Skip to content

Latest commit

 

History

History
69 lines (54 loc) · 2.28 KB

README.md

File metadata and controls

69 lines (54 loc) · 2.28 KB

DAGNN

This DGL example implements the GNN model proposed in the paper Towards Deeper Graph Neural Networks.

Paper link: https://arxiv.org/abs/2007.09296

Author's code: https://github.com/divelab/DeeperGNN

Contributor: Liu Tang (@lt610)

Dependecies

  • Python 3.6.10
  • PyTorch 1.4.0
  • numpy 1.18.1
  • dgl 0.5.3
  • tqdm 4.44.1

Dataset

The DGL's built-in Cora, Pubmed and Citeseer datasets. Dataset summary:

Dataset #Nodes #Edges #Feats #Classes #Train Nodes #Val Nodes #Test Nodes
Citeseer 3,327 9,228 3,703 6 120 500 1000
Cora 2,708 10,556 1,433 7 140 500 1000
Pubmed 19,717 88,651 500 3 60 500 1000

Arguments

Dataset options
--dataset          str     The graph dataset name.             Default is 'Cora'.
GPU options
--gpu              int     GPU index.                          Default is -1, using CPU.
Model options
--runs             int     Number of training runs.               Default is 1
--epochs           int     Number of training epochs.             Default is 1500.
--early-stopping   int     Early stopping patience rounds.        Default is 100.
--lr               float   Adam optimizer learning rate.          Default is 0.01.
--lamb             float   L2 regularization coefficient.         Default is 5e-3.
--k                int     Number of propagation layers.          Default is 10.
--hid-dim          int     Hidden layer dimensionalities.         Default is 64.
--dropout          float   Dropout rate                           Default is 0.8

Examples

Train a model which follows the original hyperparameters on different datasets.

# Cora:
python main.py --dataset Cora --gpu 0 --runs 100 --lamb 0.005 --k 12
# Citeseer:
python main.py --dataset Citeseer --gpu 0 --runs 100 --lamb 0.02 --k 16
# Pubmed:
python main.py --dataset Pubmed --gpu 0 --runs 100 --lamb 0.005 --k 20

Performance

On Cora, Citeseer and Pubmed

Dataset Cora Citeseer Pubmed
Accuracy Reported(100 runs) 84.4 ± 0.5 73.3 ± 0.6 80.5 ± 0.5
Accuracy DGL(100 runs) 84.3 ± 0.5 73.1 ± 0.9 80.5 ± 0.4