-
Notifications
You must be signed in to change notification settings - Fork 5
/
handTrack.py
82 lines (72 loc) · 2.68 KB
/
handTrack.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import cv2 as cv
import mediapipe as mp
class handDetector:
def __init__(self, mode=False, maxHands=2, detectionCon=0.75, trackCon=0.75): # Increased confidence
self.mode = mode
self.maxHands = maxHands
self.detectionCon = detectionCon
self.trackCon = trackCon
self.mpHands = mp.solutions.hands
self.hands = self.mpHands.Hands(
static_image_mode=self.mode,
max_num_hands=self.maxHands,
min_detection_confidence=self.detectionCon,
min_tracking_confidence=self.trackCon,
)
self.mpDraw = mp.solutions.drawing_utils
self.tipIds = [4, 8, 12, 16, 20]
def findHands(self, img, draw=True):
imgRGB = cv.cvtColor(img, cv.COLOR_BGR2RGB)
self.results = self.hands.process(imgRGB)
if self.results.multi_hand_landmarks:
for handLms in self.results.multi_hand_landmarks:
if draw:
self.mpDraw.draw_landmarks(
img, handLms, self.mpHands.HAND_CONNECTIONS
)
return img
def findPosition(self, img, handNo=0, draw=True):
self.lmList = []
if self.results.multi_hand_landmarks:
myHand = self.results.multi_hand_landmarks[handNo]
for id, lm in enumerate(myHand.landmark):
h, w, c = img.shape
cx, cy = int(lm.x * w), int(lm.y * h)
self.lmList.append([id, cx, cy])
if draw:
cv.circle(
img, (cx, cy), 5, (255, 0, 255), cv.FILLED
) # Smaller circle for less drawing overhead
return self.lmList
def fingersUp(self):
fingers = []
# Thumb
if self.lmList[self.tipIds[0]][1] > self.lmList[self.tipIds[0] - 1][1]:
fingers.append(1)
else:
fingers.append(0)
# 4 Fingers
for id in range(1, 5):
if self.lmList[self.tipIds[id]][2] < self.lmList[self.tipIds[id] - 2][2]:
fingers.append(1)
else:
fingers.append(0)
return fingers
def main():
cap = cv.VideoCapture(0)
cap.set(cv.CAP_PROP_FRAME_WIDTH, 640) # Reduce the resolution for faster processing
cap.set(cv.CAP_PROP_FRAME_HEIGHT, 480)
detector = handDetector()
while True:
success, img = cap.read()
img = detector.findHands(img)
lmList = detector.findPosition(img)
if len(lmList) != 0:
print(lmList[4])
cv.imshow("Image", img)
if cv.waitKey(1) & 0xFF == ord("q"):
break
cap.release()
cv.destroyAllWindows()
if __name__ == "__main__":
main()