-
Notifications
You must be signed in to change notification settings - Fork 35
/
GM.m
executable file
·69 lines (61 loc) · 2.7 KB
/
GM.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
classdef GM < Metric
%GM static class to calculate the geometric mean of the sensitivity of
%each class, this is, the geometric mean of the accuracy for each class.
%Values range from 0 to 1.
%
% GM methods:
% CALCULATEMETRIC - Computes the evaluation metric
% CALCULATECROSSVALMETRIC - Computes the evaluation metric as an error
%
% References:
% [1] Wang, S., & Yao, X.
% Multiclass imbalance problems: Analysis and potential solutions.
% IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics),
% 42(4), 2012, pp. 1119-1130.
% https://doi.org/10.1109/TSMCB.2012.2187280
%
% This file is part of ORCA: https://github.com/ayrna/orca
% Original authors: Pedro Antonio Gutiérrez, María Pérez Ortiz, Javier Sánchez Monedero
% Citation: If you use this code, please cite the associated paper http://www.uco.es/grupos/ayrna/orreview
% Copyright:
% This software is released under the The GNU General Public License v3.0 licence
% available at http://www.gnu.org/licenses/gpl-3.0.html
methods
function obj = GM()
obj.name = 'Geometric Mean';
end
end
methods(Static = true)
function [gm] = calculateMetric(argum1,argum2)
%CALCULATEMETRIC Computes the evaluation metric
% METRIC = CALCULATEMETRIC(CM) returns calculated metric from confussion
% matrix CM
% METRIC = CALCULATEMETRIC(actual, pred) returns calculated metric from
% real labels (ACTUAL) labels and predicted labels (PRED)
if nargin == 2
argum1 = confusionmat(argum1,argum2);
end
nC = size(argum1,1);
gm = 1;
for ii=1:nC
if(sum(argum1(ii,:))~=0)
gm = gm*argum1(ii,ii)/sum(argum1(ii,:));
end
end
gm = nthroot(gm,nC);
end
function value = calculateCrossvalMetric(argum1,argum2)
%CALCULATECROSSVALMETRIC Computes the evaluation metric and returns
%it as an error.
% METRIC = CALCULATECROSSVALMETRIC(CM) returns calculated metric from confussion
% matrix CM
% METRIC = CALCULATECROSSVALMETRIC(actual, pred) returns calculated metric from
% real labels (ACTUAL) labels and predicted labels (PRED)
if nargin == 2
value = 1 - GM.calculateMetric(argum1,argum2);
else
value = 1 - GM.calculateMetric(argum1);
end
end
end
end