-
Notifications
You must be signed in to change notification settings - Fork 5
/
n_th_tribonacci_number.dart
76 lines (54 loc) · 1.23 KB
/
n_th_tribonacci_number.dart
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
/*
-* 1137. N-th Tribonacci Number *-
The Tribonacci sequence Tn is defined as follows:
T0 = 0, T1 = 1, T2 = 1, and Tn+3 = Tn + Tn+1 + Tn+2 for n >= 0.
Given n, return the value of Tn.
Example 1:
Input: n = 4
Output: 4
Explanation:
T_3 = 0 + 1 + 1 = 2
T_4 = 1 + 1 + 2 = 4
Example 2:
Input: n = 25
Output: 1389537
Constraints:
0 <= n <= 37
The answer is guaranteed to fit within a 32-bit integer, ie. answer <= 2^31 - 1.
*/
class Solution {
int tribonacci(int n) {
if (n == 0) return 0;
if (n == 1 || n == 2) return 1;
List<int> Tribonacci = List.filled(n + 1, 0);
Tribonacci[0] = 0;
Tribonacci[1] = 1;
Tribonacci[2] = 1;
for (int i = 3; i < n + 1; i++) {
Tribonacci[i] = Tribonacci[i - 1] + Tribonacci[i - 2] + Tribonacci[i - 3];
}
return Tribonacci[n];
}
}
class B {
int tribonacci(int n) {
if (n == 0) return 0;
if (n == 1) return 1;
if (n == 2) return 1;
int a = 0, b = 1, c = 1, d = 0;
for (int i = 3; i <= n; i++) {
d = a + b + c;
a = b;
b = c;
c = d;
}
return d;
}
}
class C {
int tribonacci(int n) {
if (n < 2) return n;
if (n == 2) return 1;
return tribonacci(n - 1) + tribonacci(n - 2) + tribonacci(n - 3);
}
}