forked from wendykan/DeepLearningMovies
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathWord2Vec_AverageVectors.py
184 lines (143 loc) · 6.43 KB
/
Word2Vec_AverageVectors.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
#!/usr/bin/env python
# Author: Angela Chapman
# Date: 8/6/2014
#
# This file contains code to accompany the Kaggle tutorial
# "Deep learning goes to the movies". The code in this file
# is for Parts 2 and 3 of the tutorial, which cover how to
# train a model using Word2Vec.
#
# *************************************** #
# ****** Read the two training sets and the test set
#
import pandas as pd
import os
from nltk.corpus import stopwords
import nltk.data
import logging
import numpy as np # Make sure that numpy is imported
from gensim.models import Word2Vec
from sklearn.ensemble import RandomForestClassifier
from KaggleWord2VecUtility import KaggleWord2VecUtility
# ****** Define functions to create average word vectors
#
def makeFeatureVec(words, model, num_features):
# Function to average all of the word vectors in a given
# paragraph
#
# Pre-initialize an empty numpy array (for speed)
featureVec = np.zeros((num_features,),dtype="float32")
#
nwords = 0.
#
# Index2word is a list that contains the names of the words in
# the model's vocabulary. Convert it to a set, for speed
index2word_set = set(model.wv.index2word)
#
# Loop over each word in the review and, if it is in the model's
# vocaublary, add its feature vector to the total
for word in words:
if word in index2word_set:
nwords = nwords + 1.
featureVec = np.add(featureVec,model[word])
#
# Divide the result by the number of words to get the average
featureVec = np.divide(featureVec,nwords)
return featureVec
def getAvgFeatureVecs(reviews, model, num_features):
# Given a set of reviews (each one a list of words), calculate
# the average feature vector for each one and return a 2D numpy array
#
# Initialize a counter
counter = 0.
#
# Preallocate a 2D numpy array, for speed
reviewFeatureVecs = np.zeros((len(reviews),num_features),dtype="float32")
#
# Loop through the reviews
for review in reviews:
#
# Print a status message every 1000th review
if counter%1000. == 0.:
print "Review %d of %d" % (counter, len(reviews))
#
# Call the function (defined above) that makes average feature vectors
reviewFeatureVecs[int(counter)] = makeFeatureVec(review, model, \
num_features)
#
# Increment the counter
counter = counter + 1.
return reviewFeatureVecs
def getCleanReviews(reviews):
clean_reviews = []
for review in reviews["review"]:
clean_reviews.append( KaggleWord2VecUtility.review_to_wordlist( review, remove_stopwords=True ))
return clean_reviews
if __name__ == '__main__':
# Read data from files
train = pd.read_csv( os.path.join(os.path.dirname(__file__), 'data', 'labeledTrainData.tsv'), header=0, delimiter="\t", quoting=3 )
test = pd.read_csv(os.path.join(os.path.dirname(__file__), 'data', 'testData.tsv'), header=0, delimiter="\t", quoting=3 )
unlabeled_train = pd.read_csv( os.path.join(os.path.dirname(__file__), 'data', "unlabeledTrainData.tsv"), header=0, delimiter="\t", quoting=3 )
# Verify the number of reviews that were read (100,000 in total)
print "Read %d labeled train reviews, %d labeled test reviews, " \
"and %d unlabeled reviews\n" % (train["review"].size,
test["review"].size, unlabeled_train["review"].size )
# Load the punkt tokenizer
tokenizer = nltk.data.load('tokenizers/punkt/english.pickle')
# ****** Split the labeled and unlabeled training sets into clean sentences
#
sentences = [] # Initialize an empty list of sentences
print "Parsing sentences from training set"
for review in train["review"]:
sentences += KaggleWord2VecUtility.review_to_sentences(review, tokenizer)
print "Parsing sentences from unlabeled set"
for review in unlabeled_train["review"]:
sentences += KaggleWord2VecUtility.review_to_sentences(review, tokenizer)
# ****** Set parameters and train the word2vec model
#
# Import the built-in logging module and configure it so that Word2Vec
# creates nice output messages
logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s',\
level=logging.INFO)
# Set values for various parameters
num_features = 300 # Word vector dimensionality
min_word_count = 40 # Minimum word count
num_workers = 4 # Number of threads to run in parallel
context = 10 # Context window size
downsampling = 1e-3 # Downsample setting for frequent words
# Initialize and train the model (this will take some time)
print "Training Word2Vec model..."
model = Word2Vec(sentences, workers=num_workers, \
size=num_features, min_count = min_word_count, \
window = context, sample = downsampling, seed=1)
# If you don't plan to train the model any further, calling
# init_sims will make the model much more memory-efficient.
model.init_sims(replace=True)
# It can be helpful to create a meaningful model name and
# save the model for later use. You can load it later using Word2Vec.load()
model_name = "300features_40minwords_10context"
model.save(model_name)
model.doesnt_match("man woman child kitchen".split())
model.doesnt_match("france england germany berlin".split())
model.doesnt_match("paris berlin london austria".split())
model.most_similar("man")
model.most_similar("queen")
model.most_similar("awful")
# ****** Create average vectors for the training and test sets
#
print "Creating average feature vecs for training reviews"
trainDataVecs = getAvgFeatureVecs( getCleanReviews(train), model, num_features )
print "Creating average feature vecs for test reviews"
testDataVecs = getAvgFeatureVecs( getCleanReviews(test), model, num_features )
# ****** Fit a random forest to the training set, then make predictions
#
# Fit a random forest to the training data, using 100 trees
forest = RandomForestClassifier( n_estimators = 100 )
print "Fitting a random forest to labeled training data..."
forest = forest.fit( trainDataVecs, train["sentiment"] )
# Test & extract results
result = forest.predict( testDataVecs )
# Write the test results
output = pd.DataFrame( data={"id":test["id"], "sentiment":result} )
output.to_csv( "Word2Vec_AverageVectors.csv", index=False, quoting=3 )
print "Wrote Word2Vec_AverageVectors.csv"