-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
91 lines (70 loc) · 2.64 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
import torch
from tqdm import tqdm
import torch.nn as nn
import torch.optim as optim
from config import DEVICE, LEARNING_RATE, TRAIN_IMG_DIR, TRAIN_MASK_DIR, VAL_IMG_DIR, \
VAL_MASK_DIR, BATCH_SIZE, NUM_WORKERS, PIN_MEMORY, LOAD_MODEL, NUM_EPOCHS, CHECKPOINT_PATH, SAVE_MODEL_PATH, \
MODEL_NAME
from models.attention_unet import AttentionUnet
from models.nestedUnet import NestedUNet
from models.unet import UNET
from utils.transforms import get_train_transforms, get_val_transforms
from utils.utils import save_checkpoint, check_accuracy, save_predictions_as_imgs, load_checkpoint, get_loaders
def train_fn(loader, model, optimizer, loss_fn, scaler):
loop = tqdm(loader)
for batch_idx, (data, targets) in enumerate(loop):
data = data.to(device=DEVICE)
targets = targets.float().unsqueeze(1).to(device=DEVICE)
# forward
with torch.cuda.amp.autocast():
predictions = model(data)
loss = loss_fn(predictions, targets)
# backward
optimizer.zero_grad()
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
# update tqdm loop
loop.set_postfix(loss=loss.item())
def main():
train_transform = get_train_transforms()
val_transforms = get_val_transforms()
if MODEL_NAME == "nested_unet":
model = NestedUNet(in_channels=3, out_channels=1).to(DEVICE)
elif MODEL_NAME == "attention_unet":
model = AttentionUnet(in_channels=3, out_channels=1).to(DEVICE)
else:
model = UNET(in_channels=3, out_channels=1).to(DEVICE)
loss_fn = nn.BCEWithLogitsLoss()
optimizer = optim.Adam(model.parameters(), lr=LEARNING_RATE)
train_loader, val_loader = get_loaders(
TRAIN_IMG_DIR,
TRAIN_MASK_DIR,
VAL_IMG_DIR,
VAL_MASK_DIR,
BATCH_SIZE,
train_transform,
val_transforms,
NUM_WORKERS,
PIN_MEMORY,
)
if LOAD_MODEL:
load_checkpoint(torch.load(CHECKPOINT_PATH), model)
check_accuracy(val_loader, model, device=DEVICE)
scaler = torch.amp.GradScaler()
for epoch in range(NUM_EPOCHS):
train_fn(train_loader, model, optimizer, loss_fn, scaler)
# save model
checkpoint = {
"state_dict": model.state_dict(),
"optimizer":optimizer.state_dict(),
}
save_checkpoint(checkpoint, SAVE_MODEL_PATH)
# check accuracy
check_accuracy(val_loader, model, device=DEVICE)
# print some examples to a folder
save_predictions_as_imgs(
val_loader, model, folder="saved_images/", device=DEVICE
)
if __name__ == "__main__":
main()