Mg52AbcaY340xmcBHQP8889wO\nvGmMOQpgjEkq4xiVUmXtlVfszbzuvdcOfX/NNbbCf948TTL5EdFLZ/moB+xxe77Xec1dM6CZiHwv\nIj+KSB9PKxKRUSKyWkRWHzp0yEvhKqW8xuWC55+H2Fj4v/+DlBS49lpb2T9nDtTUixkF0hJNiQQB\nTYHuwBBggojE5p3JGDPeGNPRGNOxRo0aZRyiUqrYXC545hmbYB580DbRvf56W9k/a9bpkYlVwfw8\n0fhyCJp9QH235/HOa+72AiuMMVnADhH5DZt4VpVNiEopr3C54Omn4dln7ajDgYFw443wzjs26aii\n0Utn+VoFNBWRRiISAgwG5uaZZza2NIOIVMdeSvu9LINUSpUilwsefxyio+Ef/7ADQQ4ZAsnJ8NFH\nmmSKS1udeWaMyRaRMcCXQCAw0Rjzq4g8Caw2xsx1pvUWkY1ADvCAMeaIr2JWShWTy2UTyyuv2N7r\nQUG2w+Vbb0GVKr6OTnmZT0dvNsbMB+bnee2fbo8N8DfnTylV3mRnwyOP2KbKJ0/aBHPrrfDmmxAR\n4evoKg4/77CptwlQSpW+7Gx46CFbYsnIsIM+jhwJr76qCcYbtDGAUqrSyMy0Cebtt+2w9cHBcMcd\n8PLLEBbm6+gqLq2jUUpVeJmZcN99MH68fRwSAnfdZRNM7j3tVaWliUYpVXwZGbaD5cSJNsGEhtoe\n/c8/rwmmLOmlM6VUhZORAffcA5MnQ1aWvSz2t7/ZfjFBelgpc9oYQClVYaSnw5gxMGWKrfAPD7cl\nmn//WxOML2mJRilV7qWlwd13w7RppxPMAw/AU0/5fUV0peDn34EmGqVU/tLSYPRo+PhjyMmxTZPH\njbO9+/384Kb8hyYapdSZUlJg1CiYMcMmmMhIO+jlo49qgvFHfv6daKJRSp127Ji9k+XMmXbYmKgo\nW4J56CG/P5hValpHo5Tye8nJtuf+nDk2wURH29LLffdpgikP/Pw70kSjVGV2+DCMGAFffGETTEwM\n/POfMHas3x+8lBst0Sil/E5SEgwfDgsW2P4XVavCY4/BX//q68hUcfj5SYEmGqUqk/37bQnmyy9t\ngomLg3/9yw4Xo8ovLdEopXxu71647Tb46iubYKpXt50sR43ydWSqNGiJRinlM7t320tk//ufTTA1\na9pbKI8Y4evIVGnKLdG4XH6ZdHwakYj0EZEtIrJNRB4uYL7rRcSISMeyjE+pcmvHDujeHRo0gK+/\ntglm8mQ4eFCTTEWUm1xcLt/GkQ+fJRoRCQTeBK4EWgFDRKSVh/migL8CK8o2QqXKoe3boVs3aNwY\nvvkG6tSxw8YkJsLNN/s6OuUtuSWa7GzfxpEPX5ZoOgHbjDG/G2MygY+A/h7m+xfwLJBRlsEpVa5s\n2QJdu8I558CyZVCvnh02Zv9+GDLE19Epb9MSTb7qAXvcnu91XvuDiJwP1DfGzCtoRSIySkRWi8jq\nQ4cOlX6kSvmrTZugSxdo0QKWL4f69e2wMXv3wqBBvo5OlRUt0RSPiAQALwH3nW1eY8x4Y0xHY0zH\nGjVqeD84pXztl1/gggugVStYscLWxcyebSv/r7/e19GpsubeGMAP+TLR7APquz2Pd17LFQW0AZaK\nyE6gCzBXGwSoSm39eujQAdq2hdWroWFDmDcPdu6E/p6uPKtKIffSmZZozrAKaCoijUQkBBgMzM2d\naIw5boypboxpaIxpCPwIXGOMWe2bcJXyoTVroH17OO88+7hxY1i40LYu69vX19EpX9MSjWfGmGxg\nDPAlsAn4xBjzq4g8KSLX+CoupfzKqlVw7rm2FPPzz9C0qe10uX07XHGFr6NT/sLPGwP4tMOmMWY+\nMD/Pa//MZ97uZRGTUn7hhx/scP2//mqfN28O77xj+8YolZefNwbQkQGU8ifLltlhYTZtss9btIAJ\nE+Dii30bl/JvgYH2v5+WaPy21ZlSlcrSpTapdOtmk0zr1ra58qZNmmTU2eWWaHJyfBtHPrREo5Qv\nLVkCd94JW7fa523bwnvv2abLShWW1tEopc7w5Zd2aP7ff7fP27WzCeb8830blyqftI5GKfWH+fPh\n7rttvxewieW992yiUaq4tESjlGLuXLj3Xti1yz7v2BEmTYI2bXwbl6oYchONn9bRaGMApbzps88g\nIcH22t+1Czp3tsPHrFqlSUaVHi3RKFUJzZgBY8fCPmdUpYsugokTbX8YpUqb1tGosnD06FE2bvyF\npKSdZGV5vqOCSADh4bGcc05rmjRpQnBwcBlHWQlMnw733QcHDtjnF18M778PTZr4NCxVwfl5PxpN\nNOWcMYZFi75g/fpZtGxpaNQolODgACT3DMeNy2VITT3FihVf8MUXcdx00/3UqVPHB1FXQFOnwv33\n2ztYAlx6qa2DadTIt3GpykH70Shv+vbbJeze/Qn33NOAsLDCfZ0XXgibNx9m6tT/MGrUk8TExHg5\nygps0iR4+GFISrI/9ssus68lJPg6MlWZ+HkdjTYGKMdcLherVs1jwIA6hU4yuVq0qE7Llils2LDO\nS9FVcOPHQ40acNttcOgQ9Opl7wWzZIkmGVX2/LxEo4mmHNu/fz8REcepXj2iWMu3ahXN5s3LSzmq\nCu7tt6FaNRg9Go4csSMo790LixZBfLyvo1OVlZZolLekpKRQrdqZdTGFFRcXTkqK3vq6UF5/HeLi\nbG/+o0ftPWD277f3hKlb19fRqcpOE43yFpfL9Udjk+IICgrA5fLP5pB+weWCl16C2Fjb2fL4cbjm\nGkhMtHe1rF3b1xEqZfl5h01tDFBBZWRkc8klkzh1KofsbBcDB7bkiSd6+Dqs8sHlghdfhKeegpQU\n+yMeMMDWy1Sv7uvolDqTlmjyJyJ9RGSLiGwTkYc9TP+biGwUkfUiskREGvgizvIoNDSQr7++hXXr\n7uDnn0ezcOF2fvxxr6/D8m8uFzzzjC3BPPggpKXBwIG2sn/mTE0yyn9ph03PRCQQeBPoBewFVonI\nXGPMRrfZNgNDABcwCPiviDyQZ1WngP3GmLQyCLvcEBGqVAkBICvLRVZWDh661iiwCeapp+C55+DE\nCdv57cYb7R0tY2N9HZ1SZ5d7Dd0Y38aRj7MmGhEJMsZkn+21YugEbDPG/O6s8yOgP7BRRGo1a8ZN\nl1xC69atMVFRkJpK9f37ad+8OWNzV2AMpKbaoaOaNpV127YxvUOHDiUMq+LIyXHRocN4tm1L5u67\nL6BzZ20V9ScuFzz+uK2HyU0wQ4falmXR0b6OTqnCqwAlmpVA3ptkeHqtqOoBe9ye7wU6i0jN889n\n3LhxhPXrx76wMFwAH3zAuRER/Dpw4J+WAWDOHDp+9RWPzp7N3xMTE0sYVsURGBjAzz/fwbFjGQwY\n8DG//JJEmzY1fR2W77lc8Oij8MorcPIkBAXBzTfDm29ClSq+jk6poiuvJRoRqQnUAcJFpC2Qe+El\nGihex41CaNCAq/76VyIHDmRf7mtffcW5ycnUvfFGJnlapn9/Vvfvz+rzziPhpZeCh3srtvIqNjaM\nHj0asnDhtsqdaLKz4ZFHbFPl3AQzfDi88QZEeG2XVsr7/LxEU1BjgKuAN4B4bF1K7t/fgX+Uwrb3\nAfXdnscDB2rUoHPfviTlvrhyJY3XrqXbTTcxPTSUAtvuXXklB8PDT5Djp038ytKhQyc4dswOrnny\nZBaLF/9OixaVtDI7O9sOdBkVZethsrNh5Eh73XXiRE0yqvwrryUaY8wkYJKIDDLGfOKFba8CmopI\nI2zSGQyMqVePW6tXJwtg0yZq/+9/9Bs0iKk1anDibCusV49TUVEuUlNTia3klbgHDqRxyy2zyclx\n4XIZBg1qTb9+zXwdVtnKzIQHHoD//hdOnYKQELjjDnj5ZQgL83V0SpUePx+CpjB1NDVFJNoYkyIi\n72DrZsYZY5aUZMPGmGwRGQN8CQQCE4HfU1Npv2wZERdfzJYlS+idk0PIzJkMAoiI4PiddzK9oPUG\nB0NmZmZJQitX8juBOffcWqxdO/osy/rn2U+JZWbC//0fvPuufRwSAmPG2L4xISG+jk6p0lcBbhMw\nyhjzhoj0xtbZ3I5NCiVu3mWMmQ/Mz30uIvVq1WLNxRezF2DMGD7InbZ6NdFDhzLg8ce5WwRz9dX8\nNGECK/KuszI14Q0ODiYzs/jJIjMzh+DgCnRmn5FhE8zEiTbBhIbam489+6wmGFWx+XmJpjAdNnOP\nZH2BD4wx6wq5XKkKCcH19NMsOniQN9eu5d3Zs+m0cCE1yjoOf1KzZk327ze4XMVLNnv2pFCrVgW4\nIVdGBtx+u22S/M47tpf03/5mO1y+/LImGVXx+XmJpjAJY52IzAf6AQtEpAqnk0+ZOfdc0gYO5ABA\nnTpk1q3Loa1biSrrOPxJ1apViYlpypYth4u8rMtl+PnndFq16uKFyMpIerptNRYVZS+TBQXZHv2p\nqfYyWZCOsKQqCT8f66wwiWY48DjQyRiTDoQBI7wZ1Nn88AOxu3ZR57rrTjeBrqx69RrC559nsWnT\nIXJyCnc2k5p6ijlzdgIX0KpVK6/G5xVpabbfS0yMvU1ycDD8/e/29Wef1QSjKp/cS2d+WqI56y/S\nGJMjIo2xQ8X8GwjHh2OkHTxIyKBBDLr/fhbWq8cpX8XhLxo1asQNN4xjyZKP+fzzLdStG0hwsPFY\nV+VyQWqq4ciRUFq16svQoQMAGDJkCG+88QbVqlUr4+iLKCXFthr75BN75hYZafvF/POfp8/olKqM\nci+d+WmJpjBD0LwBBAOXYBPNCeAd4ALvhnam9HQCevRgUK9ebHj0UTaV9fb9VaNGjRg58mGOHz9O\nUlISWVlZHucTESIiIqhXrx5Bbmf9DRo0oG/fvnz11VdERfnh1chjx2yCmTHjdIJ58EHbu18TjFKn\nSzR+2pK0MNcYLjLGnC8iawGMMckiUua1qy4X9OxJ/4QEDk+cyA9lvf3yICYmhpiYmCIv98wzzzBq\n1CgGDBjAvHnzCA0N9UJ0xXDsmO1YOWuW3QGiomDcOHjoIU0wSrmrAI0BskQkAKcBgIhUw46mXKYm\nTybhhx84d/16GtWrxx316nHHiy/StKzjqIhEhHfeeYfY2Fhuuukm34+skJxs7/9SrRp89pkdf+y5\n52ziGTdOk4xSefl5Y4CCxjrLHaH5TeAzoIaIPIEdrv+JMorvD8OHs3v48LLfbmURGBjIhx9+SL9+\n/Rg9ejQTJkxAyrpTUlKSbab8xRf2zCw2Fh57zPaFUUrlz8+HoCno1HAlgDHmA+BR4AXgKHCDMeYj\nL8WTk0/1QuFXkGMPmqroQkNDmTVrFhs2bGDcuHFlt+HERLjqKntr5LlzbWuy116Do0c1yShVGH7e\nYbOgOpo/TmeNMb8Cv3o/HFITE5HMTCQkpOh9ddLSCExNhSo61HuxValShfnz59OtWzeqVavGAw/k\nvc9cKdq/H267DRYtsmdicXH2BmR33um9bSpVEfl5HU1BiaaGiPwtv4nGmJdKOxhjzIlWrWTzsmUk\nXHYZR4q6/LffEnfyZIT/VGaXU9WqVWPRokV069aNuLg4Rowo5W5Te/fajpZLltgEU706/PvfMGpU\n6W5HqcqivNbRYAe6rIJbyaYsbN3Kglde4f7GjTnRsCEZhV1u2zbC33iDSGP0zoilIT4+ni+//JLu\n3btTtWpVrrvuOlJTU8nOzqZq1arFW+muXTbBLF1qE0zNmvCf/9jXlFLF5+d1NAUlmgPGmCfLLBJH\nVpb5JTJS3h46lJHduhHUvj1ZkZF4vJuPMciJEwT99BOB331H9vr1vNa6ddgtixcv5sILL9RLaCXU\nrFkz5s2bxxVXXEF0dDT79u1jyZIlfPDBB2df2N2OHTaZfPONfV67Njz/PPzlL6UftFKVUUWooylr\nJ06YFSKy4YcfaFGnDk3CwogMCDgzHpcLk5HBiQMH2AZsNsac7NixIwsWLODZZ5/1rz4h5VT79u2Z\nMWMGAwcOZMKECSxYsICcnJzCNbjYutXWwSxbZp/XqWPHIBsyxLtBK1XZlOM6msvLLAoPnHHV1jh/\nRfL8888zePBghg4dyscff/ynXvCqaHbs2MHGjRt5+eWXGT16NLGxsaxevZrOnTvnv9CWLbYE84PT\nr7ZePXjpJRg0qGyCVqqy8fM6mnybNxtjkssykNIUGBjI1KlTSU1NZfTo0RX3Bl9lIDg4mO+++467\n776bhIQE9uzZw7Rp0zzPvGkTdO4MLVrYJFO/PsycaSv/Ncko5T1+Xkfj0y7WItJHRLaIyDYRedjD\n9FAR+diZvkJEGhZ23aGhocycOZNff/2VBx98UJNNMcXHx/Phhx+ya9cuRo4cSZ06dZg9e/afZ/rl\nF+jYEVq1gpUroUEDmDMHdu+2PfyVUt5VXks03iYigdhRB64EWgFDRCTvmPUjgKPGmHOAl4Fni7KN\n3D4huXU2qvhiYmIYNWoUO3bsYMeOHfbFn3+GDh2gbVv46Sdo1AjmzYOdO+Gaa3war1KVip+XaHxZ\nedEJ2GaM+R1ARD4C+gMb3ebpj70XDsAM4A0REVOE4klcXByLFi3i4osvpmrVqowePbp0oq8MXC5b\n37JqFaxbB7/9Brt2EXDwoB2yP8Npfd6kCbz5JlxxhW/jVaqyKsetzrytHrDH7fleIG8N8x/zGGOy\nReQ4UA0o0i0l69aty+LFi7nkkkuIjY3lxhtvLEHYFUh2tr3stXo1rF9vW4nt3g2HDsHx45CZ6Xm5\nsDA7TEybNrYfzOU+bTeilMq9dKYlGu8RkVHAKICEhASP8zRp0oQFCxbQq1cvYmNjuaIynH1nZsLa\ntfay1oYNsG0b7NljE0lqKngaWE7EJpJq1Wx/l4YNoXlzaNcOOnWy9S86erJS/qW83/jMi/YB9d2e\nxzuveZpnr4gEATFw5tA0xpjxwHiAjh075pvSzz33XGbOnMm1117LnDlzaNCgAWPHjuXTTz8t4Vvx\nkfR0WLPGlkh+/dUmkn37bCJJS7MllrxEICICatWyiaRRI9tKrH1722Ksbt2yfx9KqZLREk2+VgFN\nRaQRNqEMBobmmWcucAvwAzAQ+Loo9TOedO3alSlTpjBgwADmz5/PV199RWJiIrVr1y7Jar0jJcXW\nj/z0E2zcCNu324EoDx+GEyc8n70EBNhEUq+e7SDZuDG0bAnnn29LJNWrl/37UEp5VznusOlVTp3L\nGOBL7LhqE40xv4rIk8BqY8xc4D1giohsA5KxyajEWrduzSuvvMI111xDly5dWLhwIbfeemtprLpo\nkpPhxx9tqWTTJvj9dzhwAI4csaUVTztNYKC9lXGDBrb00aSJbVbcoQNccAFE61hvSlU6uSUaTTRn\nMsbMB+bnee2fbo8zgBtKc5snT56kR48eREZGctFFF/H1118TFBTknUSzfz+sWGFbbG3caJv9Hjhg\n77OSnu65mBsUZO8o2bgxxMfbRNKmje2ncv75trSilFLutETjX8LDw/ntt9/45ptvmDRpEqmpqcyf\nPx+Xy0VAUSu5d+2yJZJ162DzZvv8wAF7y+GMDM+JJDgYoqJsEqlfH845x/ZD6dDB1pOEhJTOG1VK\nVR5aovE/AQEB9OjRgx49evD6668zZcqUM29b7HLZ5r65fUg2b7ZNfw8etE1/M/K5g0FIiG3626gR\nJCRA06Zw7rm2RNKmjS2xKKVUadISjX+LiYlhzJgxNqkMGGDvW5+SAqdOeV4gtw9J06a2nqRZMzjv\nPFs/0ry5Nv1VSpU9LdGUE5GRth4lLMzeUlj7kCilygsdgqacqFvXb88GlFKqQDqoplJKKa/Krfv1\n0xKNJhqllCrv/HxQTU00SilV3mmJRimllFf5easzTTRKKVXe+Xk/Gk00SilV3mmJRimllFf5+W0C\nNNEopVR55+cdNjXRKKVUeacdNpVSSnmVNm9WSinlVdoYQCmllFdpieZMIhInIotFZKvzv6qHedqJ\nyA8i8quIrBeRG30Rq1JK+b3cIWi0RPMnDwNLjDFNgSXO87zSgZuNMa2BPsArIhJbhjEqpVT5kFui\n0UTzJ/2Byc7jycC1eWcwxvxmjNnqPN4PJAE1yixCpZQqL7SOxqNaxpgDzuNEoFZBM4tIJyAE2J7P\n9FEislpEVh86dKh0I1VKKX/n53U0XrvxmYh8BdT2MOkR9yfGGCMi+X46IlIHmALcYozxmK6NMeOB\n8QAdO3b0z09aKaW8xc9LNF5LNMaYnvlNE5GDIlLHGHPASSRJ+cwXDcwDHjHG/OilUJVSqnzz8xKN\nry6dzQVucR7fAszJO4OIhACzgA+MMTPKMDallCpf/LxE46tE8x+gl4hsBXo6zxGRjiLyrjPPIOAS\n4FYR+dn5a+ebcJVSyo/5eYnGa5fOCmKMOQJc7uH11cBI5/FUYGoZh6aUUuWPlmiUUkp5lZ+XaDTR\nKKVUeaclGqWUUmVCSzRKKaW8ShONUkopr9JLZ0oppbxKSzRKKaW8Sks0SimlvEpLNEoppbxKSzRK\nKaW8Sks0SimlvEoTjVJKKa/SRKOUUsqrtI5GKaWU14j4bYnGJ7cJUEqpiswYw/79+9m2bSvp6cdw\nuXI8zhcUFEpsbA1atmxJdHR0aWy45OvwAk00SilVio4fP86HH75OTs52WrSAqlUDCQgQj/NmZ7s4\ncMDF0qVC8+a9uOaaGwkIKMGFJk00p4lIHPAx0BDYCQwyxhzNZ95oYCMw2xgzpqxiVEqposrIyOD9\n95+nU6eDdOmSgIjnBJNXVlYOH3+8gM8/F/r3H1z8ALSO5k8eBpYYY5oCS5zn+fkX8G2ZRKWUUiWw\nadMmatXay4UX1it0kgEIDg5k0KAGbNy4iBMnThQ/AD8t0fgq0fQHJjuPJwPXeppJRDoAtYBFZRSX\nUkoV2+bNK2jdOrxYy4aEBHLOOYYtW7YUb+N+3BjAV4mmljHmgPM4EZtM/kREAoAXgfvPtjIRGSUi\nq0Vk9aFDh0o3UqWUKqRjxw5Qo0ZksZevUcNw/Pix4gfgp4nGa3U0IvIVUNvDpEfcnxhjjIh4+nTu\nAuYbY/aerQhqjBkPjAfo2LGjf37SSqkKLycni6Cg4p+/BwUFkJGRVfwAKluiMcb0zG+aiBwUkTrG\nmAMiUgdI8jDbhUA3EbkLqAKEiEiaMaag+hyllPJLr776IxMmrMEYuP328xk7tkvpbkAvnZ1hLnCL\n8/gWYE7eGYwxNxljEowxDbGXzz7QJKOUKo9++SWJCRPWsHLl7axbdwdffPEb27Yll/6GNNH8yX+A\nXiKyFejpPEdEOorIuz6KSSmlvGLTpkN07lyPiIhggoICuPTSBsycuan0N6TNm08zxhwxxlxujGlq\njOlpjEl2Xl9tjBnpYf73tQ+NUqq8atOmJt99t5sjR9JJT89i/vxt7NlzvHQ3UoTm1GVNRwZQSikv\na9myBg891JXevacSGRlMu3a1CAz0wnm+lmiUUqryGjHifH76aRTffjucqlXDadasWuluQBsDKKVU\n5ZaUZHv87959nJkzNzF0aNvS34ifJhq9dKaUUmXg+us/4ciRdIKDA3nzzb7ExoaV7gb8uESjiUYp\npUqRyedg/913w4u9bBE2XrLlvUQvnSmlVCkJCgolK6v4FfJZWYagoJDiLezHJRpNNEopVUqqV2/A\ngQOpxV7+wIEAqlevUfwANNEopVTF1qpVJ9atO1WsS2CpqafYvTuIZs2aFW/jWqJRSqmKzyaJdnzx\nxS5Oncou9HLJySf54IO9dO06mJCQYl46A79NNNoYQCmlSklQUBA33XQXc+dO46WXlpOQkEN0NAQE\neJN33E4AAAilSURBVE4A2dkBHDzo4tixKLp2HUnXrpfy3XffsXPnToYNG1bG0XuPJhqllCpFoaGh\n3HDDcDIyhrBjxw5OnDiBK58e+0FBQZx7blUaNGhAQIC9wJSQkMCQIUMIDAxk6NChhd+wH18600Sj\nlFJeEBYWRsuWLYu8XIMGDVi4cCE9e/YkNjaWvn37Fn5hP000WkejlFJ+pk2bNsyePZtbbrmF7777\nrnAL+XGJRhONUkr5oS5dujBt2jSuv/56fv7557MvoIlGKaVUUfXq1Yu33nqLvn37snXr1rMv4KeJ\nRutolFLKjw0cOJBjx47Ru3dvvvvuO+Lj4z3PqCWaPxOROBFZLCJbnf9V85kvQUQWicgmEdkoIg3L\nNlKllPK9kSNHcuedd9K7d28OHz7seSY/vvGZry6dPQwsMcY0BZY4zz35AHjeGNMS6AQklVF8Sinl\nVx588EGuueYa+vbtS2qqHeYm9/8ftETzJ/2Byc7jycC1eWcQkVZAkDFmMYAxJs0Yk152ISqllH95\n5plnaNeuHQMGDODUqVP069ePlStX2ol66ewMtYwxB5zHiUAtD/M0A46JyEwRWSsiz4tIoKeVicgo\nEVktIqsPHTrkrZiVUsqnRIS3336buLg4hg4dyoUXXsjcuXNzJ1a+RCMiX4nILx7++rvPZ+zoc54+\nnSCgG3A/cAHQGLjV07aMMeONMR2NMR1r1CjByKdKKeXnvv/+e+6//37S0tLYsGED8+bNsxP8uI7G\na63OjDE985smIgdFpI4x5oCI1MFz3cte4GdjzO/OMrOBLsB7XglYKaXKge3bt/P4448TExPD8ePH\n2b9/P3v37iUeKl+J5izmArc4j28B5niYZxUQKyK5RZTLgI1lEJtSSvmt/2/v7kKkquMwjn8fMsmL\nNkORJEuLNNsLy1pirzKKXvCiyCAUorQsit6ICoqgpJu6KJIoCA17f8G6CIMipKxINFo1I61Eszcr\nEsvsjTa3XxfnVNO26tmd+Z8zc3o+MHDOzNnZ58fZmd+c/5z9nwULFrB9+3YWL15Mb28vAwMDLF26\ntK2HztT0pUNH8kulccBy4GjgM+CiiPhOUg9wVUQszLc7C7gPELAOuDIi+vf33D09PdHX15c0v5lZ\nu9izZw9jxozh4COOgP5+GHwmWkGS1kVET4vjARX9w2ZE7ALOHOL+PmBhw/pKYEaJ0czMOkpXV1e2\n8H/8jsbMzEo0cyb80p7/AeJGY2ZWBytXVp1gnzypppmZJeVGY2ZmSbnRmJlZUm40ZmaWlBuNmZkl\n5UZjZmZJudGYmVlSbjRmZpZUJXOdpSRpJ9n8aZ1gPLCP67LWQp3rq3NtUO/66lwbjLy+yRGR5Dor\ntWs0nURSX6pJ7NpBneurc21Q7/rqXBu0Z30eOjMzs6TcaMzMLCk3mmotqTpAYnWur861Qb3rq3Nt\n0Ib1+TsaMzNLykc0ZmaWlBuNmZkl5UZTAknnSvpY0lZJtw7x+HxJOyW9l98WDvU87ehAteXbXCRp\ns6RNkp4pO2MzCuy7+xv22xZJu6vIOVIF6jta0ipJGyS9L2l2FTlHokBtkyW9ltf1hqRJVeQcCUnL\nJH0r6YN9PC5JD+S1vy/p5LIz/ktE+JbwBhwEbAOOBUYDG4HuQdvMBx6sOmui2qYCG4DD8/UJVedu\nZX2Dtr8OWFZ17hbvvyXA1flyN/Bp1blbWNvzwKX58hnAk1XnHkZ9pwEnAx/s4/HZwCuAgF7gnSrz\n+ogmvVOBrRHxSUT0A88B51ecqVWK1HYF8FBEfA8QEd+WnLEZw91384BnS0nWGkXqC6ArXz4M+KrE\nfM0oUls38Hq+vGqIx9tWRLwFfLefTc4HnojMWmCspInlpPsvN5r0jgS+aFj/Mr9vsAvzQ9wXJB1V\nTrSmFaltGjBN0mpJayWdW1q65hXdd0iaDBzDP29cnaBIfYuAiyV9CbxMdtTWCYrUthGYky9fABwq\naVwJ2cpQ+G+3DG407eElYEpEzABWAo9XnKeVRpENn51O9ol/qaSxlSZKYy7wQkQMVB2kxeYBj0XE\nJLLhmCcl1eV942ZglqQNwCxgB1C3/dcW6vIH0852AI1HKJPy+/4WEbsi4rd89RHglJKyNeuAtZF9\nkloREb9HxHZgC1nj6QRF6vvLXDpr2AyK1Xc5sBwgItYAh5BN2tjuirzuvoqIORExE7g9v6+jTubY\nj+H87SbnRpPeu8BUScdIGk32hrSicYNBY6fnAR+WmK8ZB6wNeJHsaAZJ48mG0j4pM2QTitSHpOnA\n4cCakvM1q0h9nwNnAkg6gazR7Cw15cgUed2Nbzg6uw1YVnLGlFYAl+Rnn/UCP0TE11WFGVXVL/6/\niIi9kq4FXiU7E2ZZRGySdBfQFxErgOslnQfsJfuCb35lgYehYG2vAmdL2kw2LHFLROyqLnVxBeuD\n7E3suchP9+kUBeu7iWy480ayEwPmd0KdBWs7HbhbUgBvAddUFniYJD1Lln98/v3ZncDBABHxMNn3\nabOBrcAvwIJqkmY8BY2ZmSXloTMzM0vKjcbMzJJyozEzs6TcaMzMLCk3GjMzS8qNxmyEJI1rmLn5\nG0k7GtZHF3yORyUdnzqrWZV8erNZC0haBPwUEfcOul9kr7M/Kglm1gZ8RGPWYpKOy6+/8zSwCZgo\naYmkvvyaPHc0bPu2pJMkjZK0W9I9kjZKWiNpQnVVmLWOG41ZGtOB+yOiOyJ2ALdGRA9wInCWpO4h\nfuYw4M2IOJFsOpvLyotrlo4bjVka2yKir2F9nqT1wHrgBLJroQz2a0S8ki+vA6akjWhWDs91ZpbG\nz38tSJoK3ACcGhG7JT1FNjnlYP0NywP49Wk14SMas/S6gB+BPflM3edUnMesVP7EZJbeemAz8BHw\nGbC62jhm5fLpzWZmlpSHzszMLCk3GjMzS8qNxszMknKjMTOzpNxozMwsKTcaMzNLyo3GzMyS+hPt\nalzL7+OSRQAAAABJRU5ErkJggg==\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "6" - ] - }, - "execution_count": 11, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "# let's do a for loop from degree 2 through 9 for the data\n", "# capture the r2 scores for the test and training sets for each iteration\n", @@ -349,6 +230,13 @@ "\n", "question5()" ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { diff --git a/week1/exercise3.ipynb b/week1/exercise3.ipynb index a44c869..8015930 100644 --- a/week1/exercise3.ipynb +++ b/week1/exercise3.ipynb @@ -13,14 +13,14 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ "def getDataSet1():\n", " import pandas as pd\n", "\n", - " df = pd.read_csv('ex2data1.txt',header=None)\n", + " df = pd.read_csv('scores.txt',header=None)\n", " df.columns = ['test1','test2','pass']\n", "\n", " X = df[['test1','test2']]\n", @@ -31,14 +31,14 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ "def getDataSet2():\n", " import pandas as pd\n", "\n", - " df = pd.read_csv('ex2data2.txt',header=None)\n", + " df = pd.read_csv('transistor.txt',header=None)\n", " df.columns = ['test1','test2','pass']\n", " \n", " X = df[['test1','test2']]\n", @@ -55,7 +55,7 @@ "def plotData():\n", " import matplotlib.pyplot as plt\n", " \n", - " (X,y,df) = getDataSet1()\n", + " (X,y,df) = getDataSet2()\n", " notPassed = df[df['pass'] == 0]\n", " passed = df[df['pass'] == 1]\n", " \n", @@ -69,7 +69,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -101,30 +101,9 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD8CAYAAAB5Pm/hAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAH2NJREFUeJzt3X+MXfV55/H3Y08IsYNjPIMtB/yDGkK2IgtLZilROhHF\nSTdh2YAqajKabb1b1LFE2pJWq4bI2kaV1pUjVUrp7hoxCm290dQh8TYLi1AW6g2rUf+gOyYkNhB+\nlHj8I4ax3Qwu9hbX9rN/3HPtO9f3zsy9555zvt9zPi9pNHPP3Jn79fWc53zPc57vc8zdERGR8lpU\n9ABERCRbCvQiIiWnQC8iUnIK9CIiJadALyJScgr0IiIlp0AvIlJy8wZ6M/szM5s2s/0N21aY2bNm\n9nry+cpku5nZn5rZG2b2IzO7JcvBi4jI/BYyo/8L4LNN2x4C9rj79cCe5DHA54Drk49R4JHeDFNE\nRLplC1kZa2brgafc/cbk8avA7e5+1MxWA8+5+w1m9mjy9a7m5831+weWLfP1V12V7l8iIlIxe998\n87i7zxs8+7r8/asagvdbwKrk66uBQw3PO5xsuyTQm9kotVk/awcGmNy+vcuhiIhUk23aNLWQ56W+\nGOu1U4KOG+a4+5i7D7r74FXLlqUdxrzGZyZY/9oDLHr5Pta/9gDjMxOZv6aISAi6ndG/bWarG1I3\n08n2I8Cahuddk2wr1PjMBKNHH+W0nwFg6uxxRo8+CsDI8qEihyYikrluZ/RPApuTrzcDTzRs//Wk\n+uY24J358vN52Dq960KQrzvtZ9g6vaugEYmI5GfeGb2Z7QJuBwbM7DDwVWA78G0zux+YAjYlT38a\nuBN4AzgN/PsMxtyxg2dPdLRdpNfGJ9awddfHOHhiCWv7T7NteB8jQ4fm/0GRHpg30Lv7cJtvbWzx\nXAe+mHZQvba2r5+ps8dbbs+adnAZn1jD6KODnD5T292mji9l9NFBAP0tSC4qsTJ228phlthls7Yt\nscvYtrLdMaw36jv41PGluNuFHXx8Ys38PyylsXXXxy4E+brTZ/rYuutjBY1IqqYSgX5k+RBjq7ew\nrm8Aw1jXN8DY6i2ZX4jVDh6G8Yk1rH/gThbddy/rH7gz9wPtwRNLOtou0mvdVt1EZ2T5UO4VNtrB\ni9GYLlux9D3+4R/fx5mzi4Fi0iZr+08zdXxpy+2hUaqxnCoxoy9Kux05xB28LJrTZSfevfxCkK/L\n+6xq2/A+llx2dta2JZedZdvwvnl/Ns+zEaUay0uBPkNpdnDpTqt0WSt5nlWNDB1ibMsk6wZOYeas\nGzjF2JbJeWfKeQdepRrLq3Spm/GZCbZO7+Lg2ROs7etn28rhwhZF1XdknQrnZ6EBPO+zqpGhQx3/\nv88VeLP4G1KqsbxKFehDXAHbzQ4u3WuXD28Uy1lV3oE3pmsJ0plSpW60AlZapcvet/gc/Ve811Ha\nJAR5X+NRqrG8SjWj1wpYKVO6bNvwvlkLrSDbwFum905mK1WgL3IFrISjLOmyIgJvWd47ma1UgX7b\nyuFZOXrIZwWsSFYUeKUXSpWjL2oFrIhIyEo1o4diVsCKiISsVDN6kdgU3YdHqqF0M3qRWKh9seRF\nM3qRgsTYckBnIHHSjF6kILG1HNAZSLw0oxcpSGzdTWM8A5EaBXqRgsTWciC2MxC5SIFepCDdti8u\nSmxnIHKRcvQiBcpq5WsWd4q685af8sgz1wHWsNW585afpvq9kr1UM3oze9DM9pvZS2b2pWTbCjN7\n1sxeTz5f2ZuhishCZHXDkqdf+DCzgzyAJdslZF0HejO7EfhN4FbgJuAuM7sOeAjY4+7XA3uSxyKS\nk6wumipHH680M/p/Bjzv7qfd/Szwf4BfAe4GdibP2Qnck26IIrIQ9Rr3qePZBGTl6OOVJtDvB4bM\nrN/MlgB3AmuAVe5+NHnOW8CqlGOUyGhRTf4a0zWXpldq0gbk2KqE5KKuL8a6+ytm9jXgGeAU8CJw\nruk5bmbe6ufNbBQYBVg7MNDtMCQwWlRTjPluit6LgKwbk8TL3FvG4c5/kdkfAYeBB4Hb3f2oma0G\nnnP3G+b62cENG3xy+/aejENqsqi6WIha6uDS+46uGzjFgR1PZ/76VbXovntxbzWTd9YNKCC3UtQ+\n0ku2adNedx+c73mpyivNbKW7T5vZWmr5+duAa4HNwPbk8xNpXkM6V+SsWhfsitHuxt7rBk7rANtC\n1c480y6Y+u9m9jLwP4EvuvsMtQD/GTN7Hfh08lhyVORSdV2wK4by552pWjuHVDN6d7/kDh/ufgLY\nmOb3SjpFzqrzvqG11Ch/PrfmNE1WlUmh0srYEmp3Gp/HrFoBpzjtVtmWIRedRqs0jeG0ujpZ1jNP\nBfqCZbETFj2r1g2tw1G1XHQrrdI0jiXB/uIF7DKfeaqpWYGyWqoeW7MsyU7VctGttEvHOOS6jxS5\nvkQz+gLNtROm/YOr0qy66qmJuagKKoyKpKLPrDSjL5B2wvSyOisqC1VBhVGRVPSZlQJ9gbQTplf0\nDtRO0W0gGvveWNNlxzLnolsJIZVZ9KROqZsCFX3RtAyK3oFaKfo0vfn1HS5UmVR1lWzRqcwiK+FA\ngb5QKkVMr+gdqJUsr72003idYpE5587PPll3TG0oClT0pE6BvmBFzzRiV/QO1EreZxnNM/hzLXve\n6NpPkYqe1CnQS9SK3oFayfssY77OlVm/vixMkZM6BXqJXmhnRXmfZSxkpl70WY4US1U3Ij2Wd5VH\nu5n64kXntWBOAM3oRTKR51lGuzMIBXepU6AXiVyI1ykkLAr0IiUQ2nUKCYty9CIiJadALyJScgr0\nIiIlp0AvIlJyCvQiiaI7TopkRVU3IhTfcVIkS6lm9Gb2u2b2kpntN7NdZna5mV1rZs+b2Rtm9riZ\nXdarwYpkJdS+9iK90HWgN7Orgd8BBt39RmAx8AXga8DX3f064GfA/b0YqEiWQuxrL9IraXP0fcAH\nzKwPWAIcBe4Adiff3wnck/I1RDKnu31JmXUd6N39CPDHwEFqAf4dYC8w4+71GzQeBq5OO0iRrIVw\nX1GRrKRJ3VwJ3A1cC3wYWAp8toOfHzWzSTObPHbyZLfDiNr4zATrX3uARS/fx/rXHmB8ZqLoIVVW\nCPcVFclKmqqbTwM/cfdjAGb2V8AngeVm1pfM6q8BjrT6YXcfA8YABjds8FbPKbPxmQlGjz7KaT8D\nwNTZ44wefRSAkeVDRQ6tstQvRsoqTY7+IHCbmS0xMwM2Ai8D3wfuTZ6zGXgi3RDLaev0rgtBvu60\nn2Hr9K6CRiShUD2/9FqaHP3z1C66vgDsS37XGPBl4PfM7A2gH3isB+PsqRBSJgfPnuhou2QrlOBa\nr+efOr4Ud7tQz69gL2mkWjDl7l8Fvtq0+U3g1jS/N0uhpEzW9vUzdfZ4y+2Sr5AWS81Vz6+0knSr\nci0QQkmZbFs5zJKmtWRL7DK2rRzOdRwS1mIp1fNLFioX6ENJmYwsH2Js9RbW9Q1gGOv6BhhbvUUX\nYgsQUnBVPX+YQkntdatyvW5CSpmMLB9SYA/A2v7TTB1f2nJ73trd/1X1/MUJKbXXrcrN6JUykWYh\nLZYqQz1/7LPfZiGl9rpVuRl9fQa9dXoXB8+eYG1fP9tWDvdkZj0+M5HJ75VshXZz7Zjr+csw+20W\nUmqvW5UL9JBNyiSUap5eGJ9YE0zQy2tcMQfXkJSxaiik1F63KpW6ybJ+PpRqnrRCreMOdVxl1W36\npQyz32Yhpfa6VZlAX59xT509juMXZty9CvahVPOkFWo+MtRxlVGag2oZq4bKcN2kMoE+6xl3u6qd\n2BZAhTojC3VcZZTmoFqG2W8rI0OHOLDjac4/vpsDO56OKshDhQJ91jPuslTzhDojC3VcZZTmoFqG\n2W8ZVSbQZz3jLssCqFBnZKGOq4zaHTwXmS8oZx/77LeMKlN1s23l8KyqGOj9jLsMC6BCKzUMfVxl\n1GrRFjjnztfmhWUomawacy++Ffzghg0+uX175q+jOneRhWksZV1kF4N8o3UDpziw4+kCRid1tmnT\nXncfnO95lZnRw/wzbh0I4hVq7X+sGtcVLLrv3pbP0YXweFQmRz+frMsvJTutygF/45F/ycBv/JvS\nLMMvki6Ex0+BPlGWBU9V1Koc8MzZxZx493ItruoBXQjPT1Z9ghToE2VZ8FRFC0khaHFV91QymY8s\nV39XKkc/l5DaF0tn2vUiaaaccvfUCyh7WfYJ0ow+UZYFT1XUKrXQinLKErIsV38r0CeyWPAUwk3I\nq6A5tdB/xXu8b/G5Wc9RTllCl+VFb6VuGvRywVOZ2hbHoDm1oHJLiU2WdxdToM/IXFU8CvTZU055\nbjoQhifL1d9dB3ozuwF4vGHTzwF/APy3ZPt64ACwyd1/1v0Q46QqnrAosF1UxrtAlUVWE5Suc/Tu\n/qq73+zuNwMfB04D3wUeAva4+/XAnuRx5ZSlbXEZlP2mJZ3WXpe1t3/Z7lXbS726GLsR+Dt3nwLu\nBnYm23cC9/ToNaJS1iqeGHemsgY26O4gVsbe/mU/mKfVq0D/BaC+hHSVux9Nvn4LWNXqB8xs1Mwm\nzWzy2MmTPRpGOMrStrhRrDtTGQNbXTcHsXZVHO5Ec/BuVuaDeS+kDvRmdhnweeA7zd/zWmvMlu0x\n3X3M3QfdffCqZcvSDiNII8uHOPCRHZz/+cc58JEdUQd5iHdnKnOvlm4OYu3XHcRz8G4Ww8F8rrPh\nrM+UezGj/xzwgru/nTx+28xWAySfp3vwGhKAGHamVsrcq6Wbg1jjuoNW87AYDt7NQj+Yz3U2nMeZ\nci8C/TAX0zYATwKbk683A0/04DUkAKHvTO2UuVdLtwex+l2gzFp/P/SDd7PQD+ZznQ3ncaacqo7e\nzJYCnwG2NGzeDnzbzO4HpoBNaV5DwpHlgo6slbWuPm3tdbs+QaEfvJuFfgeybs6Ge3mwTRXo3f0U\n0N+07QS1KhwpmdB3pqpKcxCL+eDdLOSD+XwH1KwPtloZKx0JeWeSzungnY/5DqhZH2wV6EUqTgfv\n7C3kgJrlwbZSNwePne5pGya1V5Ci6ObgJaNumGFS3xiJgfrRR0L3tA1TrIvIyi7GVh1Z0ow+EuqG\nGaZYF5GVWZZnWbGm6TSjTymvu0ipG2aYYl1EVmZZnWXF2usJFOhTqefNp84ex/ELefMsgn0ZumGW\n8XQ69BWZVZTVWVbMaToF+hTyzJvH3g0z5tnQXMrcXiFWWZ1lxZymU44+hbzz5r28p23e5poNxR4U\nVYcelqxW+8bcLkIz+hSUN1+4mGdDEpeszrJiTtNpRp/CtpXDs2rbIb68eV5ing1JfLI4y4q5XYQC\nfQr1NEqVVqt2uzq3TM2zpLpiTdMp0KcUc968U2lW58Y8GxKJnQK9LNhcVUYLOdjFOhsSiZ0uxsqC\naXWuSJwU6GXBVGUkEicFelmwMqzOFakiBXpZsNhX54qEKuv2ILoYKx1pLimtt3uoYrCPtZOhhCWP\nexpUckafV8fJMsqzkVvIytq7R/KXR7O0VIHezJab2W4z+7GZvWJmnzCzFWb2rJm9nny+sleD7QUF\nqnR0A5SamDsZSljyaA+Sdkb/MPA9d/8ocBPwCvAQsMfdrwf2JI+DoUB1qU7OcFRiWaPePdIredzT\noOtAb2YfAj4FPAbg7mfcfQa4G9iZPG0ncE/aQfaSAtVsnZ7hZF1iGUvPet1wRHolj2ZpaWb01wLH\ngD83sx+Y2TfMbCmwyt2PJs95C1iVdpC9pFrw2To9w8myxDKmvHfMnQwlLHnc0yBN1U0fcAvw2+7+\nvJk9TFOaxt3dzLzVD5vZKDAKsHZgIMUwOqOOk7N1eoaTZSO3mHrWq3eP9FLW7UHSBPrDwGF3fz55\nvJtaoH/bzFa7+1EzWw1Mt/phdx8DxgAGN2xoeTDIQhU7Ts5lbV8/U2ePt9zeTlaN3GLLe6t3j8Si\n60Dv7m+Z2SEzu8HdXwU2Ai8nH5uB7cnnJ3oy0h6qUsfJ+YR0hqOe9SLZSFt189vAuJn9CLgZ+CNq\nAf4zZvY68OnksQQqpNWuynuLZCPVylh3fxEYbPGtjWl+r+QrlDMc5b1FsqEWCBIU5b2rSy0lsqNA\nLyKFy6PfS5VVsteNiIRFLSWypUAfITVlk1i1W/kcW2ltbJS6iUyaG3SLFGmu9IxKa7OlGX1k1JRN\nYjVXekaltdnSjD4yasomsZorPaPS2mwp0Eemm5YFIiGYLz2j0trsKHUTGd2gW2Kl9ExxNKOPjJqy\nSayUnimOuefWOLKtwQ0bfHK7WuKIiHTCNm3a6+6t2tDMotSNiEjJKdCLiJScAr1IxmK5D66Uly7G\nimRIzbokBJrRS6aq3pdHzbokBAr0FZZ1EK735Zk6exzHL/TlKSLYF3XAUbMuCYECfUXlEYRD6ctT\n5AGnXVMuNeuSPCnQV1QeQTiUvjxFHnC0GlRCoEBfUXkE4Xb9d/Luy1PkAWdk6BBjWyZZN3AKM2fd\nwCnGtkzqQqzkSlU3FZVHc7RtK4dn9c6HYvryFN0ITs26pGipZvRmdsDM9pnZi2Y2mWxbYWbPmtnr\nyecrezNU6aU8mqONLB9ibPUW1vUNYBjr+gYYW70l17484zMTvHvuHy/ZrkZwUiW9mNH/krs3Tpce\nAva4+3Yzeyh5/OUevI70ULvmaADrX3ugZw3TRpYPFdZwrfluXHX9i6/g4VX/To3gpDKySN3cDdye\nfL0TeI6UgX58ZkLdGjPQHITLdpvCVhdhAT5o74/y3yPSrbQXYx14xsz2mtlosm2Vux9Nvn4LWJXm\nBUKqxS67UMoheyWUqh+RoqUN9L/o7rcAnwO+aGafavym13ogt+yDbGajZjZpZpPHTp5s+wJlCz4h\naxcAW13IjEEoVT8iRUsV6N39SPJ5GvgucCvwtpmtBkg+T7f52TF3H3T3wauWLWv7GpqV5addADSI\n8gxKd+MSqek60JvZUjO7ov418MvAfuBJYHPytM3AE2kGqFlZfratHMZabHeI8gwqhKofqVEHz2Kl\nuRi7CviumdV/z1+6+/fM7P8C3zaz+4EpYFOaAYZSi10FI8uH+Lc//c8tvxfrGVSRVT9Sow6exes6\n0Lv7m8BNLbafADamGVQj3SM1X+v6BgpdXCTZG59Yk+t9W+fq4KlAn48oVsZqVpYfnUGVWxGza3Xw\nLF7le91UvV96s3Z5bUDvUwkU0R9fHTyLV+lArxr91kaWD3HgIzs4//OPc+AjOwD0Pi1Q0ROH+S56\nFjG7VgfP4lU60KtGf2H0Pi1M0ROHelpm6vhS3O1CWqYx2Bcxu1YHz+JVOtCrRn9+4zMTbRdM6X2a\nregD4kLSMkXNrkeGDnFgx9Ocf3w3B3Y8rSCfs0oHetXoz60+Q21H79NsRU8cFpKW0ey6N2JbFxBF\n1U1WVGEyt3ZNwUDvUytF971f23+aqeNLW25vVJX++FmVkca4LqDSM3qtnJzbXDNRvU+XKrrlQtZp\nmZhmsQu5XtGtIiqX0qr0jB5Uoz+XdjPUdX0Des9aKHpxX302qVlstou0YlwXUKlAr772nVFqq3NF\nTxyySsvEtro1y2C80BRZSKJJ3aStTy669C1GSm1JXWyz2CzLSGNcFxDFjL4Xdz6aq/RNgau9omeo\nEoYsZrFZ9tzZNrxvVqoJeheMs0yRZSWKQN9pkG6Voim69E0kZr0OnFnn/JuD8YoPngF3fu2//AJb\nd30sdWCOrXIpitRNJ0G6XYpmhV06GwHVgkt6Rbc9yEOv6+/zqFypL9L65m89z/97bzEn3r285xU4\nsYhiRt9JfXK72f8HFr+fJecv04XFkirqQnvZbqg+l4XOYhfyf5Fnzj+2C8lZiGJG30l9crvZ/9+f\ne1cXFkuqyAvtRbc9CM1C/y/y7LkT24XkLEQR6Dup/pirrUFzV0YF+XIoMtjq2s9sC/2/yLNyRW2S\nIwn0cGnr3HZBuujViZK/IoNtSP2SQrhWsND/izx77sRYDtlrUeToO1H06kTJX5E9ZkJZVBbKtYJO\n/i/yqlyJsRyy18zdix4Dgxs2+OT27UUPQyLVHOSgFmyzvAbTeMFxxeIPwnnn7/1UYROL9a890LZd\nRf3mMXko4v+iymzTpr3uPjjf80o3o5fqyfssrjmYnTj3Dyyxy/jmh3+rsGAWyrWCkeVD/M3pVxmb\n+WvOcZ7FLGLzh25XkC9Y6kBvZouBSeCIu99lZtcC3wL6gb3Ar7m36XUr0iN5ruANcZV10S2S68Zn\nJtj5znOc4zwA5zjPznee45NLblCwL1AvLsY+CLzS8PhrwNfd/TrgZ8D9PXgNkWCEMntuFEoRgspN\nw5Qq0JvZNcC/Br6RPDbgDmB38pSdwD1pXkMkNCFV2tSF0oAuxIOgpE/d/Anw+8AVyeN+YMbd67VM\nh4GrU76GlFSsbaNDqbRpFkIDulBSSDJb1zN6M7sLmHb3vV3+/KiZTZrZ5LGTJ7sdhkQq5rbRocye\nQxRKCklmSzOj/yTweTO7E7gcWAY8DCw3s75kVn8NcKTVD7v7GDAGtfLKFOOQCIV4QbMTIcyeQ1SW\ndSyxnm2203Wgd/evAF8BMLPbgf/g7iNm9h3gXmqVN5uBJ3owTikZ5XLLK/aDYDeLz0I/MGTRAuHL\nwO+Z2RvUcvaPZfAaErkQL2iKQOeVQzGkIXsS6N39OXe/K/n6TXe/1d2vc/dfdff3evEaUi7K5Uqo\nOj3bjKGkNJqmZlIuuqApoer0bDOGNKRaIEhhYs/lSjl1Wj4bQ0mpZvQiIg06PduMIQ2pGb2ISJNO\nzjZjKClVoBcRSSn0NKRSN5KrEO6CJFI1mtFLbkK5C5JI1WhGL7mJod5YpIwU6CU3MdQbi5SRAr3k\nRm0PRIqhQC+5iaHeWKSMFOglN2p7IFIMVd1IrkKvNxYpI83oRURKToFeRKTkFOhFREpOgV5EpOQU\n6EVESk6BXkSk5BToRURKToFepETUBlpa0YIpkZJQG2hpp+sZvZldbmZ/a2Y/NLOXzOwPk+3Xmtnz\nZvaGmT1u1tTcREQyoTbQ0k6a1M17wB3ufhNwM/BZM7sN+BrwdXe/DvgZcH/6YYrIfNQGWtrpOtB7\nzbvJw/clHw7cAexOtu8E7kk1QhFZELWBlnZSXYw1s8Vm9iIwDTwL/B0w4+5nk6ccBq5u87OjZjZp\nZpPHTp5MMwwRQW2gpb1Ugd7dz7n7zcA1wK3ARzv42TF3H3T3wauWLUszDBFBbaClvZ5U3bj7jJl9\nH/gEsNzM+pJZ/TXAkV68hojMT22gpZU0VTdXmdny5OsPAJ8BXgG+D9ybPG0z8ETaQYqISPfSzOhX\nAzvNbDG1A8a33f0pM3sZ+JaZ/SfgB8BjPRiniIh0ydy96DFgZseAqXmeNgAcz2E4vRbjuDXmfMQ4\nZohz3GUd8zp3v2q+XxREoF8IM5t098Gix9GpGMetMecjxjFDnOOu+pjV60ZEpOQU6EVESi6mQD9W\n9AC6FOO4NeZ8xDhmiHPclR5zNDl6ERHpTkwzehER6UKQgT7mFshJ/58fmNlTyeOgx2xmB8xsn5m9\naGaTybYVZvasmb2efL6y6HE2M7PlZrbbzH5sZq+Y2SdCHreZ3ZC8x/WPk2b2pZDHDGBmv5vsg/vN\nbFeyb4b+N/1gMt6XzOxLybbg3mcz+zMzmzaz/Q3bWo7Tav40ec9/ZGa3dPJaQQZ64m6B/CC1FcJ1\nMYz5l9z95oZSroeAPe5+PbAneRyah4HvuftHgZuovefBjtvdX03e45uBjwOnge8S8JjN7Grgd4BB\nd78RWAx8gYD/ps3sRuA3qfXeugm4y8yuI8z3+S+AzzZtazfOzwHXJx+jwCMdvZK7B/0BLAFeAH6B\n2uKBvmT7J4D/VfT4msZ6TfKfcwfwFGARjPkAMNC07VVgdfL1auDVosfZNL4PAT8hucYUy7gbxvnL\nwN+EPmZqnWcPASuoraJ/CvhXIf9NA78KPNbw+D8Cvx/q+wysB/Y3PG45TuBRYLjV8xbyEeqMPlUL\n5AL9CbU/qvPJ437CH7MDz5jZXjMbTbatcvejyddvAauKGVpb1wLHgD9P0mTfMLOlhD/uui8A9ds+\nBTtmdz8C/DFwEDgKvAPsJey/6f3AkJn1m9kS4E5gDQG/z03ajbN+0K3r6H0PNtB7ihbIRTCzu4Bp\nd99b9Fg69Ivufgu1U8MvmtmnGr/ptelDaKVZfcAtwCPu/i+AUzSdigc6bpJ89ueB7zR/L7QxJ/nh\nu6kdWD8MLOXSVENQ3P0VaqmlZ4DvAS8C55qeE9T73E4vxxlsoK9z9xlqHTEvtEBOvhVaC+RPAp83\nswPAt6ilbx4m7DHXZ224+zS1nPGtwNtmthog+Txd3AhbOgwcdvfnk8e7qQX+0McNtQPqC+7+dvI4\n5DF/GviJux9z938C/ora33nof9OPufvH3f1T1K4hvEbY73OjduM8Qu3MpK6j9z3IQG8RtkB296+4\n+zXuvp7aqfn/dvcRAh6zmS01syvqX1PLHe8HnqQ2VghszADu/hZwyMxuSDZtBF4m8HEnhrmYtoGw\nx3wQuM3MlpiZcfF9DvZvGsDMViaf1wK/AvwlYb/PjdqN80ng15Pqm9uAdxpSPPMr+mJEmwsU/5xa\ni+MfUQs8f5Bs/zngb4E3qJ36vr/osbYZ/+3AU6GPORnbD5OPl4CtyfZ+aheVXwf+GlhR9FhbjP1m\nYDL5G/kfwJWhj5ta6uME8KGGbaGP+Q+BHyf74TeB94f8N52MeYLaAemHwMZQ32dqB/yjwD9RO0u9\nv904qRV2/Fdq1yr3UauEWvBraWWsiEjJBZm6ERGR3lGgFxEpOQV6EZGSU6AXESk5BXoRkZJToBcR\nKTkFehGRklOgFxEpuf8PdxFNSbH6ry8AAAAASUVORK5CYII=\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "(0.61333333333333329, 0.56000000000000005)" - ] - }, - "execution_count": 12, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "#default is a stratified solution for dummy classifier\n", "def getDummyClassifier():\n", @@ -144,30 +123,9 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD8CAYAAAB5Pm/hAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X9sZfV55/H3w3gniSeQAZsZTWDMUEKSrcLCUoslSh3R\nkHQTNgpRFZhYs9vpCtUjTdImXa0aotE2qtSpiFQpIdslGjc0na1ch8A2hbKrLCkbVlf9g+5AfkAg\n/GgyHpgdMHYxFLzJ1Myzf5xzZ67v3Gv73vPr+z3385JG9j2+9v1ysZ/znOf7/T7H3B0REamvc6oe\ngIiIFEuBXkSk5hToRURqToFeRKTmFOhFRGpOgV5EpOYU6EVEam7dQG9mf2pm82b2eMuxC8zsO2b2\nTPrx/PS4mdlXzOxZM/uhmV1d5OBFRGR9G8no/wz4cNuxW4EH3f1y4MH0McBHgMvTf1PAV/MZpoiI\n9Ms2sjPWzHYB97v7e9LHTwHXufsJM9sBPOTu7zKzQ+nns+3PW+vnj553nu+68MJs/yU19jLnVz0E\nEQnQT37yyIK7rxs8h/r8+dtbgvcLwPb084uA51qe93x67KxAb2ZTJFk/Y6OjHLnttj6HUn93c1PV\nQxCRAN18s81t5HmZJ2M9uSTouWGOu0+7+7i7j1943nlZh7GumaUGu57ezzlP7GbX0/uZWWoU/poi\nIiHoN6N/0cx2tJRu5tPjx4GdLc+7OD1WqZmlBlMnDrHsJwGYW1lg6sQhAPZsnahyaF0pixeRvPSb\n0d8H7E0/3wvc23L819PVN9cCr6xXny/DgfnZ00G+adlPcmB+tqIRiYiUZ92M3sxmgeuAUTN7HvgC\ncBvwTTO7BZgDbk6f/j+AG4BngWXg3xcw5p4dW1ns6bhI3hoNmJ2FxUUYGYHJSZgI82JSamjdQO/u\nk12+dH2H5zrwqayDytvY0AhzKwsdjxdtprGTA7NXcGxxmLGRZQ5OPsaeiefW/0apjUYDDh2Ck+lF\n5cJC8hgU7KUc/dboo3Jw2+SqGj3AsG3m4LZu57B8zDR2MnVonOWTyds8t7CFqUPjAB2Dvery9TQ7\neybIN508mRxXoJcyDEQLhD1bJ5jesY9LhkYxjEuGRpnesa/widgDs1ecDvJNyyeHODB7RaGvK6s1\nGrB/P+zenXxslLzgarFLhbDbcZG8DURGD0mwL3uFzbHF4Z6OSz5a6+FbtsDPfgYrK8nXqiibjIwk\nr9vpeGg0l1BPA5HRV2VsZLmn45Jdsx6+sADu8NprZ4J8U7NsUpbJSdi8efWxzZuT4+sp82qk/b1r\nnhTLvgKS/A1MRl+Fg5OPrarRAwxvXuHg5GOnH6sun69O9fBOyiybNDPiXjPlsidxNZdQX7UL9DNL\nDQ7Mz3JsZZGxoREObpusbFNUc8JVq27Ks9EAXnbZZGKi92BZduDVXEJ91SrQh7gDds/EcwrsJepW\nD2+10bJJ1coOvDHNJUhvalWjj2UH7N3cdPqf5KtTPXzTJjj3XDCD0VHYty+OUkS3AFtU4M0ylyBh\nq1VGrx2w0m89PESTk6tr9FBs4K3Teyer1SrQV7kDdi3K3MvVTz08RFUE3rq8d7JarQJ9VTtgRYqi\nwCt5qFWgb064hrDqRlm8iISiVoEeqtkBKyISstoF+iopi5deqeWAlEGBXqQial8sZVGg74Myd8lD\njC0HdAUSJwV6kYrE1nJAVyDxUqDfIGXxkrfYWg7EeAUiiVq1QBCJSWwtB2K7ApEzlNF3oQxeihZb\ny4HYrkDkDAV6kQoVtfO1iEnTq6+GBx7ofFzClinQm9lngN8EDPgTd/+ymV0A3AXsAo4CN7v7yxnH\nWQpl8VIHRU2aPvpob8clHH3X6M3sPSRB/hrgSuCjZvYO4FbgQXe/HHgwfSwiJVlr0jQL1ejjlWUy\n9p8DD7v7sruvAP8b+DXgRuBw+pzDwMezDVFENqJ5f9luN17JGpDL7o8v+ckS6B8HJsxsxMyGgRuA\nncB2dz+RPucFYHvGMUpkyryhtSRab+zdTdaAHNsqITmj7xq9uz9pZl8EHgBeB74PvNH2HDcz7/T9\nZjYFTAGMjY72OwwJjDbVVGO9m6LnEZBjWyUkZ2SajHX3O4E7AczsD4HngRfNbIe7nzCzHcB8l++d\nBqYBxi+7rOPJQPpX1VZ1baqpxlplmdHR/P7/16k//iC1c8i66mabu8+b2RhJff5a4FJgL3Bb+vHe\nzKOUnlSZVWvCrhrd1riPjsIdd5Q/ntAN2pVn1p2x/83MngD+GviUuy+RBPgPmdkzwAfTx1KiolZd\nbIQm7Kqh+nlvqvwbqULW0s1Z5z53XwSuz/JzJZsqs+qyb2gtCdXP19ZepilqZVKotDO2xU3cvaHn\nhb6xqsqt6go41elWPx+kWnQnnco03dT1ylOBvmJF/BFWnVXXacIudoNWi+5kvRVJTXW+8lSgr1BR\nf4TKqqVJq6DWX5FU1t9IlVdWCvQVKvKPcJCy6kEvTaxFq6DCWJFU9ZWV+tFXSH+E2bXuCHU/8wek\n3bgJrYIKY0VS1at8lNFXSP29swu1NFH1VUbz9Tv9ftW5Ft1JCKXMqpM6Bfo+tK7OybICp+pJ0zqo\n+g+ok6ov09tfv1Weu2RjUnUps+qkToG+QiFkGrGr+g+okyquMlqvIMzg1Kmzn6NdstWpOqlToM8o\na3ZfdaYRu6r/gDop+yqjPYP3Lp2jNPdTnaqTOgV6iVrVf0CdlH2VsdF14pr7qVaVSZ0CfY667awN\nfSdt7EK7Kir7KmMjmXrVVzlSLQV6kZyVfZXR7QrinHOSMk4IVzlSLQX6ErRn+srw66/Mq4xuVxD7\n9im4S0KBXiRyIc5TSFgU6EVqILR5CgmLWiCIiNScAr2ISM2pdFOBvFooiIhshDJ6EZGaU0ZfMWX3\n4ai646RIURToRai+46RIkTKVbszsd8zsR2b2uJnNmtmbzexSM3vYzJ41s7vMbPP6P0kgye6b/6Rc\nVd8YQqRIfQd6M7sI+G1g3N3fA2wCPgl8EfiSu78DeBm4JY+BihQpxL72InnJOhk7BLzFzIaAYeAE\n8AHgnvTrh4GPZ3wNkcLplntSZ30Henc/DvwRcIwkwL8CPAIsuftK+rTngYuyDlKkaCHcV1SkKFlK\nN+cDNwKXAm8HtgAf7uH7p8zsiJkdeenVV/sdRtRmlhrseno/5zyxm11P72dmSXe0rsrERNIEbHQ0\nuUPT6Kiagkl9ZFl180Hgp+7+EoCZ/SXwPmCrmQ2lWf3FwPFO3+zu08A0wPhll3W5J059zSw1mDpx\niGVPZgDnVhaYOpEs89izVdGlCuoXI3WVJdAfA641s2Hg/wHXA0eA7wKfAL4B7AXuzTrIOjowP3s6\nyDct+0kOzM+yZ+uEbmIywLSeX/LWd6B394fN7B7gUWAF+B5Jhv7fgW+Y2R+kx+7MY6B5mllqcGB+\nlmMri4wNjXBw22TpWfSxlc7LObodl2KFEly1nl+KkGnDlLt/AfhC2+GfANdk+blFCqVkMjY0wtzK\n2bcFGhtae5lH1jX2uiI4W0jBda31/Ar00q+B63WzVsmkTAe3TTLctpds2DZzcJuWeZQtpM1SWs8v\nRRi4FgihlEyaVw9ll5DUW+dsIQXXbvd/1Xr+aoVS2uvXwAX6fksmRdizdUIrbAIQUnDtdv9Xreev\nTkilvX4NXOlGJRNpF9JmqTqs5280YP9+2L07+diIfHtISKW9fg1cRl9kySSE1TzSu9Burh3zev46\nZL/tQirt9WvgAj0UUzIJZTVPHkKtRxY5rpiDa0jquGoopNJevwaqdFNky4FQVvP0olNb5GZGtrAA\n7mcysqovv0MdV131W36pQ/bbLqTSXr8GJtA3M+65lQUcP51x5xXsQ1nNk1Wo9chQx1VHWU6qdewC\nWod5k4Ep3azXciCrkFbzZBFqRhbquOooS/mlrquGYi/tDUxGX3TGXZfVPKFmZKGOq46ynFTrkP3W\n0cBk9EVn3FVtgMpbqBlZqOOqo26Tj2ZJzX69ifDYs986GphAf3Db5KpVMZB/xl2HDVChLTUMfVx1\n1OmkCnDqVPKxDksmB83ABPq6ZNxlCDUjC3VcddN+UjU7E+SbYl8yOWgGJtDD+hm3NjzFK9S1/7Fq\nPanu3t35OZoIj8dABfq11GnDUz/a2x/H1PCs027Mr34Vvv51eP11Bf6s6rBhaNANzKqb9cS44UkS\nnZYDrqzAa69pc1Ue6rBhKBZF9QlSoE/VZcPTINpICUGbq/qnJZPlKHL3t0o3qbpseBpE3UoL7VRT\n7p8mwotXZJ8gBfpUGcsvQxZTTb5dt+WA7VRTlpAVuftbpZvUnq0TTO/YxyVDoxjGJUOjTO/Yl2ki\ntsgmanJGe2nh3HNh06bVz1FNWUJX5O5vZfQt8tzwFNsqnphX3cDZpQUtt5TYFLn7W4G+IEU3UZO1\nqaa8Np0Iw1Pk7u++A72ZvQu4q+XQLwC/B/zX9Pgu4Chws7u/3P8Q46RVPGFRYDujjneBqouiEpS+\nA727PwVcBWBmm4DjwLeAW4EH3f02M7s1ffy5HMYaFa3iCUfdA1uvJ7E63gUKdDJfS16TsdcDf+/u\nc8CNwOH0+GHg4zm9RlTq0ra4XYw3fq7zTUv6WXtdx97+ugPZ2vIK9J8Emn822939RPr5C8D2Tt9g\nZlNmdsTMjrz06qs5DSMcRaziKVNMtxlcTx0DW1M/J7Fuqzjc4zl5t6vzyTwPmSdjzWwz8DHg8+1f\nc3c3M+/0fe4+DUwDjF92WcfnxK4ObYtbxXrJX+deLf2cxNbadxBrWSuGk/lapaWiy055ZPQfAR51\n9xfTxy+a2Q6A9ON8Dq8hFWpm9ouLnc/HIf0xdVLnXi39rL1u3XfQSYyZcOh3IFvrariMK+U8Av0k\nZ8o2APcBe9PP9wL35vAaEoCxkeWOx0P5Y+qmzr1a+j2JTUzAHXck70cnoZ+824V+Ml/rariMslOm\n0o2ZbQE+BOxrOXwb8E0zuwWYA27O8hoSjoOTjzF1aJzlk2d+bYY3r/DlySPcxHMb+hlVbcSq67r6\nrGuv61LWCv0OZP2UlvI82WYK9O7+OjDSdmyRZBWO1MyeiSSYH5i9gmOLw4yNLHNw8rHTx6UaWU5i\ndboXb8gn8/VOqEWfbLUzVnqyZ+K5TIG9dRVPbG0W6ij0TLgu1juhFn2yVaAXGXAhZ8J1sZETapEn\nWwX6iNTtnrZ1ye61I1M2Yq0TatEnWwX6SMTWDXNQ1L29gtSD+tFHQve0DZN2ZIYpxlYdRVJGHwl1\nwwxTDDsyB02RV1mxlumU0WdU1l2kunW9VDfMaoW+I3MQFXWVFWuvJ1Cgz6RZN59bWcDx03XzIoJ9\nHbphzjR2smv/DZyz+xPs2n8DM42dVQ8ps9B3ZA6ioq6yYi7TKdBnUGbdPPZumDONnUwdGmduYQvu\nxtzCFqYOjUcf7OvcXiFWRV1lxVymU40+g7Lr5jF3wzwwe8Wq1gkAyyeHODB7RfQ7a7UOPSxF7faN\nuV2EMvoMVDffuGOLwz0dF+lXUVdZMZfplNFncHDb5Kq17RBf3bwsYyPLzC1sOev4yIhFvVlKwlTE\nVVbM7SIU6DNollHqtFt1Pf3uzu3U+TKWbEikKdYynQJ9RjHXzXuVZXdup86XH5vcEuUfjUhsFOhl\nw9ZaZbSRk11750uVbETKoclY2TDtzhWJkwK9bJhWGYnESaUb2bA8VhmpXCNSPgV62bBBXGUkUoai\nm6Up0EtP2oN9s93DRoN9XW42AvF2MpSwlHFPg4Gs0ZfVcbKOymzkFrKYOxlKWMpolpYp0JvZVjO7\nx8x+bGZPmtl7zewCM/uOmT2Tfjw/r8HmQYEqG90AJRFzJ0MJSxnN0rJm9LcD33b3dwNXAk8CtwIP\nuvvlwIPp42AoUJ2tlyscLbFMxNzJUMJSxj0N+q7Rm9nbgPcDvwHg7ieBk2Z2I3Bd+rTDwEPA57IM\nMk8KVKv1utt1bGiEuZWzW/j1s8SyU70+lrp3zJ0MJSxFddtslSWjvxR4Cfi6mX3PzL5mZluA7e5+\nIn3OC8D2rIPMk9aCr9brFU6RN0CJqe4dcydDCUsZ9zTIsupmCLga+C13f9jMbqetTOPubmbe6ZvN\nbAqYAhgbHc0wjN6o4+RqvV7hFLnEcq26d2hZfcydDCU8RTdLyxLonweed/eH08f3kAT6F81sh7uf\nMLMdwHynb3b3aWAaYPyyyzqeDIqgteCr9VOKKaqRW2x171g7Gcrg6bt04+4vAM+Z2bvSQ9cDTwD3\nAXvTY3uBezONsAB7tk5w9J13cOoX7+LoO+8Y2CAP4dyL9ibuZmzk9Y5fU91bJJusq25+C5gxsx8C\nVwF/CNwGfMjMngE+mD6WQIV0L9qDk48xvHll1THVvUWyy7Qz1t2/D4x3+NL1WX6ulCuUnvrNFsaf\nnb1WdW+RHKkFggSlvWf9RsXeTkHiWVobIwV6EalcGf1eBpkCvdRCnZqlDaKYltbGSIE+Qv3eoFuk\nat3KM7EtrY2NAn1kstyge1CUnd23vl5Wdb4aWas8o5YSxRrINsUxU1M2idVa5Rm1lCiWMvrIqClb\nGPLM4gfFWuUZtZQolgJ9ZPLsHilSpvXKM2opURwF+sioKVtvstbry8jc61yXb1VGO17pTIE+MmrK\nJrFSeaY6CvQRCqVlQWzas/NumbTq78VReaYaWnUjIlJzyuhFUBYv9aaMXqRgM42d7Np/A+fs/gS7\n9t/ATGNn1UOSAaOMXgZWGVn8TGMnU4fGWT6Z/KnNLWxh6lDS2bufLp0i/VBGL4WaWWqw6+n9nPPE\nbnY9vZ+ZpQDv9F2gA7NXnA7yTcsnhzgwe0VFI5JBpIx+gBXdHC2kvjxVNYI7tji87vG1rix6XRk0\nKGvypTfK6AdUMwjPrSzg+OkgnGfGHUpfnjL+W7sZG1nu6bhIERToB1QZQTiUvjxVnnA63Qd3ePMK\nBycfK/y1RZpUuhlQZQThUPryVHnCaU64Hpi9gmOLw4yNLHNw8rENT8T2OmGsG7BIJwr0A6qMIBxK\nX56qTzj93gdXJC+ZAr2ZHQX+EXgDWHH3cTO7ALgL2AUcBW5295ezDVPyVkYQDqEvz8xSg9fe+NlZ\nxwehEVw/k7xST3lk9L/i7q3p0q3Ag+5+m5ndmj7+XA6vIznqFoQBdj29P7fAXGVfnvZVP00jm87l\n9u2/oX5BMjCKKN3cCFyXfn4YeIiMgV73SC1GexAOaTlkHjpNwgK81d4U5X9PnlTLHyxZV9048ICZ\nPWJmU+mx7e5+Iv38BWB7lheocmncoAllOWReQln1I1K1rBn9L7v7cTPbBnzHzH7c+kV3dzPzTt+Y\nnhimAMZGR7u+wFrBZ9Czsrx1C4CdJjJjUPUkbCy0+ar+MmX07n48/TgPfAu4BnjRzHYApB/nu3zv\ntLuPu/v4heed1/U1lJWVp1sANIjyCurgtkmGbfUdpwdhElakXd+B3sy2mNm5zc+BXwUeB+4D9qZP\n2wvcm2WA3YKPsrL8Hdw2iXU47hBl+WbP1gmmd+zjkqFRDOOSoVGmd+zTlWAFGg3Yvx92704+NuLL\nG6KWpXSzHfiWmTV/zl+4+7fN7P8A3zSzW4A54OYsAwxlLfYg2LN1gn/7f/9zx6/FegWlu3FVr9FY\nfa/YhYXkMehuU2XpO9C7+0+AKzscXwSuzzKoViGsxR4klwyNqq5dczONnX3v1O3H7OzqG4JD8nh2\nVoG+LFHsjFVWVh5dQdVbFf3xF7tcDHY7Lvkb+KZmg94vvV23ujag96kGquiPP9LlYrDbccnfQAd6\nrdHvbM/WCY6+8w5O/eJdHH3nHQB6nzao6sRhvdsWbqQ/ft4mJ2Hz6sVPbN6cHJdyDHSgr9sGoaLo\nfdqYqhOHZllmbmEL7na6LNMa7Kvojz8xAfv2wegomCUf9+1Tfb5MAx3otUZ/fTNLja4bpvQ+rVb1\nCXEjZZmq+uNPTMAdd8BddyUfFeTLFcVkbFG0c3JtzQy1G71Pq1WdOGykLNNLf3z1w+mu0UhWDS0u\nJnMNk5PFnbzyuIn9QAd6rTBZW7emYKD3qZOqE4exkWXmFrZ0PN5qUPrjFxWMY9wXMNClG+2cXNta\nmajep7NV3XKh6LJMTLtbm8F4YQHczwTjPMa81r6AUA10Rg9ao7+WbhnqJUOjes86qHpzX9bbFq4l\ntiy2yE1aZewLyKNc02qgAr362vdGpa3eVZ04FFWWiW13a5HBeGQkOdF1Oh6qaAJ91iBdt5tqlKHq\nDFXCEdvu1iKD8eTk6qsb6H9fQN6ZezdRBPo8grT62ven6gxVwlBE4Cxy5Uqewbhdc4xlrbrJQxSB\nvtcg3Sn7r3rpm0jM8g6cRdf824PxW9+aTMr+8R8nx7IG5omJjX9/WVn7WqJYddNLkO62O/ECO3vZ\nGWgtuGRXdduDMuS9u7WMlSvNTVqf/jT8/Ofw2mv5r8CJRRQZfS/rk7tl/2/Z9CaGT23WxGJNVTXR\nPihzPzdxNzdNwFcm1t881ViaYXb+AIsrxxgZGmNy20Emtu5Z9Zwya/5lTSSHkLl3E0VG38v65G7Z\n/z+88ZrWzNdUlT1mqm57EJrG0gyHTkyxsDKH4yyszHHoxBSNpZlVzyuzo2VsE8lFiCKj72X1x1rZ\nvyYW66nKifZBnPtZK3PdP3+Ak756J+5JX2Z2/sCqrL7IydJ2Ra7ACTmLbxVFRg9nt87t9gdc9e5E\nKV+VwTakexqHMFewuHJsQ8fL7GipNsmRZPS90NrvwVNlj5lQNpWFMlfQ7f/FyNDYWcd6WbmSRd7L\nIWPJ4lvVLtCD1n4PmiqCbevk7wWb3spbTm3mH/z1yhKLUPaJdPt/MbntYGlj6KSsk0qoahnoZbCU\nfRXXnj0vvvGPDNtm/vztn64swQhlrmDP1gn+dvkpppf+hjc4xSbOYe/brjtr1U2IYszUNypzoDez\nTcAR4Li7f9TMLgW+AYwAjwD/zr1Lr1uRnJR5FRdK9tyq6hbJTTNLDQ6/8hBvcAqANzjF4VceYmh4\nJopgX1d5TMZ+Bniy5fEXgS+5+zuAl4FbcngNkWCEkj23CmURQreT4Oz8gVLHsVE3cffpf3WWKdCb\n2cXAvwG+lj424APAPelTDgMfz/IaIqEJaaVNUyj3Vuh2suu2GkfKkbV082Xgd4Fz08cjwJK7N+9+\n8DxwUcbXkJqKtW10KCtt2oWwCKGXVTdVqXv23knfGb2ZfRSYd/dH+vz+KTM7YmZHXnr11X6HIZGq\ncjdrVqFkzyHqVkKqetXNoMuS0b8P+JiZ3QC8GTgPuB3YamZDaVZ/MXC80ze7+zQwDTB+2WWeYRwS\noRAnNHsRQvYcom4roDZHNhEb69VmN30Henf/PPB5ADO7DviP7r7HzO4GPkGy8mYvcG8O45SaCXFC\nU/LR6SRYdbGkl3JNP5vPQj8xFNEC4XPAfzCzZ0lq9ncW8BoSuRAnNEWg90Z1MZQhc9kw5e4PAQ+l\nn/8EuCaPnyv1FeqEphSjNaNer81xEa/Zi16vNmMoQ0bT1EzqRROaEqperzZjKEOqBYJURhOaspZu\nGXm3K4K8lk32erUZyq7ktSijFxFp0evVZii7kteijF5EKhPq5qVerjZjaI2uQC8iklHoZUgFeilV\n6OuNpXh5ZvGhXhGERoFeShPKXZBEBo0mY6U0vW5EEZF8KNBLaWJYbyxSRwr0Uhq1PRCphgK9lCaG\n9cYidaTJWClNDOuNJXxaadM7BXopVejrjUXqSKUbEZGaU6AXEak5BXoRkZpToBcRqTkFehGRmlOg\nFxGpOQV6EZGaU6AXqZGZpQa7nt7POU/sZtfT+5lZalQ9JAmANkyJ1ITaQEs3fWf0ZvZmM/s7M/uB\nmf3IzH4/PX6pmT1sZs+a2V1mbc1NRKQQagMt3WQp3fwc+IC7XwlcBXzYzK4Fvgh8yd3fAbwM3JJ9\nmCKyHrWBlm76DvSeeC19+M/Sfw58ALgnPX4Y+HimEYrIhqgNtHSTaTLWzDaZ2feBeeA7wN8DS+6+\nkj7leeCiLt87ZWZHzOzIS6++mmUYIoLaQEt3mQK9u7/h7lcBFwPXAO/u4Xun3X3c3ccvPO+8LMMQ\nEZIJ1+kd+7hkaBTDuGRolOkd+zQRK/msunH3JTP7LvBeYKuZDaVZ/cXA8TxeQ0TWpzbQ0kmWVTcX\nmtnW9PO3AB8CngS+C3wifdpe4N6sgxQRkf5lyeh3AIfNbBPJCeOb7n6/mT0BfMPM/gD4HnBnDuMU\nEZE+mbtXPQbM7CVgbp2njQILJQwnbzGOW2MuR4xjhjjHXdcxX+LuF673g4II9BthZkfcfbzqcfQq\nxnFrzOWIccwQ57gHfczqdSMiUnMK9CIiNRdToJ+uegB9inHcGnM5YhwzxDnugR5zNDV6ERHpT0wZ\nvYiI9CHIQB9zC+S0/8/3zOz+9HHQYzazo2b2mJl938yOpMcuMLPvmNkz6cfzqx5nOzPbamb3mNmP\nzexJM3tvyOM2s3el73Hz36tm9tmQxwxgZr+T/g0+bmaz6d9m6L/Tn0nH+yMz+2x6LLj32cz+1Mzm\nzezxlmMdx2mJr6Tv+Q/N7OpeXivIQE/cLZA/Q7JDuCmGMf+Ku1/VspTrVuBBd78ceDB9HJrbgW+7\n+7uBK0ne82DH7e5Ppe/xVcAvAcvAtwh4zGZ2EfDbwLi7vwfYBHySgH+nzew9wG+S9N66Eviomb2D\nMN/nPwM+3Has2zg/Alye/psCvtrTK7l70P+AYeBR4F+RbB4YSo+/F/ifVY+vbawXp/9zPgDcD1gE\nYz4KjLYdewrYkX6+A3iq6nG2je9twE9J55hiGXfLOH8V+NvQx0zSefY54AKSXfT3A/865N9p4Cbg\nzpbH/wn43VDfZ2AX8HjL447jBA4Bk52et5F/oWb0mVogV+jLJL9Up9LHI4Q/ZgceMLNHzGwqPbbd\n3U+kn78AbK9maF1dCrwEfD0tk33NzLYQ/ribPgk0b/sU7Jjd/TjwR8Ax4ATwCvAIYf9OPw5MmNmI\nmQ0DNwA7Cfh9btNtnM2TblNP73uwgd4ztECugpl9FJh390eqHkuPftndrya5NPyUmb2/9YuepA+h\nLc0aAq7KIod/AAAB9UlEQVQGvuru/xJ4nbZL8UDHTVrP/hhwd/vXQhtzWh++keTE+nZgC2eXGoLi\n7k+SlJYeAL4NfB94o+05Qb3P3eQ5zmADfZO7L5F0xDzdAjn9UmgtkN8HfMzMjgLfICnf3E7YY25m\nbbj7PEnN+BrgRTPbAZB+nK9uhB09Dzzv7g+nj+8hCfyhjxuSE+qj7v5i+jjkMX8Q+Km7v+Tu/wT8\nJcnveei/03e6+y+5+/tJ5hCeJuz3uVW3cR4nuTJp6ul9DzLQW4QtkN398+5+sbvvIrk0/1/uvoeA\nx2xmW8zs3ObnJLXjx4H7SMYKgY0ZwN1fAJ4zs3elh64HniDwcacmOVO2gbDHfAy41syGzcw48z4H\n+zsNYGbb0o9jwK8Bf0HY73OrbuO8D/j1dPXNtcArLSWe9VU9GdFlguJfkLQ4/iFJ4Pm99PgvAH8H\nPEty6fumqsfaZfzXAfeHPuZ0bD9I//0IOJAeHyGZVH4G+BvggqrH2mHsVwFH0t+RvwLOD33cJKWP\nReBtLcdCH/PvAz9O/w7/HHhTyL/T6ZgbJCekHwDXh/o+k5zwTwD/RHKVeku3cZIs7PgvJHOVj5Gs\nhNrwa2lnrIhIzQVZuhERkfwo0IuI1JwCvYhIzSnQi4jUnAK9iEjNKdCLiNScAr2ISM0p0IuI1Nz/\nB1kuE8THYozPAAAAAElFTkSuQmCC\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "(0.94666666666666666, 0.92000000000000004)" - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "# change the n_neighbors parameter between 1 and 4 for testset 1 and 2, notice the\n", "# different graph and results\n", @@ -191,30 +149,9 @@ }, { "cell_type": "code", - "execution_count": 40, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAD8CAYAAABzTgP2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X+QHGd54PHvI++tqRVlJO9aRGdrJVuxIc6JMtSecR01\nwQEDRlVnUxXL0mRzERdTK6JwKS4VF6a2ClLO7UUhV0eOHEp2Yxyc3N5a2DkOURHl+Odlq4KJlztj\ngSjLQmglKwJ5ZWQHb7BY+7k/pkfMjKbnV7/d/b49z6dqa2d6umef7Z3tp9/foqoYY4wxVavyDsAY\nY4xfLDEYY4ypY4nBGGNMHUsMxhhj6lhiMMYYU8cSgzHGmDqWGIwxxtSxxGCMMaaOJQZjjDF1BvIO\noBcjl1yimy67LO8wjDEmKN88enRJVdtePINMDJsuu4yFPXvyDsMYY4Iit9++2Ml+VpVkCmH27Dyb\nDu9m1aHtbDq8m9mz83mHZEywgiwxGFNr9uw8E6emWdZzACyuLDFxahqA8TWlPEMzJkhWYjDBmzw9\ndz4pVC3rOSZPz+UUUXaspGTSYCUGE7zjK2e62l4UVlIyabESgwne6MBwV9uLop9LSiZdlhhM8KbW\nlRmSwbptQzLI1LpyThFlo19LSiZ9lhhM8MbXlJhZv4uNAyMIwsaBEWbW7yp8dUq/lpRM+qyNwRTC\n+JpS4RNBo6l15bo2BuiPkpJJn5UYjAlUv5aUTPqsxGBMwPqxpGTSZyUGY4wxdZwkBhG5V0ROi8i3\nY14XEfmciBwRkWdE5B01r+0Ukeeir50u4jHGGNM7VyWGLwI3t3j9g8DV0dcE8KcAInIp8GngncD1\nwKdFZK2jmArNRrwmZ+fQmOacJAZV/TvgxRa73Ar8pVY8CawRkfXAB4CHVfVFVf0R8DCtE4zhZyNe\nF1eWUPT8iNd+urAlvajbOTQmXlZtDJcDJ2qePx9ti9tuWuj3Ea8uLur9fg6NaSWYxmcRmRCRBRFZ\neOHll/MOJ1f9PuLVxUW938+hMa1klRhOAhtqnl8RbYvbfgFVnVHVMVUdu+ySS1ILNAS+jnidnd/A\npt1bWbX9Njbt3srs/Ib2B/XAxUXd13NojA+ySgz7gV+PeifdALykqqeAh4D3i8jaqNH5/dE204KP\ncwPNzm9gYnqMxaXVqAqLS6uZmB5LJTm4uKj7eA6N8YWr7qpzwNeBt4jI8yJyh4h8VEQ+Gu1yADgK\nHAH+HNgNoKovAr8PPBV93R1tMy34OOJ1cm4Ly+fqx0sunxtgcm6L85/l4qLu4zk0xheiqnnH0LWx\nzZvV1nz2y6rtt6EqF2wXUV7f96Dznzd7dp7J03McXznD6MAwU+vKQV3UQ4/fhEluv/2bqjrWbj+b\nEsM4MTq8zOLS6qbb0xDyVBC2wI7xXTC9kkw6XA3ymiofZGhwpW7b0OAKU+WDLsLMleuBcNZV1vjO\nEkMg0hil63KQ13jpBDO7Ftg48goiysaRV5jZtcB46UT7gz2WxkA46yprfGdVSQFIq+qh1Z1rL+87\nXjoRfCJo5PocQaX31OLKUtPtxvjASgwBSKvqwe5c20vjHFlX2d7Y3FbZscQQgLQu4DbIq700zpF1\nle2ezW2VLUsMAUjrAm53ru2ldY7G15Q4ds1eXr92H8eu2WtJoQ1rsM+WJYYApHlxsjvX1uwc+cGq\nPbNljc8BqF6E0hgQFfJ4gKzYOcqfNdhnyxJDIOziZPrZ1LpyXc88sGrPNFlVkjHGe1ally0rMRhj\ngpi7yUrN2bHEYAptdn4Dk3NbOH5miNHhZabKBws3CC8pm7vJNLKqJFNYWa4RETLrCmoaWYnBoQfY\n1tX+23ggpUjc6vb3SmJ+Hubm4MwZGB6GchlKPd60fnwOluuvdyyfG+DjczcwWLqh4/cJ5e/UK+sK\nahpZicF4Y34epqdhaQlUK9+npyvbe3Em5roWt71f2Qh408gSg+nJ/Dzs3g3bt1e+93rxrjU3B+ca\n7vDPnats78VwzHUtbnuvXM/hk/WcQDYC3jSyxGC65vrOvsr1HX65DIP11zsGByvbXXE9h08ecwJZ\nV1DTyBKD6ZrrO/sq13f4pRLs2gUjIyBS+b5rV+9tFs24brjNqyHY5dxNNgtq+Jw0PovIzcB/Ay4C\n7lHVPQ2vfxb45ejpELBOVddEr70GVJf5Oq6qt7iIyaQnrbr7crlS8qhNOknv8Eslt4mgkeuG29Ab\ngq3razEkLjGIyEXA54EPAtcCZRG5tnYfVf2Pqnqdql4H/Anwv2pe/ufqa5YUwpBW3X0Wd/iuuW64\nDb0h2Lq+FoOLqqTrgSOqelRVzwH3A7e22L8M2KckYGnW3ZdKsHcv7NtX+e5zUgD3DbehNwSHXuIx\nFS4Sw+VA7VDS56NtFxCRjcCVwGM1m98gIgsi8qSIfCjuh4jIRLTfwgsvv+wgbNOrEO/s0+K64Tb0\nhmCXJR5rq8hP1gPcdgAPquprNds2qupJEbkKeExEDqrq9xoPVNUZYAZgbPNmzSZcEyftuvuQuJ7D\nJ+Q5gVzNgmptFflyUWI4CdTOMXBFtK2ZHTRUI6nqyej7UeAJ4O0OYgpW2ndJdhdm0uSqxGNtFfly\nUWJ4CrhaRK6kkhB2AL/auJOIvBVYC3y9ZttaYFlVXxWREeBdwGccxBSktO+SfL8LczkdhsuY7pzb\napPwdcFFicfaKvKVuMSgqivAx4CHgO8CX1LV74jI3SJS28toB3C/qtZWA/0CsCAi3wIeB/ao6qGk\nMYUq7bskH+7C4kZMpzVoLmms09MEOQnf7PwGNu3eyqrtt7Fp99YgYq4Veu+s0DlpY1DVA8CBhm2f\nanj+e02O+3tgi4sYspD2nPWt7pJcTGR3fGV7qu/fTvVCWx2nUL34Q+tBc61KDWmWMprF1MskfGmJ\nm9zvt+e31Z3nxaXV/Mb0DXyDG3IvgXXqlnXnmD41wTldPr9tUIa4Zd0fN/2sFn2iw6zZ7KodyqIa\nJm5d2+GBUSfvPzwwytLKYmrv306ri38vg+ZaJRoXF8BQJ+HrNcm2knU1X2nNOABzpyc5s3Kc4YFR\nyuumzm836bIpMTqURTVMXB/28ropJ+9fXjfFoAzVbRuUIWfv306rC20vg+bSmpqj3c92PQmfa64T\nWl7VfKU14+y95hj7rn2dvdccyzUp9FunDUsMHcqiMSyuR4erf4jSmnF2rZ9hZGAjgjAysJFd62cy\n+4drdaHtZdBc2nf0WUzClwbXCS3tBOy7PCY2zJtVJXUorprHdWNYsx4dLmtPS2vGc7vzajUXUqkE\nzz4LjzwCr78Oq1bBjTe2rq4YHq7cvTbb7kL1Z/vWU6od13NO+V6lNn92ljtPfzy1tr9WtQU+9OZL\ngyWGDrkauOOSj907W2l1oZ2fhyeeqCQFqHx/4gl4y1vif6c0Jt1rFrPP57QZ1wkt7QScxPzZ2bpG\n6jTa/vqx66wlhg5VP2Rp9krqRtoNr2mJu9D20mAa6h19FlwmtCwScK/mTk/W9VwC93fzWdUW+MQS\nQxd8mqogjZ4neeq1uiLEO/o01HalHh6402kPHp8T8JmV4023u7yb97G2IG2WGALle71vt3yurvBd\nY1fqpZVFpk9NADhNDj4kgkZxXbBd3s37VluQBeuVlBHXaySH2pUyTqg9gHzQrHH0nC4zd3oyp4iS\nmT87y+7Dm9h+aBW7D29i/uxs7L7NumCncTfvcoW7EFhiyEBcP/Ak0xQU7UJqU3n3Lq7aJK6axWfV\nxuSllUUUPV/6iUsO1S7YoU5T7iurSspAXHvA5NyWnidk87net1e+Vlf4rmnj6DNl5NHPsP3lsD4b\nzRqTq6WfuGqx0ppxPrdmsOlrpjeWGDIQV+9//MxQ8xc6ZBdSv2XVnfiCxtFnyvDVP+f1n64Gwumx\nBvGlnBBLPyGzqqQMxNX7jw4vN3/BBC/LaSQaR8yvevQzECWFqlBGKsfN25XVfF6mwhJDBuLaA6bK\nB/MJqEBcN+q7kvU0ErWNo/ryFU33CaHHWt7zeZkKq0rKQFx7gC340l6r6hifB/nl2Z045K6/Nquq\nHywxtOBy/QVrD+heuwu/z4P84i7Ob3xjpWSTZruDzyOVO5HnfF6mwhJDDN+XwewH7S78Pg/ya3Zx\nHhiA5WX4p3+qPI8r4SRttC5ij7V2elloyhb3iWeJIUY/zqjom3YXfp+rTJpdnH/yE/jxj+v3ayzh\nuKoesxKqScJJ47OI3Cwiz4rIERG5q8nrHxaRF0Tk6ejrIzWv7RSR56KvnS7icaEfZ1T0TbvR3b4P\n8iuVYO9e2Lev8v2VV5rvV5sA+33tA+OHxIlBRC4CPg98ELgWKIvItU123aeq10Vf90THXgp8Gngn\ncD3waRFZmzQmF9JajLx2uL8vK0H52rOn3YU/tNHSnUxj4nP1WBH128psnXJRlXQ9cERVjwKIyP3A\nrcChDo79APCwqr4YHfswcDOQ+/1RGjMqZjF3fNcxedyzp5O68pCqTDppFPa5eiwp39YPsXbEeC6q\nki4HavtdPh9ta/QrIvKMiDwoItVJgjo9NnNxy2wm+cC0mjs+L75XXTRWx4SSBJrppITje/VYr/Ja\nN7qVLNZxD1VWjc9fBeZU9VUR2QXcB7ynmzcQkQlgAmB0ZMR9hE24Xn8hi7nju5W06sK3u0DftSvh\nFLVHkY9di60dMZ6LxHASqJ0m9Ipo23mqWnum7wE+U3PsjQ3HPtHsh6jqDDADMLZ5syYJOC9J5o5P\n6wKcpOrC52qokIVUPdYpH9tO+nFltk65qEp6CrhaRK4UkUFgB7C/dgcRWV/z9Bbgu9Hjh4D3i8ja\nqNH5/dG2Qup17vg0i+FJqi58r4Yy/vBx/ZCpdWWGpP7DX/SV2TqVuMSgqisi8jEqF/SLgHtV9Tsi\ncjewoKr7gd8WkVuAFeBF4MPRsS+KyO9TSS4Ad1cboouocbh/p6Op0yyGJ6m68PEu0Pgpz9HYcaXt\nflyZrVNO2hhU9QBwoGHbp2oefxL4ZMyx9wL3uogjBLXD/TsdeZn2BbjXqosi96AxbuXVdtKqunNb\nya913H1iI58D4OsFOPQ5eUy28mg7aVXa/pzlg1g27XYAfO3CGNoAM9N/rLqzN1ZiCIDPXRiL2IPG\nFIevpW3fWWIIhF2A3bMxGMVn1Z29scRg+pKNwegPPpe2fWaJwfQlH0fimnRYabt71vhs+pI1ShoT\nzxKD6Us+jsQ1xRbSFN+WGEzmfFj/wdcuwKaYqlN8L64soej5Kb59TQ6WGEymfJl+2cZgmCyFNsW3\nNT6nxLpCNudTo681SpqshDbFt5UYUuDLXbGPrNHX9KO0lgpOiyWGFNh01PGs0df0o9Cm+C5cYvCh\n5T/Uu+IsGoWt0df0ozSWCk5TodoY8l7cuzqN9p3DW1lcWn3B66PDr7CtfnZyb2Q1EthGopp+FdIU\n34UqMfTa8u+6lDFVPsjQ4ErdtqHBFabKBxO9b5qyrP4qlWDvXti3r/LdkoIxfilUiaGXlv80Shnj\npRMATM5t4fiZIUaHl5kqHzy/3UehVn8ZY9wrVGLoZXHvVqWMJMW+8dIJrxNBI5ue2OQhlG7ds2fn\n+2oJ0EJVJfXS8h9a/+K0WKOwyVoo3bpDG7XsgpPEICI3i8izInJERO5q8vrviMghEXlGRB4VkY01\nr70mIk9HX/uTxNFLy39o/YvTYiOBTdZC6dYd2qhlFxJXJYnIRcDngfcBzwNPich+VT1Us9v/A8ZU\ndVlEfhP4DLA9eu2fVfW6pHFUddvyP7WuXNfGAH73L06TjQQ2WQqlXasfaxVclBiuB46o6lFVPQfc\nD9xau4OqPq6qy9HTJ4ErHPxcJ0LrX2xMUYQy2LEfaxVcJIbLgdpW1uejbXHuAL5W8/wNIrIgIk+K\nyIfiDhKRiWi/hRdefjlZxA3G15Q4ds1eXr92H8eu2WtJwZgMhNKuFdqoZRcy7ZUkIr8GjAHvrtm8\nUVVPishVwGMiclBVv9d4rKrOADMAY5s3ayYBByyU3h6mf4Uy2LF6o9hPvZJcJIaTwIaa51dE2+qI\nyE3AJPBuVX21ul1VT0bfj4rIE8DbgQsSQ7+and/Ax7v8x7H1jE0oQmnXCmnUsgsuqpKeAq4WkStF\nZBDYAdT1LhKRtwPTwC2qerpm+1oRuTh6PAK8C6httO5rs/MbmJge67o7Xyi9PYwxfkqcGFR1BfgY\n8BDwXeBLqvodEblbRG6Jdvsj4I3AAw3dUn8BWBCRbwGPA3saejP1tcm5LSyfqy/UdXKBD6W3hzHG\nT07aGFT1ANTPDqeqn6p5fFPMcX8PbHERQxEdPzPUdHu7C7yNYjbGJFGokc9FMzq83HR7uwu87709\nfFjz2RgTr1BzJRXNVPkgE9NjddVJnVzgfe7tYQ3jplvWwy57lhg8Vp2E7+NzN3T9T+Frbw+f1nw2\n/rMbiXxYYvDceOkEg6Ub8g7DGWsYN92wG4l8WBuDyVQo0yAYP9iNRD4sMZhM+d4wbvxiNxL5sMRg\nMmXTe5tu2I1EPqyNwWTO14Zx4x+fe9gVmSUGY4zX7EaiMy6XH7WqJGOMydHs2Xk2Hd7NqkPb2XR4\nd09LhrpeftQSgzHG5MTVBd318qOWGIwxJieuLuiulx+1xGCMMTlxdUF3vfyoJQZjjMmJqwu66+VH\nLTF0wUUjkTHGVLm6oI+vKTGzfhcbB0YQhI0DI8ys39VzryTrrtqhaiNRtT6w2kgEBLfkn81WaYwf\nXK4n7XL5UUsMHWrVSBRSYnAxW6UlFmPc8XE9aatK6pDrVv+8JF0PuppYul2H2hgTDieJQURuFpFn\nReSIiNzV5PWLRWRf9Po3RGRTzWufjLY/KyIfcBFPGlw1Es3Ob2DT7q2s2n4bm3ZvZXZ+g4vwOpZ0\ntsqkicWEz1bgSyaEtsrEiUFELgI+D3wQuBYoi8i1DbvdAfxIVX8e+Czwh9Gx1wI7gF8Ebgb2Ru/n\nHReNRLPzG5iYHmNxaTWqwuLSaiamxzJNDklnq7RpkPublRiTcT1COS0uSgzXA0dU9aiqngPuB25t\n2OdW4L7o8YPAe0VEou33q+qrqvp94Ej0ft5x0eo/ObelbplOgOVzA0zObXEdbqyks1XaNMj9zUqM\nybgeoZwWF43PlwMnap4/D7wzbh9VXRGRl4DhaPuTDcde7iCmVCRtJDp+Zqir7WlIOltluVzfeA2d\nJxZrtA6flRiTCaWtMpheSSIyAUwAjI6M5BxNb0aHl1lcWt10e5aSzFbZa2KxtXuLYXi48rdrtj1N\n82dnmTs9yZmV4wwPjFJeN0VpzXi6PzQFowPDLK5ceAJ7HaGcFhdVSSeB2kryK6JtTfcRkQHgTcCZ\nDo8FQFVnVHVMVccuu+QSB2Fnb6p8kKHBlbptQ4MrTJUP5hRRb0ol2LsX9u2rfO/kwm5VEMWQx8I5\n82dnmT41wdLKIoqytLLI9KkJ5s/OpvdDU+J6hHJaXCSGp4CrReRKERmk0pi8v2Gf/cDO6PFtwGOq\nqtH2HVGvpSuBq4F/cBCTl8ZLJ5jZtcDGkVcQUTaOvMLMrgXGSyfaHxw4q4IohjxW4Js7Pck5rS9V\nn9Nl5k5PpvdDU+J6hHJaElclRW0GHwMeAi4C7lXV74jI3cCCqu4HvgD8lYgcAV6kkjyI9vsScAhY\nAX5LVV9LGpPPxksnuk4E23ggpWjS8wDb6p7nVQVRZI3nOCtZL5xzZuV4V9t95+OAtkZOxjGo6gFV\nvUZVN6vqVLTtU1FSQFV/oqrbVPXnVfV6VT1ac+xUdNxbVPVrLuLxTQj9lnvRze9la/eaXg0PjHa1\n3SRnI59TFkq/5W51+3vlUQVhiqG8bopBqe+5NyhDlNdN5RRR8QXTKylrrtZPLcocS416+b1s7V7T\ni2rvIx97JblcZ9knlhiacDmTaij9lrtV1N/L+Km0ZtyLRFCrSDMuN7KqpCZcjk50vbKSL4r6exnT\nqVBGMffCEkMTLu+GQ+m33K2i/l7GdKrIpWZLDE24vBsOpd9yt4r6exnTqSKXmq2NoYmpdeW6ukNI\ndjccQr/lXhT19zKmE66vEz6xxNCEy+X2slDUnhHGNPJpIsbQrhPdsMQQI5S74SL3jDCmlo8TMYZy\nneiWtTEErsg9I4ypZRMxZsdKDIErcs8In/hUhdGvbCLG7FiJIXBF7hnhC1vO0g+2emB2LDEEzsYT\nXMj1YvVWhdGa6/MdJ+lEjI1xZrnWemisKilwWfeMmJ3fwOTcFo6fGWJ0eJmp8kGv1pNIo4HSqjDi\nZdkgnGRZ2mZxTkyPAXj1+fWFJYYCyKpnxOz8Biamx1g+V/nYLC6t9u6fq9Xdfa8XKltLIl4a57uV\nXidibBbn8rkBJue2ePPZ9YlVJSVU1LUWmpmc23I+KVRV/7niZFXNUJXG3b2tJREvlNJUXDzHzww1\nfyGh0K8LVmJIoN/GEMT9E8Vtz6PfeRp390mqMIoulNJUXJyjw8sXbkyoCNcFKzEk0G9jCOL+ieK2\n59Fom9bdfakEe/fCvn2V7z4lhaxLZbVCKU01i3NocIWp8kHnP6sI1wVLDAn02xiCqfJBhgZX6ra1\n+ufKo5qh31aKy7srbSjnu1mcM7sWUmlfKMJ1IVFVkohcCuwDNgHHgNtV9UcN+1wH/ClwCfAaMKWq\n+6LXvgi8G3gp2v3Dqvp0kpiyNDowzOLKheXToo4hqP4TddorKa9qhn5aKS7rxt9msjrfSQcZNsa5\njXQanYtwXUhaYrgLeFRVrwYejZ43WgZ+XVV/EbgZ+GMRWVPz+p2qel30lWtS6LbBKOQxBL02jo2X\nTnBs7wFe3/cgx/YeaHnHFUo1Q8hCafxNKu+SUTdCvi5UJU0MtwL3RY/vAz7UuIOqHlbV56LH/wic\nBi5L+HOd63Zxewh3TYJeftdehFLNELJ+GQ0c0iDDUK8LtZL2Snqzqp6KHv8AeHOrnUXkemAQ+F7N\n5ikR+RRRiUNVX405dgKYABgdGUkY9oV6WdwewphdsXFQ2o9vfITlf9X979qLpNUMNkdRa+Vyfc8v\nKGapLLSSUQjXhVbaJgYReQT4uSYvTdY+UVUVEW3xPuuBvwJ2qurr0eZPUkkog8AM8Ang7mbHq+pM\ntA9jmzfH/pxeFaHBqJlmg9L4yn+F1/8J3lZ/u+Xb7+rjNMu+6ZeutKF0iy2KtolBVW+Ke01Efigi\n61X1VHThPx2z3yXA3wCTqvpkzXtXSxuvishfAL/bVfQO+dxg9ADbej7243Ow3FAE56er4dH/fEFi\nGB4YTfSzXPOhYTUE/dDY3i8lI18kbWPYD+yMHu8EvtK4g4gMAl8G/lJVH2x4bX30Xai0T3w7YTw9\nC6nBaP7sLLsPb2L7oVXsPryJ+bOzsfvGFrVfGq17OihDlNdNOYwyudCqD0x6rL0qW0nbGPYAXxKR\nO4BF4HYAERkDPqqqH4m2/RIwLCIfjo6rdkudFZHLAAGeBj6aMJ6e+bxM3zYeOP949uw8X6gZVbm0\nssgXTv0G7+QbTWO9c3hrpfqowfClZ3njwEjD7zoINT8rb3Gxjw6/wjYO5BBRZ3wqdTXa5tHft1vb\nSvC5/P8d+4KoOq+uT93Y5s26sGdP3mHkYtPh3U2rvDYOjHDsmr0XbG9sY4DKoLS0Bve4FGrslhiM\nr+T227+pqmPt9rO5kgLTbSN5t4PSfBJy7MaEzBJDYHppJB8vnQj2Yhpy7MaEyuZKCkxIjeTGmDBZ\nYghMEUZVGmP8ZlVJAQp9VGUnZs/Oe9lDzJiqIn9GLTEY7xRhoRNTbEX/jFpVkvFOERY6McVW9M+o\nJQbjnaLOW2WKo+ifUUsMxjtxXW9HB4aZnd/Apt1bWbX9Njbt3srs/AYnPzOt9zXF1OozWgSWGPpI\nr4vzZC2uS+7W7/8XJqbHWFxajaqwuLSaiemxxBfx6ghr1++bRJ7rOJv2it5t3BJDhvK8MGe1OI8L\ncV1yD3zltrrpMQCWzw0wObcl0c+bnNuSyvv2KoTVykK5yUhL0buNW6+kjOTdi6HXhYjy0qxL7r87\nM9R03+Mx2zsVd3zS9+2V79ON5/1Z9kWRu41biSEjefdiKEJj2ejwclfb837fXvk+3Xjen2WTPksM\nGcn7whxyY1m12mLxlyaQf1F/sR4aXGGqfDDR+0+VDzI0uOL8fXvl+zrOeX+WTfosMWQk7wtzqI1l\ntW0jvO1/ov/2I8ibFgFl48grTqbgHi+dYGbXAhtHXkHE3fv2qlyurE5Wy6fVyvL+LJv0WRtDRqbW\nlevqZSHbC7PPCxG1ckG1xdvm0LfNxa4/0SufZnH1fR3nvD/LJn2WGDLiw4U5xMayfq228HkdZx8+\nyyZdlhgyFOKFOW+9rD9h0mef5WJL1MYgIpeKyMMi8lz0fW3Mfq+JyNPR1/6a7VeKyDdE5IiI7BNp\nqAQ3fS/UthFjQpa0xHAX8Kiq7hGRu6Lnn2iy3z+r6nVNtv8h8FlVvV9E/gy4A/jThDGZArFqC7d8\nXo86a7b+dbykieFW4Mbo8X3AEzRPDBcQEQHeA/xqzfG/hyUG0yDEaov5eX8bj41pJ2lieLOqnooe\n/wB4c8x+bxCRBWAF2KOq/xsYBs6qarUD+fPA5QnjMSZ31SktqqOXq1NaQP8lhyIlyCIvzNOobWIQ\nkUeAn2vy0mTtE1VVEdGYt9moqidF5CrgMRE5CLzUTaAiMgFMAIyOjHRzqDGZ8n1Ki6wUKUH22zQg\nbRODqt4U95qI/FBE1qvqKRFZD5yOeY+T0fejIvIE8Hbgr4E1IjIQlRquAE62iGMGmAEY27w5LgEZ\nkzvfp7RwoZOSQFYJMotSSWhzjSWVdOTzfmBn9Hgn8JXGHURkrYhcHD0eAd4FHFJVBR4Hbmt1vDGh\n8X1Ki6Q6nf01iwSZ1Uy0/TaeJmli2AO8T0SeA26KniMiYyJyT7TPLwALIvItKolgj6oeil77BPA7\nInKESpvDFxLGY0zufJ/SIqlWJYFaWSTITmPpRrMpxfttGpBEjc+qegZ4b5PtC8BHosd/DzSd2F5V\njwLXJ4nBGN/4PqVFrV6qYTotCZTL9W0M4D5Bui6VxLUl7HzTjdz30hN9Mw2IjXw2xrFtPMC2Enyu\nzQW2lzGrBAPnAAAJKElEQVQFLvvez85v4AvTY+cXKVpagi9Mr/BOWk8geOfwVhaXVl+wfXT4FbZx\n4GexluCdbGBybgvHzwwxOrzMVPmg0zmpOo2lU3FtCQd+/H+ZWb/LeiUZUwQ+dDH0NYbJuT+IXbmu\n1cV7qnyQiZqEAvHTlKc9OWE3sXSiVVtCiONpemXTbpvC8mE5U59jWFzqbeW6TqYpz2rpT9dTpvdb\nW0IcqXQOCsvY5s26sGdP3mEYz206vLvpBHyup+zuNYY/uuYFoLt6/l6qkuJiuOizx3ntpQ0Xxjby\nCsf2dl8NU9VYTw+V+vgQ1kQOOfZOyO23f1NVx9rtZyUGU1g+dDFsF0MW3S3jYnjtvXelsnJdyEt/\njq8pMbN+FxsHRhCEjQMjhUkK3bA2BlNYPkzZ3S6GLAaBxcWw8R1/y9TlC84bh31IyEn0U1tCHCsx\nmMLyYcrudjFkMQisVQzjpRMc23uA1/c9yLG9B5w0FFs9ffgsMZhUZdUI2YwP1QLtYshiEFjW58GH\nhGySsaokkxofJh7zoVqgVQxZDAJrF4NrtoZG+CwxmNT028RjvQhplHQ3fEjIpneWGExqQm+EzEqp\nFH4iMMVibQwmNdYIaUyYLDGY1FgjpDFhssRgUuNDryBjTPesjcGkyhohjQmPlRiMMcbUscRgjDGm\njiUGY4wxdSwxGGO8kOf0KaZeosQgIpeKyMMi8lz0fW2TfX5ZRJ6u+fqJiHwoeu2LIvL9mteuSxKP\nMSZMPixoZH4maYnhLuBRVb0aeDR6XkdVH1fV61T1OuA9wDLwtzW73Fl9XVWfThiPMZmwu1u3Ql7D\noYiSJoZbgfuix/cBH2qz/23A11R1OeHPNSY3dnfrnk2f4pekieHNqnoqevwD4M1t9t8BNN4CTInI\nMyLyWRG5OO5AEZkQkQURWXjh5ZcThGxMMj7d3Ral5GLTp/ilbWIQkUdE5NtNvm6t3U8ri0fHLiAt\nIuuBLcBDNZs/CbwV+NfApcAn4o5X1RlVHVPVscsuuaRd2Makxpe72yKVXGz6FL+0HfmsqjfFvSYi\nPxSR9ap6Krrwn27xVrcDX1bVn9a8d7W08aqI/AXwux3GbUxufFgyFIo1rbmt4eCXpFNi7Ad2Anui\n719psW+ZSgnhvJqkIlTaJ76dMB5jUje1rly3ABHkc3frS8nFFZs+xR9J2xj2AO8TkeeAm6LniMiY\niNxT3UlENgEbgP/TcPysiBwEDgIjwH9KGI8xqfNlckCrlzdpSVRiUNUzwHubbF8APlLz/BhweZP9\n3pPk5xuTFx/ubn0puZjisZHPxgTKl5KLKR6bdtuYgPlQcjHFYyUGY4wxdaQy/CAsIvICsJjS248A\nF/ZF9I/F6ZbF6U4IMUJ/xrlRVS9rt1OQiSFNIrKgqmN5x9GOxemWxelOCDGCxdmKVSUZY4ypY4nB\nGGNMHUsMF5rJO4AOWZxuWZzuhBAjWJyxrI3BGGNMHSsxGGOMqdOXiSGUJUk7iTPa77WaWPbXbL9S\nRL4hIkdEZJ9Iw7zGGcUoIteJyNdF5DvR2hvba15L9VyKyM0i8mx0Di5YYVBELo7OzZHoXG2qee2T\n0fZnReQDLuPqIc7fEZFD0fl7VEQ21rzW9O+fU5wfFpEXauL5SM1rO6PPyXMisjPnOD9bE+NhETlb\n81om51NE7hWR0yLSdPJQqfhc9Ds8IyLvqHkt3XOpqn33BXwGuCt6fBfwh232vxR4ERiKnn8RuM2X\nOIEfx2z/ErAjevxnwG/mESNwDXB19PhfAqeANWmfS+Ai4HvAVcAg8C3g2oZ9dgN/Fj3eAeyLHl8b\n7X8xcGX0PhflGOcv13z+frMaZ6u/f05xfhj4702OvRQ4Gn1fGz1em1ecDfv/B+DeHM7nLwHvAL4d\n8/pW4GuAADcA38jqXPZliYFwliTtNs7zRESorLH9YC/Hd6FtjKp6WFWfix7/I5V1O9oOsnHgeuCI\nqh5V1XPA/VG8tWrjfxB4b3TubgXuV9VXVfX7wJHo/XKJUytrp1c/f08CV6QUSyudnM84HwAeVtUX\nVfVHwMPAzZ7EWebClSVTp6p/R+WGM86twF9qxZPAGqmse5P6uezXxJDZkqQJdRrnG6Sy7OmT1eou\nYBg4q6or0fPnaTLDbYYxAiAi11O5i/tezea0zuXlwIma583Owfl9onP1EpVz18mxWcZZ6w4qd5JV\nzf7+aeg0zl+J/p4PisiGLo91oeOfFVXJXQk8VrM5q/PZTtzvkfq5LOwkeiLyCPBzTV6arH2iqioi\nvSxJ+gMqF7gZKkuS3p1jnBtV9aSIXAU8JpU1Ll7qJZ4UY6yey78Cdqrq69FmZ+eyH4jIrwFjwLtr\nNl/w91fV7zV/h9R9FZhT1VdFZBeV0pjP0+vvAB5U1ddqtvl0PnNR2MSggSxJ6iJOVT0ZfT8qIk8A\nbwf+mkrRcyC6E74COJlXjCJyCfA3wGRULK6+d5rLu56kskBUVbNzUN3neREZAN4EnOnw2CzjRERu\nopKM362qr1a3x/z907iQtY1TK2u0VN1DpQ2qeuyNDcc+4TzCn/2sTv92O4Dfqt2Q4flsJ+73SP1c\n9mtVUnVJUuhsSdK6aqToAlitx09zSdK2cYrI2mr1i4iMAO8CDmmllepxKu0jscdnFOMg8GUq9aUP\nNryW5rl8CrhaKr2zBqlcBBp7mdTGfxvwWHTu9gM7pNJr6UrgauAfHMbWVZwi8nZgGrhFVU/XbG/6\n988xzvU1T28Bvhs9fgh4fxTvWuD91JfCM40zivWtVBpvv16zLcvz2c5+4Nej3kk3AC9FN1Lpn8ss\nWt99+6JSh/wo8BzwCHBptH0MuKdmv01UsvOqhuMfo7Ic6beB/wG8Ma84gX8TxfKt6PsdNcdfReVi\ndgR4ALg4pxh/Dfgp8HTN13VZnEsqPTsOU7njm4y23U3lAgvwhujcHInO1VU1x05Gxz0LfDDlz2S7\nOB8Bflhz/va3+/vnFOcfAN+J4nkceGvNsb8RnecjwL/PM87o+e8BexqOy+x8UrnhPBX9bzxPpe3o\no8BHo9cF+Hz0OxwExrI6lzby2RhjTJ1+rUoyxhgTwxKDMcaYOpYYjDHG1LHEYIwxpo4lBmOMMXUs\nMRhjjKljicEYY0wdSwzGGGPq/H+n27Xw3ahdTQAAAABJRU5ErkJggg==\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "(1.0, 0.73333333333333328)" - ] - }, - "execution_count": 40, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "# change the n_neighbors parameter between 1 and 4 for testset 1 and 2, notice the\n", "# different graph and results\n", @@ -225,7 +162,7 @@ " from sklearn.model_selection import train_test_split\n", " \n", " depth = 0\n", - " (X,y,df) = getDataSet2()\n", + " (X,y,df) = getDataSet1()\n", " \n", " X_train, X_test, y_train, y_test = train_test_split(X,y, random_state=0)\n", "# tree = DecisionTreeClassifier(max_depth = depth, random_state=0).fit(X_train,y_train)\n", @@ -238,30 +175,9 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD8CAYAAAB5Pm/hAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3W9sXOd15/HvsbhMIsfO2KQpsHYoubLr7CLYeF3BcZAw\ncO2km2QNOygiKQS3dXeFUoCSNuli0TggtkEXZaEgBdKoXQci4qbagmUSeZu117vIOvXGC2JfuCs7\nf+rYsewmpmKXNk3VtGNrE4XS2RdzRxqOZsiZuXPvfZ47vw8gkLwcch6POec+99zznMfcHRERKa+L\nih6AiIhkS4FeRKTkFOhFREpOgV5EpOQU6EVESk6BXkSk5BToRURKbtNAb2Z/bmbLZvZ43bHLzeyb\nZvZ08vGy5LiZ2SEze8bMvmdmN2Q5eBER2Vw7M/q/AD7QcOwu4CF3vxZ4KPka4IPAtcm/KeCLvRmm\niIh0y9pZGWtmO4AH3P3tyddPATe7+5KZjQIPu/t1ZnY4+Xy+8XEb/f5LLx32K67Ykeo/pJnLeLmj\nx7/MZT0fg4hIVn74w0dX3P2KzR430OXv31YXvF8AtiWfXwn8uO5xzyXHLgj0ZjZFddbP8PAYBw8e\n63Iore3maEePP8runo9BRCQre/bYYjuPS30z1quXBB03zHH3WXff5e67Lr100xNSanOrC+w4foCL\nntjLjuMHmFtdyPw5RURC0O2M/kUzG61L3Swnx58H3lr3uKuSY4WaW11gaukwp/w0AItrK0wtHQZg\nsjJe5NBERDLX7Yz+fuDO5PM7gfvqjv9GUn1zE/DKZvn5PEwvz58L8jWn/DTTy/MFjUhEJD+bzujN\nbB64GRg2s+eAzwAHga+Z2T5gEdiTPPx/AB8CngFOAf8mgzF37MTayY6Oi/TawgLMz8PJkzA0BBMT\nMK6LScnJpoHe3SdafOvWJo914GNpB9VrYwNDLK6tND2eNb3BZWEBDh+G08lF5cpK9WvQ34Lko9sc\nfVRmRibW5egBttogMyMTmVba6A0uUD3Rn16fOeT06epx/R1IHvqiBcJkZZzZ0f1sHxjGMLYPDDM7\nuj/zG7EbvcElPwsLcOAA7N1b/biQc8HVyRYZwlbHRXqtdDP6VrXzk5Xxc4G9NovvrMq+c3qDF6M+\nXXbxxfDTn8LaWvV7RVxVDQ1Vn7fZ8dAo1VhOfTGjL0qrN3KIb/CyqKXLVlbAHV577XyQr8n7qmpi\nAgYH1x8bHKwe30yeVyONr13tpJj3FZD0XvQz+k5Xv+ZpYmJ9jh7af4NLd5qly5rJ86qqNiPudKac\n9z0e3Usor+gDfaO51QWml+c5sXaSsYEhZkYmClsU1e0bXLrXbgDP+6pqfLzz/+95B16lGsurVIE+\nxBWw3bzBpXut8uH1YrmqyjvwxnQvQTpTqhy9VsBKs3z4li1wySVgBsPDsH9/HCffvO/xpLmXIGEr\n1YxeK2ClTOmyvO/xlOm1k/VKFeiLXAEr4ShLuqyIwFuW107WK1Wg32gFrEiMFHilF6IP9PUtDAYr\nu9nHO5lfnubk2gmGBsaYGJlhsDIZcBGmiEi2og/0jcYrk4xXJosehohIMEoX6EViopYDkgcFepGC\nqLup5EWBXqQgMbYc0BVInBToRQoSW8sBXYHEq1QrY0ViElt3U+2vEC8FepGCxNZyILYrEDlPqRuR\ngsTWckBNz+KlQC9SoKxWvmZx0/SGG+DBB5sfl7ClSt2Y2SfM7HEz+76ZfTI5drmZfdPMnk4+Xtab\noYpIO7LaKeqxxzo7LuHoOtCb2duB3wJuBN4B3GZm1wB3AQ+5+7XAQ8nXIpKTrG6aKkcfrzQz+n8K\nPOLup9x9DfjfwK8BdwBHksccAT6cbogi0o7a/rKtNl5JG5BjqxKS89IE+seBcTMbMrOtwIeAtwLb\n3H0pecwLwLaUY5TI5LmhtVTVp2taSRuQY6sSkvO6vhnr7k+a2WeBB4HXge8AZxoe42bmzX7ezKaA\nKYDh4bFuhyGB0aKaYmy2KXovAnJsVUJyXqqqG3e/B7gHwMz+CHgOeNHMRt19ycxGgeUWPzsLzALs\n3Lmr6clAulfUUvUYl/WXwUZpmeHh3v3/L1N//H5q55Aq0JvZiLsvm9kY1fz8TcDVwJ3AweTjfalH\nKR0pclatG3bFaFXjPjwMd9+d/3hC129XnmlXxv4XM3sC+G/Ax9x9lWqAf7+ZPQ28L/laclTkUnXd\nsCuG8ued6bd2DmlTNxec+9z9JHBrmt8r6RQ5q857Q2upUv58Y41pmqwqk0KllbElVORSdQWc4rTK\nn/dTLrqZZmmaVsp65alAX7As3oRFz6rLdMMudv2Wi25ms4qkmjJfeSrQFyirN6Fm1VKjKqjNK5Ly\neo8UeWWlQF+gLN+E/TSr7vfUxEZUBRVGRVLRV1bqR18gvQnTy6qBV1moCiqMiqSiq3w0oy+Q+nun\nF2pqouirjNrzN/v7KnMuupkQUplFT+oU6AtU9E3TMij6DdRM0Zfpjc9fr5erZGNSdCqz6EmdAn2B\nQphpxK7oN1AzRVxl1F9BmMHZsxc+Rqtki1P0pE6BvmBFzzRiV/QbqJm8rzIaZ/DeonOU7v0Up+hJ\nnQK9RK3oN1AzeV9ltFsnrns/xSpyUqdAL9EL7aoo76uMdmbqRV/lSLEU6EV6LO+rjFZXEBddVE3j\nhHCVI8VSoBfJQJ5XGa2uIPbvV3CXKgV6kciFeJ9CwqJAL1ICod2nkLCoBYKISMkp0IuIlJwCvYhI\nySnQi4iUnG7GiiSK7jgpkhUFehGK7zgpkqVUqRsz+10z+76ZPW5m82b2RjO72sweMbNnzOyrZja4\n+W8SKVbRG0OIZKnrQG9mVwK/A+xy97cDW4CPAp8FPu/u1wAvA/t6MVCRLIXY116kV9LejB0A3mRm\nA8BWYAm4Bbg3+f4R4MMpn0Mkc9pyT8qs60Dv7s8DfwycoBrgXwEeBVbdfS152HPAlWkHKZK1EPYV\nFclK1zdjzewy4A7gamAVOAp8oIOfnwKmAIaHx7odRld2c7Tp8aPsznUcC6tzzC9Pc3LtBEMDY0yM\nzDBemcx1DFKlfjFSZmmqbt4H/MjdXwIws78G3g1UzGwgmdVfBTzf7IfdfRaYBdi5c1eLPXHKa2F1\njsNLU5z2UwCsrC1yeGkKQMG+IOoXI2WVJtCfAG4ys63A/wNuBY4B3wI+AnwFuBO4L+0ge6HVLL7V\nY7Ke3c8vT58L8jWn/RTzy9MK9H1O9fzSa10Hend/xMzuBR4D1oBvU52h/3fgK2b2h8mxe3ox0F6a\nW11genmeE2snGRsYYmZkgslKvu+kk2snOjou2QoluKqeX7KQasGUu38G+EzD4R8CN6b5vVmaW11g\naukwp7z6TlpcW2FqqfpOyjPYDw2MsbK22PS45Cuk4LpRPb8CvXSr73rdTC/PnwvyNaf8NNPL+a6M\nmRiZYdC2rjs2aFuZGJnJdRwS1mIp1fNLFvquBcKJtebvmFbHO9FJNU8tD6+qm+KFFFxb7f+qev5i\nhZLa61bfBfqxgSEW1y58J40N5P9OGq9MKrAHIKTg2mr/V9XzFyek1F63+i51MzMywdaG9jtbbZCZ\nEb2T+lVIi6XGx6ubeg8Pg1n1Y2ybfC8swIEDsHdv9ePCQtEjSiek1F63+m5GX7vh2quqm/p0Tatq\nnsaUTt4Ls2RjoS2Wirmevwyz30Yhpfa61XeBHqrBvtcVNqFU8/RCqPnILMcVc3ANSRmrhkJK7XWr\n1IG+cSadZf38RtU8MQX6UGdkoY6rrLo9qZZh9tuoDPdN+iZHX5txL66t4Pi5Gffcam8SiFlW8+Qp\n1HxkqOMqo9pJdWUF3M+fVNvJtZexC2gZ7puUekZfL+sZd0jVPGmEOiMLdVxllCb9UobZbzOxp/b6\nZkaf9Yy7LNU8oc7IQh1XGaU5qZZh9ltGfTOjb2fG3U01TO1nBiu72cc7zy2Aqr8HEFOVTagzslDH\nVUatbj6aVUsmN8vZxz77LaO+CfQzIxPrqmKg9zPu+gVQ7XTLDFFopYahj6uMmp1UAc6erX7UjfD4\nmHvxreB37tzlBw8ey/x56jf6qM24ByuHMn9ekdjUV92YnQ/y9YaH4e678x+bnLdnjz3q7rs2e1zf\nzOjh/Ix7fd/587TjU7xCrf2PVX36Ze/e5o/RjfB49FWgr2mWM9eOT/FqVmP/xS/Cl78Mr7+uwJ9W\nGRYM9bu+qbrZzEY7PknYmpUDrq3Ba691XgcuFwqpF1DZZdUnqC9n9M30esenjW7GxlSFE4N2Ugix\nL8Mvkm6E5yPL1d8K9Ant+BSvVqmFRsopd08lk9nLsk+QAn1iYmRmXY4eOt/xqd2Syjw3Ie8HrcoB\nGymnLCHLcvW3cvSJ8cok+0dnGR7YjmEMD2xn/+hsqhuxc6sL7Dh+gIue2MuO4wd61ldH1mtcjXnJ\nJbBly/rHKKcsocty9bdm9HV6ueNTmdoWx6AxtaByS4lNlqu/FegzUpa2xbFSTnljOhGGJ8ub3l0H\nejO7Dvhq3aFfBH4f+M/J8R3As8Aed3+5+yHGqSxti8tCge089fYPV1YTlK4Dvbs/BVwPYGZbgOeB\nrwN3AQ+5+0Ezuyv5+lM9GGtUytK2uAzKHtg6PYmVcRco0Ml8I726GXsr8PfuvgjcARxJjh8BPtyj\n54hKWdoWN4px4+cyb1rSzSYhZeztn2azlH7Qqxz9R4Ha22abuy8ln78AbGv2A2Y2BUwBDA+Xo1a9\nvlSysW1xrXfOYGUy0r6W8c6MyxjYarqZnbdad+BePXnHOBMu61VKr6QO9GY2CNwOfLrxe+7uZta0\nPaa7zwKzUO1emXYcIeplFU8IYn0zlblXSzcnsY3WHcRy8m4Uw8l8o9RS1mmnXqRuPgg85u4vJl+/\naGajAMnH5R48hwQghjdTM2Xu1dJN7XX9uoNmYkxrhb4D2UappTzSTr0I9BOcT9sA3A/cmXx+J3Bf\nD55DAhD6m6mVMm9v1+1JbHy82kverPn3Qz95Nwr9ZL7R1XAe95BSpW7M7GLg/cD+usMHga+Z2T5g\nEdiT5jkkHDFv51fWuvq0tddlSWuF3nitm6vhXp5sUwV6d38dGGo4dpJqFY6UTOhvpn6V5iQW88m7\nUcgn881OqFmfbLUyNgLtNkvLo0FayG8m6ZxO3vnY7ISa9clWgV6kz+nknb12TqhZnmwV6APVbBY/\nt7rA9PI8J9ZOntvcvL5vjtofF0MrMqUdG51Qsz7ZKtBHQt0wwxTrIjLpLwr0KbXKn/d6Rq1umGGK\ndRFZ2ekqaz0F+kioG2aYYl1EVmZZXmXFegJRoO9C/Sy+Vd48bb68/md2c7StbpjKy+evLHXoZZLV\nVVbMaTptJZhCLW++uLaC4+fy5llsGViGbpgxdr7cTOgrMvtRVldZMXdB1Yw+hbzy5kfZHX03zJhn\nQxtRHXp4srrKijlNp0CfQt5585i7YZb5pqXq0MOS1WrfmNN0St2k0Gq3KO0idaGYZ0MSl6ya2MWc\nptOMPoWZkYl1te0QX968He22YKhpdlM45tmQxCeLq6yY03QK9CnU8vAbrVYtm81W57ZSpuZZ0r9i\nTdMp0HehccvAz1UONXy/nNKszo15NiQSOwV6aVvaKqNYZ0MisdPNWGmbVueKxEmBXtqmKiOROCnQ\nS9vKsDpXpB8pRy9t68cqI5E8ZN0sTYFeOtIY7KeX59cdhwvr7svabC3WToYSljzag/Rl6mZhdY4D\nx3ew94mLOHB8Bwurc0UPKRp5NnILWe3NubIC7uffnGVo1Cb5yqNZWqpAb2YVM7vXzH5gZk+a2bvM\n7HIz+6aZPZ18vKxXg+2FhdU5Di9NsbK2iOOsrC1yeGlKwb5NG5VY9pOYOxlKWPJoD5J2Rv8F4Bvu\n/jbgHcCTwF3AQ+5+LfBQ8nUw5penOe2n1h077aeYX54uaETF6+QKRyWWVerdI73Sqg1IL9uDdJ2j\nN7O3AO8FfhPA3U8Dp83sDuDm5GFHgIeBT6UZZC+dXDvR0fGyq13h1E5+tSsc4FynzPoc+9jAgUw3\nQIkl763ePdIrebQHSTOjvxp4CfiymX3bzL5kZhcD29x9KXnMC8C2tIPspaGBsY6Ol12nVzhZlljG\nlPeOuZOhhCWrbpv10lTdDAA3AL/t7o+Y2RdoSNO4u5uZN/thM5sCpgCGh/MLshMjM+tmsACDtpWJ\nkZncxhCSTq9wBiuHMtsAJaae9erdI72UdXuQNIH+OeA5d38k+fpeqoH+RTMbdfclMxsFlpv9sLvP\nArMAO3fuanoyyEItHdEYqGLd0COtoYExVtYWmx5vJasNUGLLe6t3j8Si60Dv7i+Y2Y/N7Dp3fwq4\nFXgi+XcncDD5eF9PRtpDMe/U1GshXeEo7y2SjbRVN78NzJnZ94DrgT+iGuDfb2ZPA+9LvpZAjVcm\n2T86y/DAdgxjeGA7+0dnCzkRKu8tko1UK2Pd/TvAribfujXN75V8hXKFo7y3SDbUAkGCorx3/4ql\ntDZGCvQiUrg8+r30MwX6CHS6OTeUt5GYlFNMpbUxUqCPULcbdIsUrVV6JrbS2tgo0EcmzQbdIkXa\nKD2j0tps9WWb4pipe6TEaqP0jEprs6UZfWTUPVJitVF6RqW12VKgj8zYwNCm3SNFQrRZekaltdlR\noI9AfQXNzMj6HD2c7x6pShsJWR7teKU55egjM1kZZ3Z0P9sHhjGM7QPDzI7u141YCV4e7XilOXPP\nrXFkSzt37vKDB48VPQwRkajs2WOPunuzNjTraEYvIlJyytFL5lqt7NU9BZF8KNCLZEzNuqRoCvR9\npt2+OWlm2+0+R/3jyjq7V7MuCYFy9JKpudUFdhw/wEVP7GXH8QPMrQa403eGNloNKpIXzej72EbN\n0Xox2w6pL8/C6lwh+wSrWZeEQDP6PlULwotrKzh+Lgj3csYdSl+ehdU5Di9NsbK2iOOsrC1yeGmK\nhdW5zJ+7VVMuNeuSPCnQ96k8gnAofXnml6fXbX4OcNpPMb88nflzq1mXhECBvk/lEYRb9d/Jsy/P\nbo5ycu1E0++1Ot5LWg0qIVCOvk/l0RxtZmSiZV+ePLX6bx0aGMvl+dWsS4qWKtCb2bPAT4AzwJq7\n7zKzy4GvAjuAZ4E97v5yN7+/nTK9spblZW2zIJzmda397GBlN/t4J/cvf7LpDd+s/t/V/93MrS7w\n2pmfXvCYrTbIn4zcfu6x+juSMuvFjP5X3L1+unQX8JC7HzSzu5KvP9WD55EeqgXbxqobgB3HD3Bi\nbW9PqlPGK5Mcqgxu/sAMNFb91AxtuYQvbPtNNYKTvpFF6uYO4Obk8yPAw3QQ6JvN4tstAwTNzDZT\n//oMVnbzucqhc1/XqlNqNy5r1SlAqmBf1P+TZjecAd5sb1CQl76S9masAw+a2aNmNpUc2+buS8nn\nLwDb0jxBHmWAUlVkdUoWQqn6ESla2kD/Hne/Afgg8DEze2/9N73aA7lpH2QzmzKzY2Z27NVXX2r5\nBKHUYveDVlUoK2uLOY+kN0Ko+hEJQapA7+7PJx+Xga8DNwIvmtkoQPJxucXPzrr7LnffdemlV7R8\nDs3K8tO6CsVyWVzUazMjE2y19fcHiqj6ESla1zl6M7sYuMjdf5J8/qvAfwTuB+4EDiYf7+vk99bn\nc3dzdNMyQOXke2diZIY//Ydf58KLMGd+eTqXlgG90Fj109j6YLAy2WbbNekVdfAsVpqbsduAr5tZ\n7ff8lbt/w8z+L/A1M9sHLAJ70gwwlFrsfjBemeRP/+FfN/1eHouLsjBemYzmBFVW6uBZvK4Dvbv/\nEHhHk+MngVvTDKrmKLszmZW120a3cSz9YHhge9Oc/NjA0IavW7+8Pu0IfaOVvGfXG3XwVKDPRxQr\nYzUry8/EyMy6EkvQFVSZFDG7VgfP4kUR6LO0UY1+P6qdUBtXs0JtIZVep0YxbbRSxOx6aKh6Qml2\nXPLR14E+pH7pIWlczarXqX1FTxw2S8sUMbuemFh/FQHq4Jm3vg70G9Xo91sA22hW2s7rFMJstWhF\nnxDbScsUMbuuPbeqborT14FeNfqbm1tdaFreCnqdGhU9cWgnLVPU7FodPIvVN4G+2Yw1j1a9MavN\nUFupf536dRZfr+iJQztpGc2ueyO2dQF9E+ibUY3+xlo1BQO9Ts0UPXFoNy3TL7PrrIJxjOsC+nqH\nqcnKOLOj+9k+MIxhbB8YZnZ0f9/l51vZaCaq1+lCRbdcyHrbwoUFOHAA9u6tflwIuK9gLRivrID7\n+WDcizFvlCILVTQz+m4WobRT9jZZGW8asPotFdH437tR+4ntA8MK8nWK3milJsu0TGyz2CzLSGNc\nFxBNoO+FokvfYqPUVueK3GgFskvLxLa6NctgHOO6gKADfeOWcM2CdLuLVYoufYtRq12o8pqhlkFZ\nXqPYZrFZBuMY1wUEHehrehGkiy59i1Wr1Jb0lywCZ5aVK1kG4xgrl6II9J0G6Waz/6JL32JTlplo\nVmJqe9AL7QbOdu+lZZ3zbwzGb35z9absn/1Z9VjawBxb5VIUVTedBOlWWw9ebhc3/R2qmZe05lYX\n2HH8ABc9sZcdxw+UcpvL8XHYvx+Gh8Gs+nH//u6DXR6VK+PjcPfd8PGPw89+Bq+91vsKnFhEMaPv\npD651ez/TVvewNazgxveWIx5xtXvFlbnLmhlnUfH036699NqFts4i29+P+3894+yO9ecf2w3krMQ\nxYy+k/rkVrP/fzzzmmrmS2phdY7DS1OsrC3iOCtrixxemspl+0PtabxeqyvqxqucVrn9LCpXYruR\nnIWgZ/T19cmztK7+qLfR7L/ZjUXN4uM3vzy9rn8+wGk/1fPtD5vln0O499Pu/YI8/tbbvZ+WZ+VK\njOWQvRbFjB6ql8HP/tLdnP1nX+XZX7q75Uy86NWJkr9W2xzmsf1hq3s8Rdz7CeFeQbsnvl7n/DeS\n9YrhGAQ9o6/X7mykcevB2ux/sHJIG0KX1NDAWNPtD4cGxjJ/7qIWlTXLi292ryCrCqD63zU2cKDt\n+2l5Va7EWA7Za9EE+k7Uth5c/4ctZdVs+8NB28rEyExmz1l/w/HyLW/mTWcH+Ud/vbAV16GsEwl1\nNXVs5ZC9VspAX6P8e3+o5eHzqrppnD2fPPMTttogf/kLH8/tHlD9793N0SDuFQAMVg7xnlNr/M3q\nLGc5w0Vs4T1v2acr6oKlDvRmtgU4Bjzv7reZ2dXAV4Ah4FHg191b9LoV6ZE8N5APZfZcr+gWyTUL\nq3M8/MoRznIGgLOc4eFXjnDd1nfn9v9HLtSLm7GfAJ6s+/qzwOfd/RrgZWBfD55DJBihzJ7rtVOE\ncJTd5/5lZaMKKClOqkBvZlcB/wr4UvK1AbcA9yYPOQJ8OM1ziIQmpEqbmlD2ViiyAkpaS5u6+RPg\n94BLkq+HgFV3X0u+fg64MuVzSEkVtZq1W7WZ8O0jp7ln6d+2vOGY972h+vUmn6scavhevoqsgEqr\n3fUInQrhXmHXM3ozuw1YdvdHu/z5KTM7ZmbHXn31pW6HIZEqcjVrWuOVySBmzyGaGJlh0LauO5Z1\nBZRsLs2M/t3A7Wb2IeCNwKXAF4CKmQ0ks/qrgOeb/bC7zwKzADt37vIU45AI5bWaNStq39xc3hVQ\nWSnbJkVdB3p3/zTwaQAzuxn49+4+aWZHgY9Qrby5E7ivB+OUkok9lxvC5Xio8qyAykI3jeo2OjGE\n0Ko6ixYInwL+nZk9QzVnf08GzyGRa5WzjSGXK+XWaaO6dhu5Fakngd7dH3b325LPf+juN7r7Ne6+\n291/1ovnkHJRLldC1Wn5bAwdTKNpaiblMl6ZZP/oLMMD2zGM4YHt7B+djfqSX8qh0/LZENdVNCp1\nCwQJW+y5XCmXdstnG4WyKnkjmtGLiNTptHw2htbomtGLiDQYrBxqe/FZrTX6/cufbFp1E0KFlgK9\niEhK45VJDlUGN39gQRToJVextT0QaVcIM/dWFOglN7W2B7UVsbW2B4CCvUiGdDNWcqMWtiLFUKCX\n3MTe9kAkVgr0khu1PRAphgK95EZtD0SKoUAvuVHbA5FiqOpGcqW2ByL504xeRKTkFOhFREpOgV5E\npOQU6EVESk6BXkSk5FR1I1Iiu1s20w276ZZkSzN6EZGS04xeJHL1s/i51QWml+ebboBR/zjN7vuL\nAr1IScytLjC1dPjcXqeLaytMLR0GaLkNnvSHrlM3ZvZGM/tbM/uumX3fzP4gOX61mT1iZs+Y2VfN\nLNxtV0RKZHp5ft2G1gCn/DTTy/MFjUhCkSZH/zPgFnd/B3A98AEzuwn4LPB5d78GeBnYl36YIrKZ\nE2snOzou/aPrQO9VryVf/pPknwO3APcmx48AH041QhFpy9jAUEfHpX+kqroxsy1m9h1gGfgm8PfA\nqruvJQ95Driyxc9OmdkxMzv26qsvpRmGiAAzIxNsbciUbrVBZkYmChqRhCLVzVh3PwNcb2YV4OvA\n2zr42VlgFmDnzl2eZhwi/axWQTNY2c0stKy6UaVN/+pJ1Y27r5rZt4B3ARUzG0hm9VcBz/fiOURk\nc5OVcVXYyAW6DvRmdgXw8yTIvwl4P9Ubsd8CPgJ8BbgTuK8XAxWRzWnWLs2kmdGPAkfMbAvVXP/X\n3P0BM3sC+IqZ/SHwbeCeHoxTRES6ZO7Fp8fN7CVgcZOHDQMrOQyn12Ict8acjxjHDHGOu6xj3u7u\nV2z2i4II9O0ws2PuvqvocXQqxnFrzPmIccwQ57j7fcxqaiYiUnIK9CIiJRdToJ8tegBdinHcGnM+\nYhwzxDnuvh5zNDl6ERHpTkwzehER6UKQgT7mFshJ/59vm9kDyddBj9nMnjWzvzOz75jZseTY5Wb2\nTTN7Ovl4WdHjbGRmFTO718x+YGZPmtm7Qh63mV2XvMa1f6+a2SdDHjOAmf1u8h583Mzmk/dm6H/T\nn0jG+30z+2RyLLjX2cz+3MyWzezxumNNx2lVh5LX/HtmdkMnzxVkoCfuFsifAJ6s+zqGMf+Ku19f\nV8p1F/CQu18LPJR8HZovAN9w97cB76D6mgc7bnd/KnmNrwd+GThFtT9UsGM2syuB3wF2ufvbgS3A\nRwn4b9pvJ+1UAAADRElEQVTM3g78FnAj1b+L28zsGsJ8nf8C+EDDsVbj/CBwbfJvCvhiR8/k7kH/\nA7YCjwHvpLp4YCA5/i7gfxY9voaxXpX8z7kFeACwCMb8LDDccOwpYDT5fBR4quhxNozvLcCPSO4x\nxTLuunH+KvB/Qh8z1c6zPwYup7qK/gHgX4b8Nw3sBu6p+/o/AL8X6usM7AAer/u66TiBw8BEs8e1\n8y/UGX2qFsgF+hOqf1Rnk6+HCH/MDjxoZo+a2VRybJu7LyWfvwBsK2ZoLV0NvAR8OUmTfcnMLib8\ncdd8FKht+xTsmN39eeCPgRPAEvAK8Chh/00/Doyb2ZCZbQU+BLyVgF/nBq3GWTvp1nT0ugcb6N39\njFcvc6+iehnWdgvkIpjZbcCyuz9a9Fg69B53v4HqpeHHzOy99d/06vQhtNKsAeAG4Ivu/i+A12m4\nFA903CT57NuhbqfuRGhjTvLDd1A9sf4CcDEXphqC4u5PUk0tPQh8A/gOcKbhMUG9zq30cpzBBvoa\nd1+l2hHzXAvk5FuhtUB+N3C7mT1LtXPnLVTzyCGPuTZrw92XqeaMbwReNLNRgOTjcnEjbOo54Dl3\nfyT5+l6qgT/0cUP1hPqYu7+YfB3ymN8H/MjdX3L3nwN/TfXvPPS/6Xvc/Zfd/b1U7yEcJ+zXuV6r\ncT5P9cqkpqPXPchAb2ZXWHUzE+x8C+QnOd8CGQJrgezun3b3q9x9B9VL8//l7pMEPGYzu9jMLql9\nTjV3/DhwP9WxQmBjBnD3F4Afm9l1yaFbgScIfNyJCc6nbSDsMZ8AbjKzrWZmnH+dg/2bBjCzkeTj\nGPBrwF8R9utcr9U47wd+I6m+uQl4pS7Fs7mib0a0uEHxz6m2OP4e1cDz+8nxXwT+FniG6qXvG4oe\na4vx3ww8EPqYk7F9N/n3fWA6OT5E9aby08DfAJcXPdYmY78eOJb8jfxX4LLQx0019XESeEvdsdDH\n/AfAD5L34V8Cbwj5bzoZ8wLVE9J3gVtDfZ2pnvCXgJ9TvUrd12qcVAs7/hPVe5V/R7USqu3n0spY\nEZGSCzJ1IyIivaNALyJScgr0IiIlp0AvIlJyCvQiIiWnQC8iUnIK9CIiJadALyJScv8f4MEVW5s9\nxMUAAAAASUVORK5CYII=\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "(1.0, 0.56000000000000005)" - ] - }, - "execution_count": 23, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "#run for set1 and set2, notice the difference\n", "def getSVC():\n", @@ -280,40 +196,9 @@ }, { "cell_type": "code", - "execution_count": 27, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD8CAYAAAB5Pm/hAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X+M3PV95/HnG+85iR2IYRdbW2Btaii5E7lw1OKI0o1o\nSHoJh0JUxXZWvqvvhLorOWmTnk4NkXWNKtWVI1VK6PWIvBea+qrthkCbwnFVDsqF06jS0TOEBALh\nRxNs8BmWdVk48CXu4vf98f2Od2Y8M7sz31+f7/f7ekir2fnuzM7H45339/N9f9+f99fcHRERqa7z\nih6AiIhkS4FeRKTiFOhFRCpOgV5EpOIU6EVEKk6BXkSk4hToRUQqbtVAb2Z/bGYLZvZky7aLzOxB\nM3suvr0w3m5m9odm9ryZ/cDMrs1y8CIisrq1zOj/BPhYx7bbgIfc/Urgofg+wMeBK+OvaeBr6QxT\nRESGZWtZGWtm24D73f3q+P4zwA3ufsLMxoGH3f0qMzsUfz/f+bh+v/+CC8b84ou3JfqHiIjUzY9/\n/Oiiu1+82uNGhvz9W1qC98vAlvj7S4AXWx73UrztnEBvZtNEs37GxiY4ePDIkEMREamnXbvs6Foe\nl/hkrEeHBAM3zHH3WXff4e47Lrhg1R1SYo2lOfY9u43dT53Hvme30Viay/w1RURCMOyM/hUzG29J\n3SzE248Dl7U87tJ4W6EaS3McOjHNaT8FwOLyUQ6dmAZgctOeIocmIpK5YWf09wF74+/3Ave2bP+1\nuPrmeuD11fLzeZhf2H82yDed9lPML+wvaEQiIvlZdUZvZvPADcCYmb0EfAk4CHzLzG4FjgK74of/\nFXAT8DxwCvi3GYx5YCeXjw20XSRtjQbMz8PJkzA6ClNTMDlZ9KikLlYN9O4+1eNHN3Z5rAOfSTqo\ntI2OTLC4fO45i9GRicxfWx9waTTg0CE4fTq6v7gY3Qf9LUg+arEydmrzAdbbhrZt620DU5sPZPq6\nzQ/44iK4r3zAG41MX1YCMz+/EuSbTp+OtovkYdiTsaXSPOE6v7Cfk8vHGB2ZYGrzgcxPxPb7gGsm\nl5+ij6pOnhxsu0jaahHoIQr2eVfY6ANejNbAvnEj/PSnsLwc/ayItMnoaPS63baHpuidomSjFqmb\novT6IIf4Aa+KznTZm2+uBPmmvNMmU1Owfn37tvXro+2raTRg3z7YvTu6zTLtp1RjdSnQZyjJB1yG\n0y1d1k2eR1WTkzAzA2NjYBbdzsysPlPOO/DqXEJ1VS5101iayz0X30vzg6xD4fysNYDnfVQ1OTn4\n/3ve53iUaqyuSgX6EFfADvMBl+H1yoe3KstRVd6Bt0znEmQwlUrdaAWsdEuXrVsH558/WNokBHmf\n41GqsboqNaPXClipUrpsaqp9oRVkG3ir9N5Ju0oF+iJXwEo4qpIuKyLwVuW9k3aVCvRTmw+05egh\nnxWwIllR4JU0VCpHP7lpDzPjs4yNbMUwxka2MjM+q1bEIlJrlZrRQzErYEVEQhZEoL+Q19jJ3QDc\nzc6CRyOSH7UckDwEEehF6kjtiyUvwQX65sweNLuXaitjd1MdgZRTcIFepC7K1nJARyDlFXSg1+xe\nqqxsLQfKeAQikUqVV4qUSdlaDpTtCERWBD2jb6XZvVRN2VoOlO0IRFaUJtCLVFFWK1+zOGl67bXw\nwAPdt0vYEgV6M/sc8OuAAf/Z3b9qZhcBdwHbgBeAXe7+WsJxttHsXqS3rE6aPvbYYNslHEPn6M3s\naqIgfx3wfuBmM7sCuA14yN2vBB6K74tITrK6UpRy9OWVZEb/j4FH3KMOYmb2P4FfBW4Bbogfcxh4\nGPhCgtfpq3V230mzfamTZrqm14VXkgZk5ejLK0nVzZPApJmNmtkG4CbgMmCLu5+IH/MysCXhGKVk\n8rygtURary/bS9KAXLYqIVkx9Ize3Z82sy8DDwBvAY8Db3c8xs3Muz3fzKaBaYCJsbFhhyGB0aKa\nYqx2UfQ0AnLZqoRkRaKTse5+J3AngJn9PvAS8IqZjbv7CTMbBxZ6PHcWmAXYsX17151BUnU+aVvU\nUnUtqilGv7TM2Fh6//9V6o9fp3YOSatuNrv7gplNEOXnrwcuB/YCB+PbexOPUgZS5KxaJ+yK0St/\nPjYGd9yR/3hCV7cjz6QrY//czJ4C/ivwGXdfIgrwHzWz54CPxPcLt5O7z35VXVZVF2uR9wWtJaL8\n+WCK/IwUIWnq5px9n7ufBG5M8nslmSJn1Xlf0Foiyp/315mmyaoyKVS1XBlb9dx9kWVwCjjF6ZU/\nr1MuuptuaZpeqnrkWctAH5IsPoRFz6qrdMKu7OqWi+5mtYqkpiofedY+0Bc5u8/qQ6hZtTSpCmr1\niqS8PiNFHlnVPtAXKcsPYZ1m1XVPTfSjKqgwKpKKPrJSP/oWeVfm6EOYXOuKUPeVD5BW40ZUBRVG\nRVLRVT6a0RdIvUOSCzU1UfRRRr++N1XORXcTQiqz6EmdAn0PnbP6LPL3RZ80rYKiP0DdFH2Y3vn6\nrdJcJVsmRacyi57UKdAXKISZRtkV/QHqpoijjNYjCDM4c+bcx2iVbHGKntQp0K9RVtU5Rc80yq7o\nD1A3eR9ldM7gvUfnKJ37KU7RkzoFeim1oj9A3eR9lLHWOnGd+ylWkZM6BfohVH1lbdmEdlSU91HG\nWmbqRR/lSLEU6EVSlvdRRq8jiPPOi9I4IRzlSLEU6BPS7F66yfMoo9cRxMyMgrtEFOhFSi7E8xQS\nFgV6kQoI7TyFhEWBPkVK44hIiNTrRkSk4jSjz4hm9yISCs3oRUQqTjP6HOTRIE2SK7rjpEhWFOhF\nKL7jpEiWEqVuzOy3zOyHZvakmc2b2TvN7HIze8TMnjezu8xs/eq/qV7yvsCJrK7oC0OIZGnoQG9m\nlwC/Cexw96uBdcCngS8DX3H3K4DXgFvTGKhIlkLsay+SlqQnY0eAd5nZCLABOAF8GLgn/vlh4JMJ\nX6PSNLsPgy65J1U2dKB39+PAHwDHiAL868CjwJK7L8cPewm4JOkgRbIWwnVFRbIy9MlYM7sQuAW4\nHFgC7gY+NsDzp4FpgImxsWGHUWpzSw32L8xzbPkkEyOjHNjcYM+mc8/8qUone+oXI1WWpOrmI8BP\n3P1VADP7C+CDwCYzG4ln9ZcCx7s92d1ngVmAHdu397gmTnXNLTWYPnGIUx6dATy6vMj0iajMo1uw\nl+ypX4xUVZJAfwy43sw2AP8PuBE4AnwX+BTwTWAvcG/SQVbR/oX5s0G+6ZSfZv/C/DmBXqts60X1\n/JK2oQO9uz9iZvcAjwHLwPeIZuj/Dfimmf1evO3ONAaapnNTJlO5z6KPLXcv5+i1XbIVSnBVPb9k\nIdGCKXf/EvCljs0/Bq5L8nuzFErKZGJklKPL514WaGKkf5mHVtmmL6Tg2q+eX4FehlW7Xjf9UiZ5\nOrB5ig0da8k22HoObFaZR95CWiylen7JQu1aIISSMmkePSRNISl/n1xIwbXX9V9Vz1+sUFJ7w6pd\noB82ZZKFPZsmVWETgJCCa6/rv6qevzghpfaGVbvUjVIm0imkxVKTk9FFvcfGwCy6LdtFvhsN2LcP\ndu+ObhuNokeUTEipvWHVbkafVsqkm6KreZTGGU5oi6XKXM9fhdlvp5BSe8OqXaCHbFImoVTzpCHU\nfGSW4ypzcA1JFauGQkrtDatWqZu5pQbbnt3HeU/tZtuz+5hbSu+YMpRqnqZhm6U1Z2SLi+C+MiMr\n+vA71HFV1bDplyrMfjuFlNobVm0CfXPGfXR5EcfPzrjTCvahVPMkFWo+MtRxVVGSnWoVu4BW4bxJ\nbVI3g7QcGEZI1TydBsndhzojC3VcVZQk/VLVqqGyp/ZqM6PPesZdlWqeUGdkoY6ripLsVKsw+62i\n2szos55xZ1nNk6bVZvehzshCHVcV9Tr5aBbl7Fc7EV722W8V1SbQH9g81VYVA+nPuKuwACq0UsPQ\nx1VF3XaqAGfORLdVKJmsG3MvvhX8ju3b/cjBg5m/TtF17iFT3b20ai1lNVsJ8q3GxuCOO/Ifm6zY\ntcsedfcdqz2uNjN6WH3GrR1BeYVa+19WremX3bu7P0YnwsujVoG+nyoteBpGmdsfd1uN+bWvwTe+\nAW+9pcCfVBUWDNVdbapuVhPagidZu27lgMvL8OabWlyVhiosGCqLrPoEaUYfq8qCp7SUqW/OWlII\nZV+GXySdCM9Hln2CFOhjIS94kv56pRY6Kac8PJVMZi/LPkFK3cSqsuApC8P2zclLt9RCN8opS8iy\nXP2tQB/bs2mS2fEZto6MYRhbR8aYHZ9JdCI2yyZqsqJzNeb558O6de2PUU5ZQpfl6m+lblqkueCp\nqlU8oebuO1MLKreUssly9bcCfUaybqIm/Smn3J92hOHJ8qT30IHezK4C7mrZ9PPA7wD/Jd6+DXgB\n2OXurw0/xHJSFU9YFNhWVPEqUFWR1QRl6EDv7s8A1wCY2TrgOPBt4DbgIXc/aGa3xfe/kMJYS6UO\nVTyhpnE6VT2wDboTq+JVoEA7837SOhl7I/B37n4UuAU4HG8/DHwypdcolapW8cw1LmPbvps4b/en\n2LbvJuYalxU9pFVV+aIlw1wkpIq9/XUFsv7SCvSfBpofmy3ufiL+/mVgS7cnmNm0mR0xsyOvvvFG\nSsMIRxZVPEWba1zG9KEdHF3ciLtxdHEj04d2MNe4LOgSzCoGtqZhdmK9qjjc012Nmacq78zTkPhk\nrJmtBz4BfLHzZ+7uZta1Paa7zwKzEHWvTDqOEFWhbXGr/fPv49Tp9j+ZU6dH2D//PvZMvljQqFZX\n5V4tw+zEerUhhvKmtcqwM++XWso67ZRG1c3Hgcfc/ZX4/itmNu7uJ8xsHFhI4TUkAMdObljT9tAa\npFX5oiXD7MRaqzu6PbeM+frQd+b9zhNB9ueQ0kjdTLGStgG4D9gbf78XuDeF15AATIyeGmh7KKp8\nebthG45NTka95M26/zykmfBahN54rV9qKY+0U6IZvZltBD4KzLRsPgh8y8xuBY4Cu5K8hoTjwNQT\nTB/a0Za+2bB+mQNTT/R9Xq+8fZ4z/arW1SetvQ59JrxWoTdeGya1lObONlGgd/e3gNGObSeJqnCk\nYpp5+P3z7+PYyQ1MjJ7iwNQTQefn6yDJTqxKaa2Qd+ar7VCz3tlqZawMZM/ki6kF9rLU4VdZ6DPh\nqlhth5r1zlaBXqTmQp4JV8VadqihV91ITqp8Tdsyz+61IlPWot8ONeudrQJ9SVS1G2bZVb29glSD\nAn1J1KkbZplm91XtG1N2Ospqp0BfEuqGGaYyrMismyyPssq6A1GgTyivvHkdumF2E9oq205VqUOv\nkqyOssqcptOlBBNo5s2PLi/i+Nm8eRaXDKxCN8wydr5cTegrMusoq6OsMjdO04w+gTzz5s3fV9aq\nm2bny+aq2mbnS2CguvzQ8veqQw9PVkdZZU7TKdAnkHfevMzdMMva+XItVIcelqxW+5Y5TafUTQK9\n8uNVz5sPY62dL0WSyqqJXZnTdJrRJ3Bg81RbbTuUL2+el4nRUxxd3Nh1+7BCS+NIOLI4yipzmk6B\nPoGy582HMWyV0bCdL0VCUtY0nQJ9QmXOmw8qyercrDtfanYv0psCvaxZ0iqjNDtfisjaKdDLmpVl\nda5m9yLtVHUja6YqI5FyUqCXNSvj6tyd3H32S6SulLqRNatjlZFIHrJulqZALwPpDPb7F+bbtocs\n7QZpZe1kKGHJo1laLVM3c0sNtj27j/Oe2s22Z/dl0oSsqvJs5Bay5odzcRHcVz6cjXq9DZKCPJql\nJQr0ZrbJzO4xsx+Z2dNm9gEzu8jMHjSz5+LbC9MabBoUqJLpV2JZNkny92XuZChhyaNZWtIZ/e3A\nd9z9vcD7gaeB24CH3P1K4KH4fjCqFKjSMsgRTllKLLNW5k6GEpZeTdHSbJY2dKA3s/cAHwLuBHD3\n0+6+BNwCHI4fdhj4ZNJBpkmBqt2gRzhZl1gW1bN+0Nl9Hh9OqYc8mqUlmdFfDrwKfMPMvmdmXzez\njcAWdz8RP+ZlYEvSQaZJteDtBj3CybLEstmz/ujiRtztbM/6EC9QUuZOhhKWrLpttkpSdTMCXAv8\nhrs/Yma305GmcXc3M+/2ZDObBqYBJsbGEgxjMOo42W7QI5wsSyxD6Vm/lpW1Ze5kKOHJullakkD/\nEvCSuz8S37+HKNC/Ymbj7n7CzMaBhW5PdvdZYBZgx/btXXcGWVAteLthrkWbVSO3svWsL2snQ6mf\noQO9u79sZi+a2VXu/gxwI/BU/LUXOBjf3pvKSFNUp46TqwnpCCeLnvVJqW+OVEHSqpvfAObM7AfA\nNcDvEwX4j5rZc8BH4vsSqD2bJpkdn2HryBiGsXVkjNnxmUJ2hAemnmDD+uW2bepZL5JcopWx7v44\nsKPLj25M8nslX6Ec4WTds16krtQCQYIScs/6XqWXSumkQy0lsqNALyKFy6PfS50p0IsklHaztDrq\n11JCgT45BfoSGvYC3SJF65WeUUuJbCnQl0ySC3RLPlSS2V2/9MzoaHS/k1pKpKOWbYrLTE3ZpKz6\npWfUUiJbmtGXjJqylYtm9yv6pWfUUiJbCvQlM0zLApEQrJaeUUuJ7Ch1UzJlvEC3ROp+oXKlZ4qj\nGX3JqCmblJXSM8Ux99waR/a0Y/t2P3JQLXGknuqeu5fh7dplj7p7tzY0bZS6ERGpOKVuRAqmyhzJ\nmmb0Ihkr6jq4Ik2a0YtkqHkd3OYlEpvXwQW6dulU3xzJgmb0kqm5pQbbnt3HeU/tZtuz+5hbahQ9\npFz1uw6uSF40o6+xrJujhdSXp6hGcEmvg6v8vaRBM/qaagbho8uLOH42CKc54w6lL08e/9Zeel3v\ntsjr4Er9KNDXVB5BOJS+PEXucHQdXAmBUjc1lUcQDqUvT5E7nDSvg6s0jgxLgb6m8gjCBzZPteXo\noZi+PEXvcEK+Dq7UQ6LUjZm9YGZPmNnjZnYk3naRmT1oZs/FtxemM1RJUx7N0fZsmmR2fIatI2MY\nxtaRMWbHZ3I9ETu31ODNt396zvayN4Kre4M0GUwaM/pfdvfW6dJtwEPuftDMbovvfyGF15EU9WqO\nBrDt2X2pVafs2TRZWMO1zqqfptF153P7ln+jRnBSG1mkbm4Bboi/Pww8TMJAr2ukZqMzCIdUDpmG\nbidhAd5t7yjlv6cX5e5lNUmrbhx4wMweNbPpeNsWdz8Rf/8ysCXJCxRZGlc3oZRDpiWUqh+RoiWd\n0f+Sux83s83Ag2b2o9YfurubWdc+yPGOYRpgYmys5wv0Cz5VmpWFoFcA7HYiswyKPglbBM3upZtE\nM3p3Px7fLgDfBq4DXjGzcYD4dqHHc2fdfYe777j4ggt6voZmZfnpFQANSnkEpatxiUSGDvRmttHM\nzm9+D/wK8CRwH7A3fthe4N4kA+wVfKo8KyvKgc1TWJftDqVM34RQ9VOk1sqcoqtzGg3Ytw92745u\nG+WbN5RaktTNFuDbZtb8PX/m7t8xs/8NfMvMbgWOAruSDDCUWuw62LNpkn/1f/5j15+V9QiqyKof\niTQacOgQnI4/wouL0X3QZQTzMnSgd/cfA+/vsv0kcGOSQbXSNVLztXVkrHZ57bpozurnGpfx+fnr\nc7tu6/z8SpBvOn062q5An49SrIzVrCw/OoKqtpX++NH9PGbXJ3scDPbaLumrfVOzuvdL79Qrrw3o\nfaqAbv3xm7PrrIz2OBjstV3SV+tArxr97vZsmuSFX7iDM//kLl74hTsA9D6tUdETh9UuW9irD36W\ns+upKVjfXvzE+vXRdslHKVI3WVGN/trofVqbolcWr+WyhROjpzi6uPGc506MvsVO/qptW1p1+M2U\n0Pw8uZ0XkHa1ntGrRn91c0uNngum9D61K3pl8VouW1hUf/zJSbjjDrjrruhWQT5ftZ7R13Hl5CCa\nM9Re9D61K3risJbLFg7SH1+rbHtrNMp1hFLrQK8Kk/56NQUDvU/dFD1x6J2Wab9sYV3642cVjMu4\nLqDWqZu6r5xcTb+ZqN6ncxXdciHrtEyZVrc2g/HiIrivBOM0xtxvXUCoaj2jB9Xo99Nrhrp1ZEzv\nWRdFL+5L87KFnU43/hd3tpzoDX0Wm+UirTKuC6hVoFdf+8EotTW4oicOWaVl+tXfhxjoswzGo6PR\njq7b9lCVJnWTtD5ZNfODU2pLmnrX33ftQl64LBdplXFdQClm9GnUJ6sWfDhFz1AlDP1P9J67fS2y\nrFyZmmo/YQrpBeMyrgsoRaAfNEh3S9EUXfomUmYHpp5oW4wFKyd6d7KSKlprGWbWlSudwfjd745O\nyv7RH0XbkgbmycmwA3unUqRuBgnSvVI0F1n3WYdqwSWpotse5GHP5IvMzhxh69hbmDlbx95idubI\n0OcD8qhcaS7S+uxn4Wc/gzffTL8CpyxKMaMfpD651+z/XevewYYz63VisaKKOtFedNuDPK3lRO9O\n7m77vxgdmWBq8wEmN+1pe1yelStqk1ySGf0g9cm9Zv9///abOrFYUUWeaC+67UFoOv8vFpePcujE\nNI2lubbH5dnRsozlkGkrRaAfpPqj36UHO7syKshXQ5HBVud+2nX7vzjtp5hf2N+2Lc/KFbVJLkmg\nh3Nb5/YK0kWvTpT8FRlsQ7qmcQjnCnq95yeXj7Xdn5yEmRkYGwOz6HZmJptUShnLIdNWihz9IIpe\nnSj5K7LHTCiLykI5V9Dv/6LZJK1ZmZNX5UoZyyHTVrlAD6r9rpsigm3rCceL1r2bd51Zz9/7W4VN\nLEJZJxLKjq9T2coh01bJQC/1kvdRXOfs+eTb/5cNtp4//bnPFjbBCOVcwZ5Nk/zNqWeYXfpr3uYM\n6ziPve+5oe19Ufvj/CUO9Ga2DjgCHHf3m83scuCbwCjwKPCv3Xv0uhVJSZ5HcaHMnlsV3SK5aW6p\nweHXH+ZtzgDwNmc4/PrDfHDDVTrKLlAaJ2M/Bzzdcv/LwFfc/QrgNeDWFF5DJBihzJ5bhVKEMGgF\n1E7ubvuSbCQK9GZ2KfAvga/H9w34MHBP/JDDwCeTvIZIaEKqtGkKpQFdiDtBSZ66+Srw28D58f1R\nYMndm1c/eAm4JOFrSEWVtW10qCccQyhCSJpCUv4+G0PP6M3sZmDB3R8d8vnTZnbEzI68+sYbww5D\nSqrMbaNDmT2HKJQUkrRLMqP/IPAJM7sJeCdwAXA7sMnMRuJZ/aXA8W5PdvdZYBZgx/btYTa1lsyE\neEJzECHMnkNUlXUsjaU55hf2c3L5WM9+PWUydKB39y8CXwQwsxuAf+/ue8zsbuBTRJU3e4F7Uxin\nVIxyudWV1k6wqDROY2mOQyemOe3RRdWb/XqAnsE+9B1DFi0QvgD8OzN7nihnf2cGryElF+IJTRGA\n+YX9Z4N8U7d+PU3NHcPi8tG+jdyKlEqgd/eH3f3m+Psfu/t17n6Fu+9095+l8RpSLcrlyiDyLMHs\n7Muz2vZBdwxFKE1TM6kWndCUUI2OTAy0fdAdQxHUAkEKoxOaMoysc/dTmw+05egB1tsGpjYf6Pr4\n0ZEJFpePdt0eCs3oRURaTG7aw8z4LGMjWzGMsZGtzIzP9jy5OrX5AOttQ9u2fjuGImhGLyKlldXs\nfnLTnjVXzTQfF3LVjQK9iEhCg+wYiqBAL7kqa9sDCV+/ipy6t1NQoJfchHIVJJG6UaCX3JS97YGU\nV92bpanqRnKjtgcixdCMXnITylWQpN7qOLvXjF5yo7YHIsXQjF5yU5UWtlIddZndK9BLrtT2QCR/\nCvQiIlR7dq8cvYhIxSnQi4hUnFI3IiIdqpbG0YxeRKTiNKMXEemjs1laGWf4mtGLiFScZvQiFaI2\n0NkrY/5egV6kItQGWnoZOnVjZu80s781s++b2Q/N7Hfj7Zeb2SNm9ryZ3WXW0dxERDLRrw20ZGMn\nd5/9ClmSHP3PgA+7+/uBa4CPmdn1wJeBr7j7FcBrwK3Jhykiq1EbaOll6EDvkTfju/8o/nLgw8A9\n8fbDwCcTjVBE1qRXu2e1gc5HyLP7RFU3ZrbOzB4HFoAHgb8Dltx9OX7IS8AlPZ47bWZHzOzIq2+8\nkWQYIoLaQEtviU7GuvvbwDVmtgn4NvDeAZ47C8wC7Ni+3ZOMQ0TUBjokoVXmpFJ14+5LZvZd4APA\nJjMbiWf1lwLH03gNEVmd2kBLN0mqbi6OZ/KY2buAjwJPA98FPhU/bC9wb9JBioiUVQi5+yQz+nHg\nsJmtI9phfMvd7zezp4BvmtnvAd8D7kxhnCIiMiRzLz49bmavAkdXedgYcO6VpcNXxnFrzPko45ih\nnOOu6pi3uvvFq/2iIAL9WpjZEXffUfQ4BlXGcWvM+SjjmKGc4677mNXUTESk4hToRUQqrkyBfrbo\nAQypjOPWmPNRxjFDOcdd6zGXJkcvIiLDKdOMXkREhhBkoC9zC+S4/8/3zOz++H7QYzazF8zsCTN7\n3MyOxNsuMrMHzey5+PbCosfZycw2mdk9ZvYjM3vazD4Q8rjN7Kr4PW5+vWFmnw95zABm9lvxZ/BJ\nM5uPP5uh/01/Lh7vD83s8/G24N5nM/tjM1swsydbtnUdp0X+MH7Pf2Bm1w7yWkEGesrdAvlzRCuE\nm8ow5l9292taSrluAx5y9yuBh+L7obkd+I67vxd4P9F7Huy43f2Z+D2+BvhF4BRRf6hgx2xmlwC/\nCexw96uBdcCnCfhv2syuBn4duI7o7+JmM7uCMN/nPwE+1rGt1zg/DlwZf00DXxvoldw96C9gA/AY\n8M+JFg+MxNs/APz3osfXMdZL4/+cDwP3A1aCMb8AjHVsewYYj78fB54pepwd43sP8BPic0xlGXfL\nOH8F+JvQx0zUefZF4CKiVfT3A/8i5L9pYCdwZ8v9/wD8dqjvM7ANeLLlftdxAoeAqW6PW8tXqDP6\nRC2QC/RVoj+qM/H9UcIfswMPmNmjZjYdb9vi7ifi718GthQztJ4uB14FvhGnyb5uZhsJf9xNnwaa\nl30Kdszufhz4A+AYcAJ4HXiUsP+mnwQmzWzUzDYANwGXEfD73KHXOJs73aaB3vdgA727v+3RYe6l\nRIdha25LHDTMAAACGUlEQVSBXAQzuxlYcPdHix7LgH7J3a8lOjT8jJl9qPWHHk0fQivNGgGuBb7m\n7v8MeIuOQ/FAx02cz/4EnNvhKrQxx/nhW4h2rD8HbOTcVENQ3P1potTSA8B3gMeBtzseE9T73Eua\n4ww20De5+xJRR8yzLZDjH4XWAvmDwCfM7AXgm0Tpm9sJe8zNWRvuvkCUM74OeMXMxgHi24XiRtjV\nS8BL7v5IfP8eosAf+rgh2qE+5u6vxPdDHvNHgJ+4+6vu/g/AXxD9nYf+N32nu/+iu3+I6BzCs4T9\nPrfqNc7jREcmTQO970EGeithC2R3/6K7X+ru24gOzf+Hu+8h4DGb2UYzO7/5PVHu+EngPqKxQmBj\nBnD3l4EXzeyqeNONwFMEPu7YFCtpGwh7zMeA681sg5kZK+9zsH/TAGa2Ob6dAH4V+DPCfp9b9Rrn\nfcCvxdU31wOvt6R4Vlf0yYgeJyj+KVGL4x8QBZ7fibf/PPC3wPNEh77vKHqsPcZ/A3B/6GOOx/b9\n+OuHwP54+yjRSeXngL8GLip6rF3Gfg1wJP4b+UvgwtDHTZT6OAm8p2Vb6GP+XeBH8efwT4F3hPw3\nHY+5QbRD+j5wY6jvM9EO/wTwD0RHqbf2GidRYcd/IjpX+QRRJdSaX0srY0VEKi7I1I2IiKRHgV5E\npOIU6EVEKk6BXkSk4hToRUQqToFeRKTiFOhFRCpOgV5EpOL+P31+YS75MOoTAAAAAElFTkSuQmCC\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "SVC(C=1, cache_size=200, class_weight=None, coef0=0.0,\n", - " decision_function_shape='ovr', degree=3, gamma='auto', kernel='linear',\n", - " max_iter=-1, probability=False, random_state=None, shrinking=True,\n", - " tol=0.001, verbose=False)\n" - ] - }, - { - "data": { - "text/plain": [ - "(0.90666666666666662, 0.88)" - ] - }, - "execution_count": 27, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "#run for set1 and set2, notice the difference\n", "def getSVCGridSearch():\n", @@ -322,7 +207,7 @@ " from sklearn.svm import SVC\n", " from sklearn.model_selection import GridSearchCV\n", " \n", - " (X,y,df) = getDataSet1()\n", + " (X,y,df) = getDataSet2()\n", " X_train, X_test, y_train, y_test = train_test_split(X,y, random_state=0)\n", " parameters = {'kernel':('linear', 'rbf'), 'C':[1,5,10,20,50]}\n", " clf = GridSearchCV(SVC(), parameters)\n", @@ -337,23 +222,9 @@ }, { "cell_type": "code", - "execution_count": 31, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Nearest Neighbor: \n", - " [[ 1. 0. ]\n", - " [ 0.66666667 0.33333333]\n", - " [ 0. 1. ]\n", - " [ 0. 1. ]]\n", - "SVC: \n", - " [0 0 0 1]\n" - ] - } - ], + "outputs": [], "source": [ "# with your best nearest neighbor for dataset1 calculate the probability that \n", "# a student that gets 55 and 55, and 60 and 60 will pass, how about 65 and 65? \n", diff --git a/week1/poly.txt b/week1/poly.txt deleted file mode 100644 index 480b280..0000000 --- a/week1/poly.txt +++ /dev/null @@ -1,41 +0,0 @@ -index,time,price -0,0.588017448655888,0.4012007092371197 -1,0.38979599253266417,0.036592403976009436 -2,0.8390665075224258,0.4549518297227998 -3,1.5161951689645883,2.154166581813321 -4,1.6481603556910147,1.3765116204708003 -5,0.956291988759145,0.9897985520001106 -6,1.855157677636735,1.1606284571004675 -7,1.7444193921058955,1.8256019235138357 -8,2.0168757673508653,1.0364714591997655 -9,2.444558475005098,1.385885870190063 -10,2.6121170878228566,1.0772976283522726 -11,3.305270656167145,1.0677762393585728 -12,3.330602318638741,0.7520461042835364 -13,3.3738916721642758,0.5008710998089909 -14,3.7376980006587313,0.6750814540244078 -15,3.957378621945268,0.7336390528694392 -16,4.600590460283304,0.5619455088682535 -17,4.290588271052425,0.6186668539778448 -18,4.719740515934915,0.3618331631670876 -19,4.5870962920276295,0.41595724145889945 -20,4.2772085229271015,0.29478871083299596 -21,5.602488249762171,1.1183101453632633 -22,5.929171040645476,1.3586756592097105 -23,5.650047557300416,0.7162444098601607 -24,6.91043102850869,2.9495360501055985 -25,5.925467852056822,1.4910918809959142 -26,6.681919505767148,2.072159203273186 -27,6.860682306401644,2.987083409602744 -28,7.690413584273331,3.247690951754247 -29,7.925683692530864,3.6566402046440563 -30,7.743956834206664,3.818302507302736 -31,8.074772121918672,3.710309647449404 -32,7.9091996225848336,4.014675976560307 -33,7.8012729721304845,3.1874269373129747 -34,8.601978001506666,3.7344930337079063 -35,9.026475297393635,3.16840950037122 -36,9.640866124345138,2.7089459131492193 -37,9.887972770107623,2.6562324817764265 -38,9.614480804453759,2.9124090128933955 -39,9.899232416474888,2.8616126889918125 diff --git a/week1/ex2data1.txt b/week1/scores.txt similarity index 100% rename from week1/ex2data1.txt rename to week1/scores.txt diff --git a/week1/stock.txt b/week1/stock.txt new file mode 100644 index 0000000..bb053c3 --- /dev/null +++ b/week1/stock.txt @@ -0,0 +1,16 @@ +time,price +0.35281047,0.43770571 +0.79431716,0.99517935 +1.62431903,1.24877201 +2.59103578,0.98630796 +3.23065446,0.36408873 +3.375973,0.07512287 +4.47573197,-0.16081 +4.96972856,-0.05233879 +5.69364194,0.3187423 +6.51069113,1.53763897 +7.17166586,1.82595557 +8.14799756,2.31966323 +8.72363612,2.08031157 +9.31004929,1.81942995 +10.08877265,1.21213026 \ No newline at end of file diff --git a/week1/ex2data2.txt b/week1/transistor.txt similarity index 100% rename from week1/ex2data2.txt rename to week1/transistor.txt